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Abstract: A new method is presented for stability analysis of proportional delay high-order
neural networks. The network model is first transformed into a system with a constant time
delay and unbounded time-varying coefficients, and then it is proven that the former is globally
exponentially stable if and only if the laster is globally hyper-exponentially stable. The global
hyper-exponential stability criteria of the laster are investigated by employing the generalized
Halanay inequality and constructing a novel Lyapunov function that can avoid the computation
of upper-right derivative. From which, the global exponential stability criteria of the former are
derived. To illustrate the advantages of this proposed method, numerical simulation examples are
given. Compared with the existing results, the contributions of this paper lie in: (i) An Lyapunov
function different from ones in literature is constructed; (ii) The derived global exponential
stability criteria possess simple forms, which are easy to verify; and (iii) The concept of hyper-
exponential stability is proposed. The proposed method is also available to multi-proportional
delay neural networks.

Keywords: proportional delay; global exponential stability; global hyper-exponential stability;
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1. INTRODUCTION

Since the Hopfield-type neural networks have been pro-
posed by Hopfield (1982), both the theoretical research
and the application research of neural networks have en-
tered a period of rapid development. The parallel com-
puting power, associative storage functions, and self-
organizing self-learning capabilities of neural networks
make them widely applied in image processing, informa-
tion engineering, robot control and other fields (see Berd-
nik et al. (2006); Kariniotakis et al. (1996); Wang et al.
(2016); Shi et al. (2016); Wang et al. (2018); Velichko et al.
(2019); Wang and Yang (2020); Hu et al. (2016); Zhang
et al. (2019)).

In the operation of networks, the delay is inevitable (see
Zhang et al. (2016a,b); Shen et al. (2020); Lin et al. (2013);
Chen et al. (2019)). On the other hand, most of the above
applications require the neural network to be stable, while
time delay is usually a factor of breaking the stability. As
a result, the studies on stability of various delayed neural
networks have also made many advancements (see Pratap
et al. (2019); Li et al. (2018); Zhang and Zeng (2019a,b);

Shi et al. (2019, 2020); Li et al. (2018); Gao et al. (2019);
Zhang et al. (2017)). Currently, from the perspective of
whether it depends on time, the delays in literature can be
divided into two kinds: time-varying delays and constant
delays. In terms of its characteristics, proportional delay
is proportional to time, so it is unbounded and time-
varying. Up to now, there are few research on proportional
delay neural networks. This is, of course, a large part of
the reason because the ordinary method of dealing with
bounded delays is difficult to apply directly to the case of
unbounded time-varying delays. On the other hand, the
development of proportional delay neural networks is also
constrained, because the development of the proportional
delay differential equations is relatively slow. This is also
the reason why this paper studies proportional delay
neural networks.

The existing results focus on mainly low-order neural net-
works, which has limited capacity. The high-order neural
networks (HONNs) have the considered advantages and
the excellent characteristics than the low-order ones, and
hence they have been paid more and more attention (see
Kariniotakis et al. (1996); Berdnik et al. (2006)). Although

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4866



there are many achievements on stability for HONNs with
time delay(s) (see Ren and Cao (2006); Liu et al. (2005);
Lou and Cui (2007); Yu (2016); Xu and Li (2017); Zheng
et al. (2015); Zhou (2015); Huang et al. (2019); Shen
et al. (2020) and the references therein), few results are
related to proportional delay HONNs (see Yu (2016); Xu
and Li (2017); Zheng et al. (2015); Zhou (2015); Huang
et al. (2019); Shen et al. (2020)). Yu (2016) derived sev-
eral global exponential stability criteria of HONNs with
neutral-type proportional delays. Xu and Li (2017) ad-
dressed the exponential stability of global network equilib-
rium. Zheng et al. (2015) obtained sufficient conditions for
p-th stability of proportional delay HONNs. Zhou (2015)
investigated sufficient conditions for global exponential
periodicity and stability of generalized proportional delay
HONNs. Huang et al. (2019) dealt with asymptotic sta-
bility of neutral proportional delay HONNs. Shen et al.
(2020) presented asymptotic stability criteria for a kind of
HONNs with one proportional delay.

Motivated by the previous discussions, the paper aims at
presenting a new method to give global exponential stabil-
ity criteria of proportional delay HONNs. Note that it is
difficult to directly investigate global exponential stability
criteria by applying the traditional method used in the
case of bounded time-varying delays, since proportional
delay is unbounded. Therefore, we will indirectly solve the
problem through introducing an appropriate model trans-
formation and the definition of hyper-exponential stability.
First, the considered network model is transformed into
a time-delay system which has unbounded time-varying
coefficients, and then it is shown that the resulting time-
delay system is globally hyper-exponentially stable if and
only if the considered HONN is globally exponentially
stable. Second, criteria for the global hyper-exponential
stability of the resulting time-delay system (i.e., expo-
nential stability of the HONN under consideration) are
derived by picking a special Lyapunov function and using
the generalized Halanay inequality. Compared with one in
Zheng et al. (2015), the proposed method has less con-
servative and does not require the computation of matrix
norms and matrix measures, which has been illustrated by
numerical examples in Section 4.

Advantages of the proposed method lie in: (i) A new
Lyapunov function is constructed, which computes only
its derivative instead of upper-right derivative; (ii) The de-
rived global exponential stability criteria are effective and
easy to verify; and (iii) The concept of hyper-exponential
stability is introduced. In addition, in terms of method
promotion, the proposed method can also be applied to the
analysis and design of proportional delay neural networks,
even other problems involving proportional delay(s).

Notations: Let <m×n be the set of all m × n matrices
over the real number field <, and set <n = <n×1. The
Kronecker product, A ⊗ B, of A := [aij ] ∈ <m×n and
B ∈ <p×q are defined by [aijB] ∈ <mp×nq. The symbol
‖ · ‖ represents the Euclidean norm on <n or the spectral
norm on <m×n. Denote by diag(·) and col(·) the diagonal
matrix and the column matrix, respectively.

2. PROBLEM FORMULATION

Consider the following proportional delay HONN (see
Zheng et al. (2015)):

u̇i(t) =− diui(t) +

n∑
j=1

[aijfj(uj(t)) + bijgj(uj(qt))]

+

n∑
j=1

n∑
k=1

Tijkgj(uj(qt))gk(uk(qt)) + Ji,

t ≥ 1, i = 1, 2, . . . , n, (1a)

ui(s) = ψi(s), i = 1, 2, . . . , n, s ∈ [q, 1], (1b)

where ui(t) is the membrane potential of the i-th neuron
at time t, ψi(·) represents initial function, 0 < q < 1 and
di > 0 are known constants, Ji represents external input,
aij , bij and Tijk are the synaptic connection weights, and
fj(·) and gj(·) are the j-th neuron’s activation functions
that satisfy

| fi(v1)− fi(v2) |≤ αi | v1 − v2 |,
| gi(v1) |≤ γi,
| gi(v1)− gi(v2) |≤ βi | v1 − v2 | (2)

for any v1, v2 ∈ < and i = 1, 2, . . . , n, where αi, βi and γi
are known positive constants independent from v1 and v2.

Since qt = t− (1− q)t, so (1− q)t is called the unbounded
transmission delay. Let

u(t) = col(u1(t), u2(t), . . . , un(t)), A = [aij ] ∈ <n×n,

B = [bij ] ∈ <n×n, D = diag(d1, d2, . . . , dn),

ψ(s) = col(ψ1(s), ψ2(s), . . . , ψn(s)),

f(u(t)) = col(f1(u1(t)), f2(u2(t)), . . . , fn(un(t))),

g(u(qt)) = col(g1(u1(qt)), g2(u2(qt)), . . . , gn(un(qt))),

G(u(qt)) = In ⊗ g(u(qt)), Ti = [Tijk] ∈ <n×n,

T = col(T1, T2, . . . , Tn), J = col(J1, J2, . . . , Jn).
Then HONN (1) can be expressed as:

u̇(t) =−Du(t) +Af(u(t)) +Bg(u(qt))

+GT(u(qt))Tg(u(qt)) + J, t ≥ 1, (3a)

u(s) = ψ(s), s ∈ [q, 1]. (3b)

Set {
y(t) = u(et), t ≥ 0,
ϕ(s) = ψ(es), s ∈ [−τ, 0],

(4)

where τ = − ln q > 0. Then u(qet) = u(et−τ ) = y(t −
τ), t ≥ 0,, and hence HONN (3) is transformed into:

ẏ(t) =et{−Dy(t) +Af(y(t)) +Bg(y(t− τ))

+GT(y(t− τ))Tg(y(t− τ)) + J}, t ≥ 0, (5a)

y(s) = ϕ(s), s ∈ [−τ, 0]. (5b)

Definition 1. Let u∗ be an equilibrium point of HONN
(3). If there exist two constants M > 0 and λ > 0 such
that

‖u(t, ψ)− u∗‖ ≤M sup
q≤s≤1

‖ψ(s)− u∗‖e−λt

for any t ≥ 1 and ψ ∈ C([q, 1],<n), where u(t, ψ) is the
solution of HONN (3), then u∗ is globally exponentially
stable.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4867



Definition 2. Let y∗ be an equilibrium point of system
(5). If there exist two constants M > 0 and λ > 0 such
that

‖y(t, ϕ)− y∗‖ ≤M sup
−τ≤s≤0

‖ϕ(s)− y∗‖e−λe
t

for any t ≥ 0 and ϕ ∈ C([−τ, 0],<n), where y(t, ϕ) is
the solution of system (5), then y∗ is globally hyper-
exponentially stable.

Remark 1. HONN (3) is transformed into system (5) via
(4). If the equilibrium y∗ of system (5) is globally hyper-
exponentially stable, then according to Definition 2, we

can get that ‖y(t, ϕ)−y∗‖ ≤M sup
−τ≤s≤0

‖ϕ(s)‖e−λet for any

t ≥ 0 and ϕ ∈ C([−τ, 0],<n), and some M > 0 and λ > 0.
Let s = et, then ‖u(s, ψ)− u∗‖ ≤M sup

q≤σ≤1
‖ψ(σ)‖e−λs for

any s ≥ 1 and ψ ∈ C([q, 1],<n). By Definition 1, HONN (3)
is globally exponentially stable. Conversely, one can easily
show that if HONN (3) is globally exponentially stable,
then system (5) is globally hyper-exponentially stable.
Therefore, the hyper-exponential stability of system (5)
is equivalent to the exponential stability of HONN (3).

Remark 2. The stability criteria investigated by Ren and
Cao (2006); Liu et al. (2005) can not be applied to system
(5), because only systems with constant coefficients are
involved in these literature, while the coefficients of system
(5) are unbounded and time-varying.

Remark 3. The approach proposed by Shen et al. (2020)
can establish only asymptotic stability criteria for HONN
(1), but not exponential stability criteria; see Shen et al.
(2020, Remark 1) for the details.

This paper aims at proposing a new method to investigate
less conservative global exponential stability criteria for
the equilibrium u∗ of HONN (3) (i.e., hyper-exponential
stability criteria for the equilibrium y∗ of system (5)). To
the end, we require the following lemma:

Lemma 1. Tian (2004) Suppose

u̇(t) ≤ γ(t)− α(t)u(t) + β(t) sup
t−τ≤σ≤t

u(σ), t ≥ t0,

where τ ≥ 0, γ : [t0,∞) → [0, γ∗], α : [t0,∞) →
[α0,∞] and β : [t0,∞) → [0,∞] are continuous functions
satisfying 0 ≤ β(t) ≤ qα(t) for any t ≥ t0 with constants
γ∗ > 0, α0 > 0 and 0 ≤ q < 1. Then

u(t) ≤ γ∗

(1−q)α0
+ sup
t0−τ≤σ≤t0

u(σ)e−µ
∗(t−t0), t ≥ t0,

where µ∗ = inf
t≥t0
{µ(t) : µ(t)− α(t) + β(t)eτµ(t) = 0} > 0.

3. GLOBAL EXPONENTIAL STABILITY CRITERIA

In this section we will investigate sufficient conditions
under which the equilibrium of HONN (3) is globally
exponentially stable, i.e., system (5) is globally hyper-
exponentially stable.

Assume that y∗ ∈ <n is an equilibrium of system (5), that
is,

−Dy∗ +Af(y∗) +Bg(y∗) +GT(y∗)Tg(y∗) + J = 0.

Let x(t) = y(t)− y∗, then it follows that

ẋ(t) =et{−Dx(t) +Aη(x(t)) +Bζ(x(t− τ))

+GT(x(t− τ) + y∗)Tζ(x(t− τ))

+GT(y∗)T̂ ζ(x(t− τ))}, (6)

where η(·) = f(· + y∗) − f(y∗), ζ(·) = g(· + y∗) − g(y∗),

T̂ = col(TT
1 , T

T
2 , . . . , T

T
n ). For convenience, we define

∆ =


Γ1 + qα2I + P PA PB P P

ATP −Q 0 0 0
BTP 0 −pI + Γ2 0 0
P 0 0 −s1I 0
P 0 0 0 −s2I

 ,
where Γ1 = −PD −DP + βP, Γ2 = γ̃(s1T

TT + s2T̂
TT̂ ),

α = max
1≤i≤n

αi, β = max
1≤i≤n

βi, γ̃ =
n∑
i=1

γ2i .

Theorem 1. Assume that (2) is satisfied, if 0 < β <
√
q

and there exist positive scalars p, q, s1 and s2, and positive

definite matrices P,Q ∈ <n×n such that ∆ < 0, pI ≤ P
and Q ≤ qI, then the equilibrium y∗ of system (5) is
globally hyper-exponentially stable, i.e., the equilibrium
u∗ of HONN (3) is globally exponentially stable.

Proof. Based on the Schur complement Lemma, it follows
from ∆ < 0 that

∆0 :=

Γ1 + qα2I + P + Γ3 PA PB
ATP −Q 0
BTP 0 −pI + Γ2

 < 0 (7)

with Γ3 = (s−1
1 + s−1

2 )P 2.

Based on Q ≤ qI and (2), one can obtain by direct
computation that

ηT(x(t))Qη(x(t)) ≤ qα2xT(t)x(t), (8)

ζT(x(t− τ))ζ(x(t− τ)) ≤ β2xT(t− τ)x(t− τ), (9)

G(x(t− τ) + y∗)GT(x(t− τ) + y∗) ≤ γ̃In, (10)

G(y∗)GT(y∗) ≤ γ̃In. (11)

Set

∆21 =

[
P P
0 0
0 0

]
, ∆22 =

[
0 0 GT(x(t− τ) + y∗)T

0 0 GT(y∗)T̂

]
.

Then

∆21diag(s1I, s2I)−1∆T
21 = diag(Γ3, 0, 0) (12)

and

∆T
22diag(s1I, s2I)∆22

= diag(0, 0, s2T̂
TG(y∗)GT(y∗)T̂

+s1T
TG(y(t− τ))GT(y(t− τ))T )

≤ diag(0, 0,Γ2).

(13)

The combination of (10), (11) and (13) derives that

∆T
22diag(s1I, s2I)∆22 ≤ diag(0, 0,Γ2).

This, together with (7) and (12), implies that ∆1 +
∆21diag(s1I, s2I)−1∆T

21+∆T
22diag(s1I, s2I)∆22 < 0, where

∆1 =

Γ1 + qα2I + P PA PB
ATP −Q 0
BTP 0 −pI

 .
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Noting that

∆21∆22 + ∆T
22∆T

21

≤∆21diag(s1I, s2I)−1∆T
21 + ∆T

22diag(s1I, s2I)∆22,

we obtain

∆2 := ∆1 + ∆21∆22 + ∆T
22∆T

21 < 0.

Pick the following Lyapunov function:

V (x(t)) = eβe
t

xT(t)Px(t), t ≥ 0.

Computing the time derivative of V (x(t)) along the tra-
jectories of system (6), one can derive

V̇ (x(t)) =eβe
t

etxT(t)P{βx(t)− 2Dx(t) + 2Aη(x(t))

+ 2Bζ(x(t− τ)) + 2GT(y∗)T̂ ζ(x(t− τ))

+ 2GT(x(t− τ) + y∗)Tζ(x(t− τ))}
=eβe

t

et{ξT(t)∆4ξ(t) + ηT(x(t))Qη(x(t))

+ pζT(x(t− τ))ζ(x(t− τ))}, (14)

where

ξ(t) = col(x(t), η(x(t), ζ(x(t− τ)),

∆3 =

 Γ1 PA Ω
ATP 0 0
ΩT 0 0

 ,
∆4 = ∆3 + diag(0,−Q,−pI),

Ω = PB + PGT(x(t− τ) + y∗)T + PGT(y∗)T̂ .

Applying (14), (8) and (9), we derive that

V̇ (x(t))

≤eβe
t

et{ξT(t)∆5ξ(t) + pβ2xT(t− τ)x(t− τ)}.
where ∆5 = ∆4 + diag(α2qI, 0, 0). This, together with
∆5 = ∆2 − diag(P, 0, 0), implies that

V̇ (x(t)) ≤et{−V (x(t)) + β2V (x(t− τ))}.
Using Lemma 1 to t0 = 0, γ∗ → 0, α(t) = et, β(t) = β2et

and γ(t) = 0, we get

eβe
t

x(t)TPx(t) =V (x(t))

≤ sup
−τ≤s≤0

V (x(s))e−µ
∗t, t ≥ 0,

where µ∗ = inft≥0{µ(t) : µ(t) − et + β2eteτµ(t) = 0} > 0.
Therefore,

‖x(t)‖2 ≤M sup
−τ≤s≤0

‖ϕ(s)‖e−
β
2 et ,

where M = e
β
2

√
λmax(P )
λmin(P ) . It can be obtained from Def-

inition 2 that the zero equilibrium of system (6) (i.e.,
the equilibrium y∗ of system (5)) is globally hyper-
exponentially stable). This, together with Remark 1, im-
plies that the equilibrium u∗ of HONN (3) is globally
exponentially stable. The proof is complete.

Remark 4. When T = 0, the HONN (1) simplifies into (see
Zheng et al. (2015)):

u̇i(t) =− diui(t) +

n∑
j=1

[aijfj(uj(t)) + bijgj(uj(qt))] + Ji,

t ≥ 1, i = 1, 2, . . . , n. (15)

It should be emphasized that Theorem 1 is still applicable
to system (15).

For the low-order neural networks with a pair of propor-
tional delays, which can be described as (see Zheng et al.
(2015)):

u̇i(t) =− diui(t) +

n∑
j=1

[aijfj(uj(t)) + bijgj(uj(q1t))

+ cijhj(uj(q2t))] + Ji, t ≥ 1, i = 1, 2, . . . , n, (16)

where 0 < qi < 1, i = 1, 2, the activation functions fj and
gj satisfy (2), and there exists li > 0 such that

| hi(u)− hi(v) |≤ li | u− v |,∀u, v ∈ <, i = 1, 2, . . . , n.
(17)

Similar to that mentioned above, the delays of neural
network (16) are (1 − qi)t, i = 1, 2, which are unbounded
proportional delays. Furthermore, system (16) can be
transformed into the following form:

ẏ(t) =et{−Dy(t) +Af(y(t)) +Bg(y(t− τ1))

+ Ch(y(t− τ2)) + J}, t ≥ 1, (18)

where y(t) = u(et), τ1 = − ln q1 > 0 and τ2 = − ln q2 > 0.
Set l = max

1≤i≤n
li, q = min{q1, q2} and τ = max{τ1, τ2}.

Similar to Theorem 1, we can give directly the following
conclusion.

Theorem 2. Assume that (2) and (17) are satisfied. If β2+
l2 < q and there exist positive scalars p and q, and positive

definite matrices P,Q ∈ <n×n such that Q ≤ qI, pI ≤ P
and

∆̃ :=


Γ1 + P + qα2I PA PB PC

ATP −Q 0 0
BTP 0 −pI 0

CTP 0 0 −pI

 < 0,

then the equilibrium y∗ of system (18) is globally hyper-
exponentially stable, or equivalently, the equilibrium u∗ of
system (16) is globally exponentially stable.

Remark 5. One can apply this proposed method to es-
tablish global exponential stability criteria for multi-
proportional delay HONNs. We do not list the correspond-
ing results which may be complicated.

4. NUMERICAL EXAMPLES

This section illustrates the validity of theoretical results
obtained above by employing two numerical examples.

Example 1. Consider HONN (1) with n = 2, q = 0.5,
d1 = 6, d2 = 2, a11 = 3, a12 = 0.14, a21 = 0.2,
a22 = 0.31, b11 = 0.09, b12 = 0.25, b21 = 0.21, b22 = 0.45,
T111 = 0.05, T112 = 0.14, T121 = −0.06, T122 = 0.05,
T211 = 0.29, T212 = 0.1, T221 = 0.23, T222 = 0.14, J1 = 1.5,
J2 = 2, f1(x) = 2g1(x) = tanh(0.6x), f2(x) = 2g2(x) =
tanh(0.8x).

It is clear that (2) is satisfied by setting α1 = 0.6, α2 = 0.8,
β1 = 0.3, β2 = 0.4 and γ1 = γ2 = 0.5. Hence α = 0.8,
β = 0.4 and γ̃ = 0.5. Furthermore, T = col(T1, T2)

and T̂ = col(TT
1 , T

T
2 ) with T1 =

[
0.05 0.14
−0.06 0.05

]
and T2 =[

0.29 0.1
0.23 0.14

]
. A feasible solution of the LMIs in Theorem 1

can be obtained as follows:

P =

[
0.7643 −0.0686
−0.0686 0.7783

]
, Q =

[
0.9641 0.0555
0.0555 0.7619

]
,
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s1 = 1.8269, s2 = 1.8818, p = 0.6424, q = 1.1522.

Due to Theorem 1, the equilibrium (0.4156, 1.2967) of
the HONN under consideration is globally exponentially
stable, which is illustrated by the phase trajectories in
Figure 1 and the state response diagrams in Figure 2.

However, for the example, the LMIs in Zheng et al.
(2015, Theorem 1) is not feasible. So, the obtain global
exponential stability criterion given in Theorem 1 is less
conservative than one in Zheng et al. (2015, Theorem 1).
And it is worth emphasizing that the criterion in Zheng
et al. (2015, Theorem 1) needs to calculate matrix norms
and matrix measures, while the criterion given in Theorem
1 is not involving the computation of matrix norms and
matrix measures.
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Fig. 1. Phrase trajectories of HONN in Example 1
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Fig. 2. State responses of HONN in Example 1

Example 2. Consider the first-order neural network (16)
with n = 2, q1 = 0.5, q2 = 0.8, d1 = 4, d2 = 5, a11 = 1,
a12 = −2, a21 = 0, a22 = 1, b11 = 1, b12 = 0, b21 = 1,
b22 = −2, c11 = 0, c12 = 1, c21 = −1, c22 = −0.5,
J1 = 2, J2 = 3, f1(x) = 2g1(x) = 2h1(x) = tanh(0.5x),
f2(x) = 2g2(x) = 2h2(x) = tanh(0.6x).

Setting α1 = 0.5, β1 = l1 = 0.25, α2 = 0.6, β2 = l2 = 0.3
and γ1 = γ2 = 0.5, we obtain α = 0.6, β = l = 0.3
and γ̃ = 0.5. So, the premise condition of Theorem 2 is
satisfied. A feasible solution of the LMIs in Theorem 2 is
obtained as follows:

P =

[
0.5130 0.0052
0.0052 0.4511

]
, Q =

[
1.0402 −0.1356
−0.1356 1.3198

]
,

p = 0.4131, q = 1.8928.

Therefore, by Theorem 2, the equilibrium (0.4531, 0.6049)
of the considered neural network is globally exponentially
stable, which is illustrated by the phase trajectories in
Figure 3 and the state response diagrams in Figure 4.
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Fig. 3. Phrase trajectories of HONN in Example 2
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5. CONCLUSION

In this paper, the novel global exponential stability criteria
of HONNs with proportional delay has been investigated.
By applying the hyper-exponential stability technique, the
global exponential stability criteria are derived by picking
a special Lyapunov function and using the generalized
Halanay inequality. Furthermore, the proposed method
can be applied to the analysis and design of proportional
delay neural networks, even other problems involving
proportional delay.
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