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Abstract: This paper addresses the design and experimental validation of a trajectory tracking con-
troller for an underactuated hovercraft with unmeasured linear velocity and subject to time-varying
disturbances. The unmeasured linear velocity and disturbances are recovered by designing nonlinear
observers. A control law is proposed that, in closed-loop with the velocity and disturbance observers,
can robustly steer the hovercraft toward and stay within a neighborhood of a reference trajectory. To
demonstrate the performance and robustness of the proposed control strategy, we present and analyze
experimental results obtained with a model-scale hovercraft.
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1. INTRODUCTION

In the past few years, motion control of underactuated sur-
face vehicles (USVs) has received sustained attention from
the control community due to their increasing application in
both military and civilian areas. To name a few, USVs can be
used for surveillance, border patrolling, ocean exploration, and
transportation. In this paper, an underactuated hovercraft, as
shown in Fig. 1, is chosen as our study model. This vehicle
poses interesting control challenges due to its nonholonomic
nature and existence of side-slip, while at the same time being
versatile and able to glide e↵ortlessly in a number of di↵erent
surfaces.

Fig. 1. Underactuated hovercraft with attached markers.

Many nonlinear control strategies for stabilizing USVs have
been reported. For example, in Reyhanoglu (1997), the authors
proposed a time-invariant discontinuous feedback control law
which was able to asymptotically stabilize the system to the
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desired trajectory with exponential convergence rate. In Aguiar
et al. (2003), a continuous tracking controller was developed
to drive an underactuated hovercraft to an arbitrarily small
neighborhood of a reference trajectory. Based on a double inte-
grator system, in Cabecinhas and Silvestre (2019), a nonlinear
controller was designed to steer an autonomous surface vessel
to track a reference trajectory. However, the aforementioned
works did not take into account model uncertainties or en-
vironmental disturbances in their proposed control strategies.
To enhance the robust performance of the controller, Li et al.
(2009) used feedback dominance technique to deal with model
uncertainties of marine surface vessels, and a pre-filter based
sliding mode controller for the nonlinear vessel steering system
was proposed in Perera and Soares (2012). Time-invariant dis-
turbance and damping coe�cients estimators were designed in
Xie et al. (2019) and Lu et al. (2019), while in Cabecinhas et al.
(2018) a Kalman filter was applied to estimate unknown vehicle
parameters with application to a hovercraft. In Belleter et al.
(2019), the authors designed an ocean current estimator to com-
pensate for constant current. A similar method was used in Yin
and Xiao (2017), where parameters estimators were designed
to estimate unknown constant parameters. Yang et al. (2014)
constructed an observer to provide an estimation of unknown
time-varying disturbances, ensuring that all the signals of the
closed-loop trajectory tracking control system of ships were
globally uniformly ultimately bounded. In all these works the
full state of the vehicle is assumed to be known.

To cope with unmeasured velocities, in Grovlen and Fossen
(1996), a nonlinear observer was designed to estimate linear
and angular velocities by using the position and orientation in-
formation. In Do and Pan (2006), a high-gain observer was de-
signed to estimate the velocities. However, the estimation meth-
ods proposed therein did not consider disturbances. In light of
this limitation, Loueipour et al. (2015) proposed a structure
for the estimation of low-frequency (LF) and wave-frequency
motion components, LF disturbance forces, and vehicles veloc-
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ities based on the measured position signals, achieving globally
exponentially stability. In Liu et al. (2019), nonlinear extended
state observers were proposed, where both linear and angular
velocities and disturbances can be recovered by utilizing the
position-heading information, under the assumption that the
angular velocity of the vehicle is bounded by a specific value.
In Zhao and Guo (2015), the authors designed an extended state
observer for generic nonlinear systems with uncertainty.

Motivated by the aforementioned studies, in this paper, we
propose a nonlinear trajectory tracking controller for an under-
actuated hovercraft, achieving global practical stability. Linear
velocity and disturbances observers are designed to recover
the unmeasured linear velocity and estimate the disturbances.
Experimental results are presented to validate the performance
of the proposed controller. In our recent work Xie et al. (2019),
the linear velocity was measurable and only constant distur-
bances were considered. This paper proposes a solution to the
trajectory tracking problem when linear velocity measurement
is not available and allows for time-varying disturbances.

The remainder of this paper is structured as follows. Section
2 introduces the notation used throughout the paper. Section 3
shows the vehicle models and control problem statement. Ob-
server and controller design are given in Section 4 and Section
5, respectively. To demonstrate the e�ciency of the control
methodology, experimental results are presented in Section 6.
Finally, Section 7 summarizes the contents of this paper.

2. NOTATION

Throughout this paper, Rn denotes the n-dimensional Eu-
clidean space. A function f is of class Cn if the derivatives
f 0, f 00, . . . , f (n) exist and are continuous. For a vector x 2 Rn,
its estimate is denoted by x̂, with the estimation error x̃ = x̂ �
x. The initial values of x̂ and x are presented by x̂(0) and
x(0), respectively. The unit vectors u1 and u2 are introduced
as u1 = [1 0]>,u2 = [0 1]>, In⇥n is the identity matrix, 0m⇥n is a
matrix whose elements are zero. For the reader’s reference, Ta-
ble 1 summarizes some main symbols and their corresponding
descriptions used in the follows.

Table 1. Symbols summary

{I}, {B} inertial frame and body frame
p hovercraft’s position expressed in {I}
 hovercraft’s orientation
R rotation matrix from {B} to {I}
v linear velocity expressed in {I}
! angular velocity

m, J hovercraft’s mass and moment of inertia
T, ⌧ thrust and torque inputs

fv, f! disturbances
k1, k2, k3 positive control gains

�v, �!, ⇣v, ⇣! positive estimation gains

3. PROBLEM FORMULATION

This section starts by exposing the kinematic and dynamic
models of an underactuated hovercraft, and follows with a
formulation of the trajectory tracking problem.

3.1 Hovercraft Model

Define a fixed inertial frame {I} and a body frame {B} attached
to the hovercraft’s center of mass, as shown in Fig. 2. The
kinematic equations of the hovercraft are written as

{I}

{B}

xI

yI

T

xB

yB

�

Fig. 2. Sketch of a hovercraft.

ṗ = v

 ̇ = !
(1)

and the dynamic equations are given as
v̇ = m�1TRu1 + fv

!̇ = J�1⌧ + f!
(2)

where p 2 R2 is the coordinate of the hovercraft’s center of
mass, expressed in the inertial frame {I}, and  2 R denotes
the orientation of the hovercraft. The vector v 2 R2 denotes
the linear velocity, expressed in the inertial frame {I} while
! 2 R is the angular velocity, expressed in the body frame {B}.
The rotation matrix from {B} to {I} is denoted by R, satisfying
Ṙ = RS!. with

R =

"
cos( ) � sin( )
sin( ) cos( )

#
, S =

"
0 �1
1 0

#
.

The thrust force T and torque ⌧ are inputs. The vehicle’s mass
and moment of inertia are denoted by m and J, respectively.
Disturbances are represented by fv and f!. The model also
makes the following assumptions.
Assumption 1. The vehicle states p, ,! are measurable, but
the linear velocity v is not.
Assumption 2. The disturbances fv and f! are unknown, time-
varying, and satisfy

||ḟv||  f v, | ḟ!|  f !
with f v, f ! are known.

3.2 Problem Statement

The trajectory tracking problem with unknown linear velocity
and disturbances is stated as follows. Let the reference trajec-
tory pd(t) 2 R2 be a curve of class at least C4, whose time
derivatives are bounded. The control objective is to design con-
trol law for T and ⌧, linear velocity and disturbances observers,
such that the vehicle can be steered to an arbitrarily small
neighborhood of pd(t).

4. OBSERVER DESIGN

In this section, we present nonlinear observers to recover un-
measured linear velocity and unknown disturbances. Inspired
by the nonlinear extended state observer presented in Liu et al.
(2019), observers for v, fv and f! are designed as follows,
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˙̂p = �a�vp̃ + v̂

˙̂v = �a�2
v p̃ + f̂v + m�1TRu1

˙̂
fv = ��3

v p̃

(3)

and
˙̂ = �b�! ̃ + !̂
˙̂! = �b�2

! ̃ + f̂! + J�1⌧
˙̂f! = ��3

! ̃

(4)

where a � 3, b � 3, �v > 0, �! > 0 are estimate gains.
Theorem 1. Consider the designed observers (3)-(4), and the
error dynamics

żv = ��vAvzv + Bvḟv, ż! = ��!A!z! + B! ḟ!
where zv = [z>v1, z

>
v2, z

>
v2]>, z! = [z!1, z!2, z!3]>, zv1 =

�2
v p̃, zv2 = �vṽ, zv3 = f̃v, z!1 = �2

! ̃, z!2 = �!!̃, z!3 = f̃!,

Av =

2
6666664
aI2⇥2 �I2⇥2 02⇥2
aI2⇥2 02⇥2 �I2⇥2
I2⇥2 02⇥2 02⇥2

3
7777775 , Bv =

2
6666664

02⇥2
02⇥2
�I2⇥2

3
7777775

and

A! =

2
6666664
b �1 0
b 0 �1
1 0 0

3
7777775 , B! =

2
6666664

0
0
�1

3
7777775 .

For a � 3, b � 3, �v > 0, �! > 0, zv and z! converge each to a
ball centered at the origin, whose radius depends on �v, �! and
can be rendered arbitrarily small.

Proof : The eigenvalues of Av are given as

Ev =
n
1, (a � 1)/2 ±

p
(a + 1)(a � 3)/2

o

which are positive for a � 3. Now we define a Lyapunov
candidate function as

Vv =
1
2

z
>
v zv.

Computing its time derivative, we have
V̇v = ��vz

>
v Avzv + z

>
v Bvḟv

 �||zv||
⇣
�v�min(Ev)||zv|| � f v

⌘

which is strictly negative definite for ||zv|| > f v

⇣
�v�min(Ev)

⌘�1
,

where �min(Ev) denotes the minimum eigenvalue of Ev,

�min(Ev) = min
n
1, (a � 1)/2 �

p
(a + 1)(a � 3)/2

o
. (5)

It follows that ||zv|| = (�4
v ||p̃||2 + �2

v ||ṽ||2 + ||f̃v||2)
1
2 is uniformly

ultimately bounded by f v

⇣
�v�min(Ev)

⌘�1
which can be made

arbitrarily small by increasing �v. Notice that for constant
disturbances, we have f v = 0. In this case, zv will be driven
to zero as time goes to infinity. Similarly, we can prove z!

converges to an arbitrarily small ball centered at the origin.
Remark 1. For fixed �v, f v, the larger �min(Ev) is, the smaller
f v

⇣
�v�min(Ev)

⌘�1
. To make �min(Ev) as large as possible, we

go back to �min(Ev), as defined in (5). From where it can be
obtained that

(a � 1)/2 �
p

(a + 1)(a � 3)/2  1, for a � 3
holds. As a result, the maximum value of �min(Ev) is

max
a
{�min(Ev)} = 1, for a = 3.

Similarly, we have the maximum value of �min(E!) is
max

b
{�min(E!)} = 1, for b = 3

where �min(E!) = min{1, (b � 1)/2 � p(b + 1)(b � 3)/2}.

As we established above, for fixed �v, �!, f v, f !, only when
a = b = 3 holds, we obtain the minimum

f v

⇣
�v�min(Ev)

⌘�1
, f !

⇣
�!�min(E!)

⌘�1
.

In light of this consideration, we choose a = 3, b = 3. Then, to
reduce the ultimate bounds of the estimate errors ||zv||, ||z!||, it is
necessary to increase �v, �!. However, too large estimate gains
�v, �! could lead to undesired peaking phenomenon during the
initial transient period, especially for the disturbance estimate.
In order to tune the values of f̂v, f̂! independently, we introduce
two more estimate gains ⇣v, ⇣! and rewrite the observers as
follows,

˙̂p = �3�vp̃ + v̂

˙̂v = �3�2
v p̃ + f̂v + m�1TRu1

˙̂
fv = �⇣v�

3
v p̃

(6)

and
˙̂ = �3�! ̃ + !̂
˙̂! = �3�2

! ̃ + f̂! + J�1⌧
˙̂f! = �⇣!�3

! ̃

(7)

where ⇣v, ⇣! are positive numbers that will be specified later.
Theorem 2. Consider the designed observers (6)-(7), and the
error dynamics

żv = �vCvzv + Bv ḟv, ż! = �!C!z! + B! ḟ!
where

Cv =

2
6666664
�3I2⇥2 I2⇥2 02⇥2
�3I2⇥2 02⇥2 I2⇥2
�⇣vI2⇥2 02⇥2 02⇥2

3
7777775 , C! =

2
6666664
�3 1 0
�3 0 1
�⇣! 0 0

3
7777775 .

For 0 < ⇣v < 9, 0 < ⇣! < 9, the estimation errors zv and z!

converge each to an arbitrarily small ball centered at the origin.

Proof : The eigenvalues of Cv have the following real parts

RE =
n
� 1 + (1 � ⇣v)

1
3 , � 1 � (1 � ⇣v)

1
3 /2

o

where ⇣v is chosen to satisfy 0 < ⇣v < 9, such that

�1 + (1 � ⇣v)
1
3 < 0, � 1 � (1 � ⇣v)

1
3 /2 < 0

guaranteeing Cv is Hurwitz. Let Qv be a positive definite matrix
satisfying

C
>
v Qv +QvCv = �I6⇥6.

Now we define a Lyapunov candidate function as
Vc = z

>
v Qvzv (8)

whose time derivative yields
V̇c  �vz

>
v (C>v Qv +QvCv)zv + z

>
v (Qv +Q

>
v )(Bvḟv)

 �||zv||
⇣
�v||zv|| � 2�max(Qv) f v

⌘

which is strictly negative definite for ||zv|| > 2�max(Qv) f v�
�1
v ,

where �max(Qv) denotes the maximum eigenvalue of Qv. It can
be further obtained that zv converges to a ball centered at the
origin with radius 2�max(Qv) f v�

�1
v . The same technique can be

applied to have z! converge to an arbitrarily small ball centered
at the origin.

5. CONTROLLER DESIGN

In this section, the trajectory tracking problem is solved by fol-
lowing the backstepping technique. We start from a Lyapunov
candidate function based on the position error and iterate it until
thrust force and torque are obtained.
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During the backstepping procedure, the unmeasured linear ve-
locity and disturbances are replaced by their corresponding es-
timates, guaranteeing that all terms included in the control law
are known. The introduction of disturbance observers improves
the robust performance of the controller.

We define the position error, in the inertial frame, as
z1 = p � pd

and consider a first Lyapunov candidate function as

V1 =
1
2

z
>
1 z1

whose time derivative yields

V̇1 = �W1(z1) + z
>
1 R

⇣
R
>

v̂ � R
>

ṗd + k1R
>

z1
⌘
� z
>
1 ṽ. (9)

where W1(z1) = k1z
>
1 z1, and k1 is a positive control gain.

According to Aguiar and Hespanha (2007), a second error z2,
is defined as

z2 = R
>

v̂ � R
>

ṗd + k1R
>

z1 � �
where � = [�1, �2]>, �1 , 0 is a constant vector. Now we can
rewrite (9) as

V̇1 = �W1(z1) + z
>
1 R(z2 + �) � z

>
1 ṽ.

Following the backstepping procedure, a second Lyapunov
candidate function is defined as

V2 = V1 +
1
2

z
>
2 z2.

Computing its time derivative, we have

V̇2 = �W2(z1, z2) + z
>
1 R� + z

>
2

⇣
� S�! + m�1Tu1

+ h

⌘
+⌦1(z1, z2, p̃, ṽ)

(10)

with W2(z1, z2) = W1(z1)+ k2z
>
2 z2, k2 is a positive control gain,

⌦1(z1, z2, p̃, ṽ) = �z
>
1 ṽ� z

>
2 R
>(3�2

v p̃+ k1R
>

ṽ) and h = R
>

z1 +

R
>

f̂v � R
>

p̈d + k1R
>(v̂ � ṗd) + k2z2.

To zero out the first component of (�S�! + h), we choose the
thrust force T , as

T = �m(�2! + u
>
1 h). (11)

Substituting (11) into (10), we have
V̇2 = �W2(z1, z2) + z

>
1 R� + (u>2 z2)(�1! + u

>
2 h)

+⌦1(z1, z2, p̃, ṽ).

Continuing with backstepping procedure, a third error, is de-
fined as

z3 = �1! + u
>
2 h

Then, V̇2 can be rewritten as
V̇2 = �W2(z1, z2) + z

>
1 R� + (u>2 z2)z3 +⌦1(z1, z2, p̃, ṽ).

Define a new Lyapunov candidate function is chosen as

V3 = V2 +
1
2

z2
3 (12)

whose time derivative is
V̇3 = �W3(z1, z2, z3) + z

>
1 R� + z3

⇣
u
>
2

ˆ̇
h + k3z3 + u

>
2 z2

� �1(J�1⌧ + f̂!)
⌘
+⌦1(z1, z2, p̃, ṽ) +⌦2(z3, p̃, ṽ, f̃!)

(13)

with
ˆ̇
h = ḣ +

⇣
⇣v�

3
v
@h

@f̂v
+ 3�2

v
@h

@v̂

⌘
p̃

and

⌦2(z3, p̃, ṽ, f̃!) = z3�1 f̃! + z3u
>
2

⇣
⇣v�

3
v
@h

@f̂v
+ 3�2

v
@h

@v̂

⌘
.

To zero out (u>2 z2 � �1(J�1⌧+ f̂!)+u
>
2

ˆ̇
h+ k3z3), we choose ⌧ as

⌧ = J��1
1 (u>2

ˆ̇
h + k3z3 + u

>
2 z2) � J f̂! (14)

which is always well-defined for �1 , 0. Substituting (14) into
(13), we have

V̇3 = �W3(z1, z2, z3) + z
>
1 R� +⌦1(z1, z2, p̃, ṽ)

+⌦2(z3, p̃, ṽ, f̃!)
where W3(z1, z2, z3) = W2(z1, z2) + k3z2

3, and k3 is a positive
control gain.

The main result is summarized in the following theorem.
Theorem 3. Let the hovercraft’s model be described by (1)-(2),
pd 2 C4 be a reference trajectory with bounded time derivatives.
Consider the closed-loop system resulting from application of
the control inputs, thrust force (11) and torque (14), observers
(6), (7). Then, for any initial position and estimation errors,
the error z = [||z1||, ||z2||, ||z3||, ||zv||, ||z!||]>, converges to an
arbitrarily small ball centered at the origin as time goes to
infinity.

Proof : To prove the closed-loop system is global practical
stable, we define a new Lyapunov candidate function as

V4 = V3 + Vc + z
>
!Q!z!

where V3 and Vc are defined in (12) and (8), respectively, Q! is
a positive definite matrix satisfying

C
>
!Q! +Q!C! = �I3⇥3.

Computing the time derivative of V4, in closed-loop, we have
V̇4  �k1||z1||2 � k2||z2||2 � k3||z3||2 � �v|||zv||2 � �!||z!||2
+ 2�max(Qv) f̄v||zv|| + 2�max(Q!) f̄!||z!|| + ||z1||||�||
+⌦1(z1, z2, p̃, ṽ) +⌦2(z3, p̃, ṽ, f̃!)

(15)

where
⌦1(z1, z2, p̃, ṽ) = ⌦1(z1, z2, �

�2
v zv1, �

�1
v zv2)

= �z
>
1 zv2�

�1
v � z

>
2 R
>(3zv1 + k1�

�1
v zv2)

 ��1
v

⇣
✏||z1||2 + ||zv||2(4✏)�1

⌘
+ 3

⇣
✏ ||z2||2 + ||zv||(4✏)�1

⌘

+ k1�
�1
v

⇣
✏ ||z2||2 + ||zv||2(4✏)�1

⌘

and
⌦2(z3, p̃, ṽ, f̃!) = ⌦2(z3, zv1, zv2, z!3)
= �(1 + k1k2)��1

v z3u
>
2 R
>

zv2 � (⇣v�v + 3k1 + 3k2)
⇥ z3u

>
2 R
>

zv1 � z3�1z!3

 (1 + k1k2)��1
v

⇣
✏||z3||2 + ||zv||2(4✏)�1

⌘

+ (⇣v�v + 3k1 + 3k2)
⇣
✏ ||z3||2 + ||zv||2(4✏)�1

⌘

+ |�1|
⇣
✏||z3||2 + ||zv||2(4✏)�1

⌘
.

Then, we can rewrite (15) as
V̇4  �#1||z1||2 � #2||z2||2 � #3||z3||2 � #4||zv||2

� #5||z!||2 + #  �#min
⇣
||z||2 � ##�1

min

⌘ (16)

where z = [||z1||, ||z2||, ||z3||, ||zv||, ||z!||]> and
#min = min{#1,#2,#3,#4,#5}

with #1 = k1 � ✏,#2 = k2 � 3✏ � k1✏��1
v ,#3 = k3 � (1 +

k1k2)✏��1
v � (⇣v�v + 3k1 + 3k2)✏ � ||�1||✏,#4 = �v � (1 +

k1k2)(4�v✏)�1 � (⇣v�v + 3k1 + 3k2)(4✏)�1 � (1 + k1)(4�v✏)�1 �
3(4✏)�1 � 2�max(Qv)✏,#5 = �! � 2�max(Q!)✏ � ||�1||(4✏)�1, # =

||�||2(4✏)�1 + 2�max(Qv) f
2
v(4✏)�1 + 2�max(Q!) f

2
!(4✏)�1 and ✏ is

an arbitrarily positive number. Control parameters are chosen
such that #i (i = 1, 2, . . . , 5) is positive.
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From (16), we have V̇4 is strictly negative definite for ||z|| >
(##�1

min)
1
2 . It follows that ||z|| is uniformly bounded by (##�1

min)
1
2 ,

which can be made as small as possible by tuning the control
parameters.

6. EXPERIMENTAL RESULTS

Experimental test was conducted in the Sensor-based Coopera-
tive Robotics Research Lab, University of Macau. The vehicle
used for the experimental test is a radio-controlled hovercraft,
as depicted in Fig. 1, which is low-cost and highly maneu-
verable. Due to the lack of payload for on-board sensors, we
use a motion capture system VICON, together with markers
attached on the vehicle, to measure the state of the hovercraft,
including the position, orientation, linear and angular velocity,
with the linear velocity measurement being used only as ground
truth. The measured position, orientation and angular velocity
of the hovercraft are fed back into the controller running in
the Simulink/Matlab, as shown in Fig. 3. The actuation signals,
thrust force and rudder angle, are sent to the hovercraft at the
maximum rate the radio link allows, i.e., 45 Hz. The nonideal-
ities introduced by the sampling rate limitation, together with
any delays existing in the network and computer architecture,
are negligible with respect to the slow dynamics of the physical
actuators (motors) in the vehicle system. For more details about
experimental setup, the reader is referred to Xie et al. (2019).

VICON

Hovercraft

Simulink/Matlab

RF Transmitter

Fig. 3. Control architecture.

The reference trajectory is an ellipse described by

pd(t) =
 "

dx cos(rxt)
dy sin(ryt)

#
�

"
0

0.2

#!
(m)

where dx = 1.1, dy = 1.2, rx = ry = 1.0. The parameters used
in the test are given as: m = 0.5(kg), J = 0.008(kg ·m2), k1 =
2, k2 = 1, k3 = 1, � = [�0.15, 0]>, �v = 30, �! = 30, ⇣v = 0.1 ⇥
10�1, ⇣! = 0.2 ⇥ 10�2.

The contrast of the actual trajectory described by the vehicle
and desired trajectory is depicted in Fig. 4, from where we can
conclude that the vehicle tracks the desired trajectory closely.
Correspondingly, Fig. 5 displays the time evolution of ||z1||,
||z2|| and ||z3|| obtained from the simulation and experimental
tests. Notice that compared with the simulation results, the
performance of the controller is degraded in the experimental
test (with larger tracking errors), which can be attributed to
the fact that the issued commands are not perfectly followed
by the vehicle due to unmodeled actuator dynamics, erroneous
identification, linear velocity estimation error, etc. In steady
state, the error statistics of the tracking errors obtained from
the experimental test are given in Table 2. The comparison of
the measured linear velocity v (obtained from VICON) and the
estimated linear velocity v̂ is given in Fig. 6, from where we can

Table 2. Root mean square error (RMSE) and
standard deviation (SD)

Error RMSE SD Unit
||z1 || 0.160 0.030 m
||z2 || 0.209 0.063 m/s
||z3 || 1.3 0.2 rad/s

also see the estimation error ||ṽ|| is driven to the neighborhood
of zero, whose RMSE and SD are 0.052(m/s) and 0.021(m/s),
respectively. Fig. 7 displays the time evolution of estimated
disturbances f̂v, R

>
f̂v (expressed in the body frame) and f̂!.

Notice that the estimated f̂v presents some periodic ripples,
whose period is almost the same as the period of the reference
trajectory, showing that f̂v is estimating the vehicle’s unmod-
eled dynamics. Moreover, f̂! converges to a neighborhood of a
constant �0.5, which is reasonable if we consider the fact that
the desired angular velocity of the vehicle is a constant, vali-
dating that f̂! is estimating the vehicle’s unmodeled dynamics
associated with the vehicle’s angular velocity.
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Fig. 4. Time evolution of the hovercraft’s actual trajectory and
desired ellipse trajectory in steady state.
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Fig. 5. The time evolution of the position error ||z1||, linear
velocity error ||z2||, angular velocity error ||z3|| obtained
from the simulation and experimental tests.
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Fig. 6. Comparison of the measured v and the estimated v̂, with
the time evolution of the estimation error ||ṽ||.
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7. CONCLUSION

This paper presented a solution to the problem of trajectory
tracking for an underactuated hovercraft with unmeasured lin-
ear velocity and subject to disturbances, guaranteeing the vehi-
cle can be stabilized along with a neighborhood of a reference
trajectory. To achieve robust performance, nonlinear observers
for unmeasured linear velocity and unknown disturbances are
designed. Experimental results were given to validate the e�-
ciency of the proposed control strategy.
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