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Abstract: In dry bulk and fluid processing, the composites are usually stored in hoppers, tanks,
or other containers. Due to the economic advantages, binary point level sensors, which detect fill
level exceeding, are widely used for process monitoring and control. In this paper, we propose
different filters for estimating the probability distribution of the fill volume based on a time-
variant measurement distribution and a stochastic physical model with white process noise.
A filter based on the model prediction with separated measurement update and two Bayesian
particle filters are proposed and compared with a simulated ground truth. The performance
measures are the root-mean-square error, the precision of the 95 % and 75 % credible intervals,
and the average value of the estimated probability density function at the simulated fill volumes.
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1. INTRODUCTION

The ongoing digitalization in modern production systems
leads to transparent and holistic information stored in data
warehouses, see Qi and Tao (2018). Methods of data min-
ing, modeling, and control use this comprehensive informa-
tion pool to offer extracted more relevant information to
the user, see Maurer et al. (2017) and Hameed et al. (2010),
or enhance system’s performance by advanced prediction
models and control algorithms, see O’Donovan et al. (2015)
and Tao et al. (2018). Modern storage management sys-
tems have a huge impact on this transformation providing
high-valuable, precise information of location and storage
time of each stored object. However, considering (semi-)
continuous work pieces, like bulk materials or fluids, the
state of the art is less precise. Continua are mainly stored
in containers, tanks, or hoppers, which are, for economic
reasons, often equipped with binary point level sensors
and controlled by a hysteresis control (bang-bang con-
trol). However, a continuous fill level information leads to
multi-dimensional benefits, like precise process monitoring
and control, storage time determination, consideration of
time dependent property changes, or preventive reordering
of composites. Though continuous fill level sensors (e.g.
radar or capacitive, see Chetpattananondh et al. (2014))
are available, point level sensors are widely used due to
their robustness, their lower acquisition costs and the long
depreciation periods of the plants.

To make the advantages of a continuous fill level infor-
mation available to existing plants (brownfield plants)
equipped with binary point level sensors, this paper
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and KÜNKEL WAGNER Germany GmbH for their support.

presents Bayesian filters for measurement and model based
fill volume estimation. A similar problem is the object
tracking in binary sensor networks, where each sensor
detects if an object is located below a certain distance,
see Teng et al. (2010). For continuous sensor signals a fill
level and parameter estimation approach can be found in
Itävuo et al. (2017) and Babuska et al. (2006). A Bayesian
filter, see Särkkä (2013), predicts the state xk based on the
probability density function of a stochastic physical model
of first order p (xk|xk−1) and updates the prediction con-
sidering the measurement likelihood p (yk|xk) of the sensor
signals yk. Given the filtered probability density function
p
(
xk−1|y1:k−1

)
at time k−1, with y1:k−1 = (y1, ...,yk−1),

the probability density function of the state xk at time k

p
(
xk|y1:k−1

)
=

∫
p (xk|xk−1) p

(
xk−1|y1:k−1

)
dxk−1 (1)

can be predicted based on the physical model. Considering
the measurement likelihood, the probability density func-
tion of state xk can be determined based on Bayes’ rule

p (xk|y1:k) =
1

Z
p (yk|xk) p

(
xk|y1:k−1

)
, (2)

with (often called model evidence)

Z =

∫
p (yk|xk) p

(
xk|y1:k−1

)
dxk. (3)

Our testbed container is one return sand hopper of the
foundry Heinrich Meier Eisengießerei GmbH & Co. KG
and the proposed methods are based on their existing
sensor infrastructure. For data anonymization all plant
related data is normalized by the total hopper volume,
so that the fill volume is in [0, 1].

In section 2, we will describe the sand hopper system at the
foundry. The physical model as well as the parameter and
noise identification will be proposed in section 3. In section
4, a model prediction filter and different particle filters
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will be proposed and validated regarding an exemplary
scenario and a simulated fill volume signal in section 5.

2. DESCRIPTION OF THE SYSTEM

In a green sand foundry, the main-composite of the casting
molds is quartz sand. To save resources, the molding ma-
terial returns after it was separated from the casting and
passes through sand processing to restore its properties for
building new molds again. Mixers homogenize return sand,
additives, and water regarding a specific recipe. Because
the mixing is done batch wise, hoppers are needed to
store the return sand temporarily. In this publication, we
will focus on one hopper after the return sand cooler. A
schematic view of the sand hopper and the related plant
components can be seen in Fig. 1. The outlet flap (B) angle
αk of the return sand cooler (A) and the sand scraper (D)
position sk control the input sand flow of the hopper. Two
sensors detect if the fill level is below or above their mount-
ing height. Before a new batch is mixed, the return sand
is portioned by switching on the outlet belt (F) until the
desired weight is reached in the scale (G). Following, the

used symbols are listed for a time step k ∈ K = {0, ..., k̂}:
αk: Outlet flap angle,
dk ∈ {0, 1} : Activity of the outlet belt,
∆t : Transportation time from (B) to (D),
ρ : Density of return sand,
sk ∈ {0, 1} : Sand scraper position,
ts : Sample time,
Vh : Volume at mounting height of sensor h ∈

H = {0, ..., ĥ},
VL,k, VU,k: Lower and upper valid vol. interval,
wk : Scale signal,
xk : Fill volume,
yk : Sensor signal tuple,
yh,k ∈ {0, 1}: Signal of (virtual) point level sensor h ∈

H,
p(·) : Probability distribution or density,
U(a, b) : Uniform distribution with lower bound a

and upper bound b
N(µ, σ2) : Normal distribution with mean µ and

variance σ2,
T(µ, σ2, a, b) : Truncated normal distribution with

mean µ, variance σ2, lower bound a and
upper bound b,

b·e,b·c,d·e : Round, floor and ceil function.
¬ : Logical not.

As the hopper control prevents the volume in the return
sand hopper exceeding the maximum capacity Vĥ = 1 or
falling below V0 = 0, virtual sensors are added in the model
with y0,k = 1, yĥ,k = 0 ∀ k.

3. STOCHASTIC MODELING AND
IDENTIFICATION

3.1 Physical Modeling

For modeling the following simplifications were made: the
fill level is ideal flat and horizontal, the return sand is
incompressible, only the outlet flap influences the sand
volume on the conveyor belt, and the sand scraper takes
off a constant proportion of the incoming sand (ideally
100 %). The input variables are the opening height of the

Fig. 1. The sand hopper system with return sand cooler
(A), outlet flap (B), conveyor belt (C), sand scraper
(D), sand hopper (E) with two point level sensors
(|H| = 3), outlet belt (F), and weighing scale (G).

sand cooler u1,k (with normalized flap height of 1), which
can be determined by the flap geometry, and the mass
difference of the scale u2,k between time step k + 1 and k

u1,k = 2sk sin

(αk−b∆t
ts
e

2

)
, (4)

u2,k = dk+1 (wk+1 − wk) . (5)

The physical model can be expressed as a time-discrete
state space model with process noise qk−1 ∼ N (0, Qk−1)
and the unknown parameter ϑµ, that represents the vol-
ume flow per normalized opening height of the flap,

xk = xk−1 +
(
ϑµ − 1

ρ

)(u1,k−1

u2,k−1

)
︸ ︷︷ ︸

δxk−1

+qk−1, (6)

yk =
(
y0,k, ..., yĥ,k

)
, with yh,k =

{
0 if xk < Vh
1 else.

(7)

As the weighing signal wk is needed to determinate xk, this
representation is not real-time capable. For use in real-time
scenarios, the past weighing difference between time step
k−1 and k−2 has to be used. Following (6), the stochastic
state space model is given by

xk ∼ p (xk | xk−1) = N
(
xk | xk−1 + δxk−1

, Qk−1

)
= N

(
xk − xk−1 | δxk−1

, Qk−1

)
.

(8)

Using (8) in (1), leads to a convolution of two probability
densities and we obtain the intuitive model prediction of
adding the random variable ∆xk−1

∼ N
(
δxk−1

, Qk−1

)
to

the previous fill volume estimation. Considering (7) the
valid interval [VL,k, VU,k) is defined by the highest sensor,
which signal is 1, and the sensor above

VL,k = Vȟ, VU,k = Vȟ+1, ȟ= h ∈ H | yh,k 6= yh+1,k, (9)

which leads to the measurement likelihood

p (yk | xk) =

{
1 xk ∈ [VL,k, VU,k)

0 otherwise.
(10)
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3.2 Parameter and Process Noise Identification

In comparison with the model uncertainties and simpli-
fications, a changing sensor signal is precise so that the
measurement noise is approximately zero. In this paper,
we will call this precise volume information a volume mea-
surement. The bang-bang control rules for the fill volume

sk = ¬yĥ−1,k and dk = y1,k (11)

lead to often constant volume measurements. 92.1 % of the
volume measurements are caused by the fill level exceeding
or falling below the same sensor. Therefore, the identifica-
tion problem is ill-conditioned, if both parameters ϑµ and
ρ have to be identified. To prevent the parameters from
converging towards the trivial solution with ρ = ∞ and
ϑµ = 0 the return sand density ρ was measured. As shown
in Schütte et al. (1997) for a five-step control, the input
signal is nearly uncorrelated with the output in case of
a bang-bang (two-step) control. Therefore, the parameter
can be identified in the closed-loop control system. The
identification samples were generated based on the volume
measurements, see Fig. 2. The set of time steps k that show
a volume measurement is

K̃ =
{
k ∈ K | yk 6= yk−1

}
, (12)

which can be sorted in sequence (increasing k) in the tuple

k̃. For the corresponding volume index h ∈ H of a volume
measurement, we will define a function for later use

h̃ (k) = h ∈ H | yh,k 6= yh,k−1. (13)

To identify the unknown parameter, the modeled volume
difference between two volume measurements at time steps
k̃m−1 and k̃m is compared with the difference of the volume
measurements. With the proper subset

Sm =
{
k̃m−1, ..., k̃m − 1

}
⊃ K (14)

of time steps between the volume measurements k̃m−1 and

k̃m

em = ϑµ
∑
k∈Sm

u2,k−
1

ρ

∑
k∈Sm

u1,k−Vh̃(k̃m)+Vh̃(k̃m−1) (15)

forms the m-th identification sample with model error em.
The variance of the white process noise of the system (6)

Qk = ϑσ
(
ϑµ

1
ρ

)(|u1,k|
|u2,k|

)
(16)

is modeled proportional to the total volume flow, the sum
of input and output flow’s absolute values, as it is assumed
that the model uncertainty is caused by noisy excitation
and is zero if u1,k = u2,k = 0. The unknown parameters
ϑ = (ϑµ, ϑσ) can be determined by maximizing the log-
likelihood ln (p (e | ϑ)), see DeGroot and Schervish (2012).
For the present assumptions, this leads to the parameter
estimate

ϑ = arg min
ϑ∈R2

>0

∑
m∈M

ln
(√

2πσ2
m

)
+

e2
m

2σ2
m

(17)

with
σ2
m =

∑
k∈Sm

Qk. (18)

The parameters were identified based on 30e6 samples of
input and output data and |M | = 44e3 identification sam-
ples. The confidence intervals of ϑµ and ϑσ are 3784e−6±
7e−6 and 436e−6± 12e−6 respectively.

V
ol
um

e
Fig. 2. The valid volume interval [VL, VU) with volume

measurements (top) and the corresponding signals of
the non-virtual sensors y1,k and y2,k (bottom). The
identification samples Sm with m ∈ {1, ..., 5} are

generated based on the volume measurements k̃.

4. FILL VOLUME ESTIMATION

In this chapter, we will introduce the investigated filters
for fill volume estimation: a filter based on model predic-
tion, with separate measurement update, and two particle
filters, that consider the measurement update sequentially.
All filters have in common, that, if a new volume measure
occurs (yk 6= yk−1), the fill volume estimation is reset to
the volume measurement Vh̃(k) with low variance ε2 � 1.

4.1 Model Prediction Filter

First, we will introduce a filter considering the model
prediction in the first instance, which leads to normal
distributed fill volume estimations. The measurement up-
date is done separately by truncating the normal distri-
bution. Advantageously, the model prediction probabil-
ity distribution can be determined analytically with low
computational effort. Additionally, the past non-truncated
estimations can also be updated analytically by the Rauch-
Tung-Striebel smoother, see Rauch et al. (1965), when new
volume measurements occur. Disadvantageously, it is to be
expected that the estimation of the fill volume becomes
worse with increasing time difference to the last volume
measurement since impossible fill volumes are considered
in every iteration. The fill volume prediction distribution
based on the last occurred volume measurement

m̂k = max
({
m ∈ {0, ..., k} | ym 6= ym−1

})
(19)

is

p̂
(
xk | ym̂k

)
=

∫
p (xk | xk−1) p̂

(
xk−1 | ym̂k

)
dxk−1 (20)

= N (xk | µk, Pk) , (21)

with, see (6), (8) and (13),
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P0 =
1

ε2
, Pk =

{
ε2 yk 6= yk−1

Qk−1 + Pk−1 otherwise,
(22)

µ0 =
VL,0 + VU,0

2
, µk =

{
Vh̃(k) yk 6= yk−1

δxk−1
+ µk−1 otherwise.

(23)

The measurement update step takes place separately upon
this ongoing model prediction, limiting the normal distri-
bution to the valid interval [VL,k, VU,k)

xk ∼ T (xk | µk, Pk, VL,k, VU,k) , (24)

which leads approximately to a uniform distributed x0.

4.2 Bayesian Particle Filters

A normal distributed fill volume will always consider im-
possible states xk−1 while model prediction. This recursive
error increases continuously until a new volume measure-
ment leads to a new initialization of the distribution. This
can be prevented by updating the model prediction with
the measurement likelihood function (10). In this paper,
we will compare two particle filters: a sequential Monte
Carlo filter, see N. J. Gordon et al. (1993) and Kitagawa
(1996), with random particle initialization and a filter
with deterministic particle initialization that is used to
approximate the cumulative distribution function of the
new state’s probability distribution.

Sequential Monte Carlo Filter: In literature, see Särkkä
(2013), the sequential Monte Carlo filter is also known
as particle filter and consists of the following steps to
approximate the posterior distribution p (xk | y1:k):

• Draw N particles x
(i)
0 from the initial distribution

p (x0) and set their weights w
(i)
0 by

x
(i)
0 ∼ p (x0) , w

(i)
0 =

1

N
∀i ∈ {1, ..., N} . (25)

• For k = 1, ..., k̂:
(1) Draw N particles from the importance distribu-

tions

x
(i)
k ∼ q

(
xk | x(i)

k−1,y1:k

)
, (26)

(2) calculate the new weights by

w
(i)
k = w

(i)
k−1

p
(
yk | x

(i)
k

)
p
(
x

(i)
k | x

(i)
k−1

)
q
(
x

(i)
k | x

(i)
k−1,y1:k

) (27)

and normalize them to sum to unity.
(3) If the effective number of particles is to low,

draw a new set of N equal weighted particles

with probability w
(i)
k for particle x

(i)
k to be drawn

(resampling).

In the presented application the initial particles are drawn
from a uniform distribution

x
(i)
0 ∼ p (x0) = U (x0 | VL,0, VU,0) , (28)

as only the valid interval is known. The importance dis-
tribution in Eq. 26 is either the model prediction (8) or,
in case of a volume measurement, a truncated normal
distribution with low variance, which leads to

x
(i)
k ∼

T
(
xk | Vh̃(k), ε

2, VL,k, VU,k

)
yk 6= yk−1

p
(
xk | x(i)

k−1

)
otherwise.

(29)

The weight update in Eq. 27 than simplifies to

w
(i)
k =

{
1
N yk 6= yk−1

w
(i)
k−1p

(
yk | x

(i)
k

)
otherwise.

(30)

The particles are yet reset infrequently if yk 6= yk−1.
Additionally, resampling takes place when selected par-
ticles violate the valid interval as the measurement up-
date (10) sets their weights to zero. For every particle
z with zero weight a new particle is drawn from the
model prediction (8) for a randomly selected particle R
of the particle distribution at time step k− 1 (considering

w
(i)
k−1 = 1

N ∀ i ∈ {1, ..., N}) until the sampling condition∑N
i=1 w

(i)
k = 1 is fulfilled by

x
(z)
k ∼ p

(
xk | x(R)

k−1

)
∀ z ∈ {1, .., N} | w(z)

k = 0, (31)

w
(z)
k =

p (yk | xk)

N
∀ z ∈ {1, .., N} | w(z)

k = 0 (32)

with

R ∼ U (1, N) . (33)

Deterministic Particle Filter: For the second particle
filter, the particles are not drawn from the distribution but
created by a deterministic rule. In Huber and Hanebeck
(2008) a particle selection capturing the mean and variance
of the true density and minimizing the Cramér–von Mises
distance is proposed. Tenne and Singh (2003) present
an extension of the unscented Kalman Filter to capture
moments of higher order of the true density. As in the
presented scenario the measurement likelihood truncates
the model prediction to the valid interval, it seems rea-
sonable to distribute the particles evenly over the en-
tire distribution. Therefore, the particles are placed in
intervals, defined by the cumulative distribution function
P (x). Each interval is represented by one particle, which
leads to particles with equal probability and therefore
equal weights. In this paper the particle creation function
C (p(x), N) for N particles from probability distribution p
are based on the interval’s median

CM (p(x), N) = x(i) = P−1

(
i− 1

2

N

)
(34)

or mean

CE (p(x), N) = x(i) =

∫ xU

xL
xp (x) dx

P (xU)− P (xL)
, (35)

with

P (xL) =
i− 1

N
, P (xU) =

i

N
. (36)

Equation (36) also defines the lower xL and upper xU

interval borders. Placing the particles on the interval’s
mean value need the borders to be computed and it
is not guaranteed for all probability distributions that
the integral has an analytic solution or converges. The
generated particles are shown in Fig. 3. Like the sequential
Monte Carlo filter, the particles are initialized by a uniform
distribution

x
(i)
0 = C (U (x0 | VL,0, VU,0) , N) , (37)

w
(i)
0 =

1

N
. (38)

The combination of all particles x
(i)
k−1 with all particles

created from the model change distribution

∆(i)
xk−1

= C
(
N
(
∆xk−1

| δxk−1
, Qk−1

)
, N
)

(39)
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Fig. 3. Generated median x
(i)
M and mean x

(i)
E particles with

corresponding intervals for the probability density
function of a standard normal distribution.

lead to N2 model prediction particles x̃
(j)
k

x̃
(j)
k = x

(1+b j−1
N c)

k−1 + ∆
(j−b j−1

N cN)
xk−1 , (40)

w̃
(j)
k =

p
(
yk | x̃

(j)
k

)
N2

. (41)

The cumulative distribution function P (xk | y1:k) can be

determined by sorting the particles x̃
(j)
k increasingly so

that x̃
(j)
k ≤ x̃

(j+1)
k ∀ j ∈ {1, ..., N2 − 1}. To keep the

particle size with non-zero weight constant, N particles
are selected by the creation functions, see (34) and (35),
adapted for discrete distributions. For the median creation
rule the particles are drawn by

x
(i)
k =

{
CM

(
T
(
xk | Vh̃(k), ε, VL,k, VU,k

)
, N
)

yk 6= yk−1

x̃
(ci)
k otherwise,

(42)

where ci are the particles minimizing the distance from the
discrete cumulative distribution function to the interval’s
medians at P (x) =

i− 1
2

N

ci = arg min
ci

∣∣∣∣∣
∑ci
j=1 w̃

(j)
k∑N2

j=1 w̃
(j)
k

−
i− 1

2

N

∣∣∣∣∣ . (43)

In case of the mean representation the particles are drawn
by

x
(i)
k =

CE

(
T
(
xk | Vh̃(k), ε, VL,k, VU,k

)
, N
)

yk 6= yk−1∑Ui

j=Li
x̃

(j)

k

|Ui−Li| otherwise,

(44)

where Li and Ui are the lower and upper boundary par-
ticle, that minimize the distance of the discrete cumu-
lative distribution function to the interval’s borders at
P (x) = i−1

N

Li = min (b) , s.t.

∑b
j=1 w̃

(j)
k∑N2

j=1 w̃
(j)
k

≥ i− 1

N
, (45)

Ui = max (b) , s.t.

∑b
j=1 w̃

(j)
k∑N2

j=1 w̃
(j)
k

<
i

N
. (46)

5. VALIDATION AND COMPARISON

The introduced filters will be compared in two scenarios.
First, the goodness of estimating a ground truth probabil-
ity distribution is investigated in an exemplary scenario,
where the fill level gets closer to a sensor position without
reaching it. In the second scenario, the hopper scenario, the
filters will be compared to a simulated fill volume based
on the real plant inputs.

5.1 Exemplary scenario

In the exemplary scenario, the fill volume is initialized
at x0 = 0.75 and the volume at the sensor position is
V1 = 0.7. In every iteration the fill volume is decreased
by the probability distribution δxk−1

∼ N (−0.001, 0.004).
The relevant sensor signals are y1,k = 1 and y2,k = 0 so
that the fill volume is always beyond V1. The following
filters will be compared:

• the model prediction only filter with subsequent mea-
surement update (MPF),

• a sequential Monte Carlo filter withN = 1e2 (MCF2),
• a sequential Monte Carlo filter withN = 1e4 (MCF4),
• a deterministic particle filter with median creation

rule and N = 1e2 (DPFM),
• a deterministic particle filter with mean creation rule

and N = 1e2 (DPFE).

The number of particles for the MCF4 was chosen to lead
to an approximately equal computational effort compared
to the deterministic particle filters. In 1e5 calculation the
mean computing times were 0.91 ms for the MCF4, 1.64 ms
for the DPFM and 0.83 ms for the DPFE. For the compar-
ison of accuracy the ground truth is approximated by a
Monte Carlo simulation with 1e7 initialized particles and
in every iteration step k the invalid particles are deleted;
6.5e5 particles remain at k = 100. The filters are compared
regarding mean, variance, and the symmetric Kullback
Leibler divergence between the ground truth p and the
estimated distribution p̂. As discrete and continuous dis-
tributions with different resolutions have to be compared,
the symmetric Kullback Leibler divergence

DSKL (p||p̂) = DKL (p||p̂) +DKL (p̂||p) , (47)

with

DKL (p||p̂) =

N+1∑
i=1

∆Pilog
∆Pi

∆P̂i
(48)

and

∆Pi = P (λi)− P (λi−1) , P (λ0) = 0, P (λN+1) = 1,

(49)

λi = P̂−1

(
i− 1

2

N

)
, i ∈ {1, ..., N} (50)

was evaluated in the intervals defined by the particle
generation (34) for N = 100 particles (and 101 intervals),
which is the minimum number of particles of the compared
filters. The results are shown in Fig. 4. The MPF shows the
best performance of all filters in the first iterations as long
as the fill volume distribution is not truncated significantly
by the sensor measurement (also visible by the linear de-
creasing mean and increasing variance). As expected, with
increasing k the performance deteriorates, except the vari-
ance estimation. The sequential Monte Carlo filters MCF2

and MCF4 show a random walk for all k as all particles are
generated and updated randomly, which is less pronounced
as the number of particles increases. However, a constant
drift is not visible and the Kullback-Leibler divergence is
approximately constant. The deterministic particle filters
DPFE and DPFM create particles by identical rules in
every iteration and underestimate the variance (see Fig.
3). In combination with the measurement update, deleting
the particles mainly one-sided if the estimated probability
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Fig. 4. Mean and variance of the filters compared to
the ground truth and symmetric Kullback Leibler
divergence of the filters (from top to bottom). The
Monte Carlo filter results are one possible estimation
and vary in every simulation.

function is not symmetric to the valid interval’s center,
the filters show a constant drift in mean and variance esti-
mation. The DPFE shows a better performance regarding
the three accuracy measures as the particles are generated
in the probability centers of the intervals. More complex
creation functions, considering the centric moments of the
distribution that is to be approximated, are imaginable
for higher accuracy but out of the scope of this paper.
Considering the exemplary scenario, the MPF, DPFE,
and MCF4 will be investigated in the hopper scenario.
The MPF is expected to show the best performance if
the model prediction is a good approximation of the real
system and the fill level is only occasionally near the sensor
mounting positions. The DPFE is expected to show the
best performance if the fill level is often near the sensor
position and occasionally volume measurements occur.
The MCF4 is expected to show the best performance if
volume measurements occur rare.

5.2 Hopper scenario

The MPF, DPFE, and MCF4 are compared in the hopper
scenario. A sequence of 2e6 plant’s input samples αk and
wk are used to simulate the model in closed loop, see
(6), (7) and (11). As no identification errors are taken
into consideration and ε2 = 5.4e−5 was determined by

the simulated fill level, the results are supposed to be
the most exact and probably deteriorate in the real sce-
nario. Exemplary parts of the sequence of the estimation
compared to the simulated fill volume xS,k can be seen
in Fig. 5. The differences are relatively small and for the
MCF4 and DPFE not visible. As in the exemplary scenario,
the MPF estimated probability distribution is closer to
the sensor volume. For comparison the estimation of the

Fig. 5. The simulated fill volume, the estimated mean and
95 % credible interval (c. i.) for a randomly selected fill
cycle (left) and the fill cycle with maximum RMSE
(right) for the DPFE and MCF4 (top), which have
almost identical results, and the MPF (bottom). To
improve readability, time index k is set to zero at the
origin of every plot. Nevertheless, all presented plots
are small windows from one long sequence.

fill volume distribution only based on the measurement
p (xk | yk) = U (xk | VL,k, VU,k) and the model prediction
p (xk | xk−1), see (8), are also evaluated. This leads to dif-
ferent dependencies, y1:k, yk, and xk−1, of the considered
fill volume distributions and we will generally denote Dk in
the following, which is either y1:k or yk or xk−1 dependent
on the fill volume distribution.

Four validation metrics are proposed based on the esti-
mated fill volume distribution p (xk | Dk):

• the root-mean-square error (RMSE) of the mean,
• the amount of simulated fill volumes within the
pci = 95 % and pci = 75 % credible intervals, limited
by the lower xL,k and upper bound xU,k

xL,k =P−1

(
1− pci

2
| Dk

)
, (51)

xU,k =P−1

(
1 + pci

2
| Dk

)
, (52)

• the average value of the probability density function
of the estimated fill volume distribution at the simu-
lated fill volume, which is e. g. a common loss function
for training and validation in Gaussian process regres-
sion (see Bousquet (2004)). Average in this context
mean

p =
k̂

√√√√ k̂∏
k=1

p (xS,k|Dk). (53)
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The truncated normal fill volume distribution is identified
from the particle representation by minimizing the sym-
metric Kullback Leibler divergence in (47). The perfor-
mance measures can be seen in table 1. The results of the
particle filter are the mean of three separated iterations. As
the standard deviation would not be visible in the chosen
resolution, it is not shown. The differences between the
filters are low, with the MCF4 showing the best results for
the selected hopper. It is expected that the Bayesian filters
perform better when applied to the real systems as they
consider in every iteration also the measurement signal,
which leads to a higher robustness against model errors.

Table 1. Results for one hopper

RMSE 95 % c. i. 75 % c. i. p

p (xk | yk) 0.302 62.08 % 7.26 % 1.50
p (xk | xk−1) 2.422 99.84 % 70.09 % 0.13
MPF 0.020 95.63 % 76.95 % 18.35
MCF4 0.018 95.69 % 76.14 % 19.57
DPFE 0.018 94.98 % 74.78 % 19.56

6. CONCLUSION AND FUTURE WORK

In this paper, different filters for estimating the fill vol-
ume probability distribution of a sand hopper in casting
processes based on a stochastic model and a measurement
likelihood from binary point level sensors were proposed. It
was shown how the stochastic physical model was created
and identified considering the available plant data. The
compared filters were the model prediction filter, where
the measurement update is performed separately from the
ongoing model prediction, a sequential Monte Carlo filter
with random particle selection, and a deterministic parti-
cle filter, where the particles are created based on the cu-
mulative distribution function. In an exemplary scenario,
the differences of the filters in approximating a fill level
distribution, were investigated, and in a simulated scenario
of the closed loop sand hopper, the filters were compared
with respect to the estimation of a specific fill volume,
showing low differences in the performance measures. The
main aspect for higher estimation accuracy is therefore
expected in the model accuracy so that other process noise
will be investigated in future work. Even if it is known
that the hopper is only filled, white process noise will con-
sider the possibility of a decreasing fill volume. Separated
one-side limited process noise distribution (e. g. gamma
distribution) for filling and emptying may perform better
in the real scenario. Applying the filters to the real sand
hopper system and compare different smoothers when new
volume measurements occur, will be the following steps to
investigate and improve the fill volume estimation.
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