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Abstract: In the field of Multivariate Statistical Process Monitoring (MSPM), process dynamics has 

always been the focus. Besides, considering the uncertainty in chemical processes, latent variable models 

are extended to the probabilistic framework, in which maximum likelihood estimation with expectation 

maximization (EM) algorithm is adopted for parameter learning. However, the modelling performance is 

restricted owing to the reason that these models either neglect the static characteristics reflecting process 

structure or suffer from over fitting and local optimum. To tackle these issues, a dynamic Baysian 

canonical correlation analysis (DBCCA) model is developed through combining the consideration of 

process dynamics with the variational CCA and utilized for fault detection. More specifically, both static 

structural characteristics and process dynamics can be simultaneously captured in DBCCA model. In 

essence, the variational Bayesian approach renders effects of regularization, alleviating the dilemma in 

traditional maximum likelihood estimation methods by nature. The effectiveness of proposed method is 

testified on the well-known Tennessee Eastman (TE) benchmark, where improvements are attained.  

Keywords: Dynamic Process Modeling, Dynamic Bayesian Canonical Correlation Analysis, Fault 

Detection, Variational Inference. 

1. INTRODUCTION 

Recent years have witnessed the rapid upgrading of 

automation production in chemical processes, which poses 

arduous challenges for the monitoring of process operation. 

Consequently, fault detection techniques play an 

indispensable role in automatic control systems (Qin, 2012). 

Multivariate Statistical Process Monitoring (MSPM) methods 

such as principal component analysis (PCA) and partial least 

squares (PLS), in particular, are receiving much attention due 

to their capability of dimension reduction of massive process 

data (Yin et al., 2012). In this setting, as a result of process 

units inertia and the adjustment of closed-loop control 

systems, process measurements sampled by distributed 

control systems (DCS) are auto-correlated and thus reflects 

process dynamics, adding difficulties to the process 

modelling task (Ge et al., 2013).  

For dynamic process modelling, several researches have been 

made, among which dynamic PCA (Ku et al., 1995) is the 

most widely used technique. In this method, time lagged 

samples are stacked to form an augmented matrix, which is 

then dealt with ordinary PCA. After this pioneer work, many 

dynamic modelling methods based on augmented matrix 

were proposed, such as DPLS (Liu et al., 2019), DICA (Lee 
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et al., 2004), etc. Besides, time series method is also 

proposed for dynamic process modelling (Negiz et al., 1994), 

where residuals are calculated for monitoring. However, time 

series method is more suitable for the processes with small 

static characteristics between variables, especially for 

univariate process (Li et al., 2011).  

As an alternative, subspace-based approach is also proposed, 

in which canonical variate analysis (CVA) is the 

representative (Odiowei and Cao, 2009). CVA extracts the 

relationship between the past information and the current 

values of the measurements and its state-space model is 

identified for process monitoring (Russell et al., 2000). In 

addition, by projecting the measured data onto reduced 

subspaces, total projection to latent structures (T-PLS) is 

proposed for quality-related monitoring (Li et al., 2010).  

Above mentioned subspace models own good description of 

the dynamics of process data, nevertheless, they leave the 

static characteristics un-modelled, which reflects the 

constraints between process variables (Li et al., 2014). To 

cope with this problem, process monitoring methods based 

on linear dynamic system (LDS) are conducted (Wen et al., 

2010). For instance, linear Gaussian state-space model 

(LGSSM) depicts first-order Markov property by state 

variables in low dimensional latent space. Compared with the 

previous researches, the description of process dynamics is 

more compact. After that, autoregressive dynamic latent 

variable (ARDLV) model is proposed (Zhou et al., 2017, 

Zhou et al., 2018). In this model, both dynamic and static 
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characteristics of process data can be modelled. Moreover, 

high-order dynamic information of the process can be 

extracted in the latent space.  

These early works based on latent space structure is derived 

in a probabilistic framework, which can describe process 

uncertainty (Ge, 2018). And these methods are commonly 

solved by the maximum likelihood estimation with 

expectation maximization (EM) algorithm (Rauch et al., 

1965), which is, however, susceptible to local optimum or 

over fitting (Zhu et al., 2016). In view of such situation, 

probabilistic CCA (Bach and Jordan, 2005) is extended to the 

form of variational inference (Wang, 2007). By means of 

variational Bayesian approach (Attias, 1999, Bishop, 2006), 

the parameter estimation in variational CCA model has been 

proven more effective, because parameters are regarded as 

random variables, given prior distributions, and then updated 

in posterior distributions. Even so there still exits flaws in the 

variational CCA model as process dynamics are not taken 

into consideration, which remains a crucial issue.  

Hence, in this paper, a novel dynamic Bayesian CCA 

(DBCCA) model is proposed through combining the 

consideration of process dynamics with the variational CCA 

and then utilized for dynamic process monitoring. In the new 

method, the process dynamics and its static counterpart can 

be captured simultaneously. As a result of the latent variables 

in probabilistic generative model, a bond is built up between 

the current process information and the subsequent data. 

Intrinsically, since variational inference brings about effects 

of regularization, the dilemma in traditional maximum 

likelihood estimation methods is alleviated. Making use of 

the above mentioned merits, better performance on dynamic 

process monitoring can be obtained, which is demonstrated 

by the Tennessee Eastman (TE) benchmark.  

The remainder of this paper is organized as follows. In 

Section 2, deterministic CCA model is revisited. Then, the 

proposed DBCCA for dynamic process modelling and its 

corresponding monitoring scheme are introduced in section 3. 

In the next section the proposed method is verified through 

the TE benchmark. Finally, conclusions are provided in 

Section 5. 

2. DETERMINISTIC CANONICAL CORRELATION 

ANALYSIS REVISIT 

Canonical correlation analysis (CCA) is a widely-used 

dimension reduction technique in multivariate statistical 

analysis. The target of CCA is to maximize the correlation 

between two sets of data, so as to obtain the corresponding 

lower-dimensional latent variables. Given two set of N  

samples datasets 1M N
X  and 2M N

Y  of 1M  and 2M  

variables respectively, CCA seeks the largest correlation 

coefficients between them, which is for formulated by 

 

,
max

. . 1

1

T T

T T

T T

s t 



u v
u X Yv

u X Xu

v Y Yv

  (1) 

where u  and v  are the corresponding projection vectors for 

X  and Y .  

After dimension reduction, the data is projected into the low-

dimensional latent space where latent variables 

 1 2, ,...,
T

AT t t t  for X  are obtained with the number of 

latent variables A .  

Then the data can be constructed in the following form:  

 
T

X

T

Y

  


 

X U T E

Y V T E
  (2) 

where XE  and YE  are the corresponding residuals for each 

group of data.  

3. DYNAMIC BAYESIAN CANONICAL CORRELATION 

ANALYSIS MODEL AND PROCESS MONITORING 

APPLICATION 

3.1 Dynamic Bayesian Canonical Correlation Analysis 

CCA is usually used for quality related process monitoring 

purpose. In this work, distinctively, CCA is utilized under the 

probabilistic framework for dynamic process modelling, 

which is named as dynamic Bayesian canonical correlation 

analysis (DBCCA). Given observed data  1 2 Ty y y , 

M

i y , consequent measurements at time instant t  are 

induced as 1t tp y  and t tc y , which represents past and 

current information with respect to time t , respectively. 

Then, the probabilistic model structure of DBCCA can be 

expressed by the following formulas:  

 
  


  

p Wz μ ε

c Hz η δ
  (3) 

where M DW  and M DH  are the loading matrices. 

The latent variable that represents the essence of the process 

is characterized by 
Dz . The corresponding mean vectors 

are given as Mμ  and Mη . Process residuals are 

respectively indicated by 
Mε  and 

Mδ .  

 

Fig. 1 Probabilistic graphic model representation of DBCCA 

In Bayesian framework, these quantities are treated as 

random variables and updated in the form of a posterior 

distribution. The prior distributions are defined as follows.  
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where  N   stands for Gaussian distribution and  Ga   

represents gamma distribution. In addition, ,α β  are hyper-

parameters of the loading matrices and ,τ ψ  are the precision 

matrices with their corresponding parameters given above. 

For expression convenience,  , , , , , , , ,θ z W H α β μ η τ ψ  is 

defined. In DBCCA, both p  and c  are generated by the 

essential latent variable z . The probabilistic graph model of 

DBCCA is shown in Fig. 1. 

Given the parameters distributions, the likelihood of 

observation is derived as:  
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  (4) 

The joint probability density function is consequently given 

as:  

 

   
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  (5) 

Then the posterior distribution can be obtained in the 

following form:  

      , , , ,P P Pθ p c p c θ p c   (6) 

However, such posterior distribution is intractable in complex 

situations and thus cannot be calculated analytically. Based 

on variational Bayesian approach, a restricted trial 

distribution  

                    Q Q Q Q Q Q Q Q Q Qθ z W α H β μ η τ ψ   (7) 

is introduced to simplify and convert this problem. As the 

following equation holds:  

    
 
 
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ELBO Q KL Q P
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P d Q d Q d

Q Q
   

θ p cp c θ
p c θ θ θ θ θ

θ θ
  (8) 

The reason is that the left side term of the equation is a 

constant, and that the right side term is composed of evidence 

lower bound (ELBO) and KL divergence of  Q θ  to 

 ,P θ p c , which is noted in the formula. It’s noticed that 

once ELBO is maximized after iterations, the KL divergence 

is approximately 0, making  Q θ  the closest to the 

 ,P θ p c  of interest. In this way, the intractable posterior 

distribution is indirectly transformed.  

In the next procedure, substitute  Q θ  into the ELBO:  
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  (9) 

where the ELBO maximizes each parameter distribution in an 

iterative manner, which is known as the VBEM method. 

According to the theory of variational inference, the ELBO 

will reach convergence through the following update of 

distribution Q  given in a general form:  

  
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k i
i i

jk j

P
Q

P d
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where  k i E  stands for expectation with respect to the 

distribution  k kQ θ  for all k i . Under this pattern, the 

posterior distributions can be calculated alternatively and the 

intractable problem is solved.  

The specific updating procedure is as follows. According to 

(10), the posterior distribution of latent variable z  is given 

by  
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and its parameters are  
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Then the loading matrices, in a similar way, can be updated 

using the following formulas:  

    1

1 1
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And their parameters are given as  
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The hyper-parameters of the loading matrices are given prior 

gamma distributions and then updated in the same 

distributions which is given by the following posterior 

distributions:  

    
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,
D

d d d
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with the parameters listed as  
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The next step is to perform the posterior estimation of mean 

vectors, which are updated in the following manner 

respectively:  
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and the parameters of mean vectors are 
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For the precision matrices, which are again given gamma 

priors and therefore can be calculated in the following form:  
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with the parameters of gamma distribution as  

   

   

2

1

2

1

1

2

1

2

1

2

1

2

T

mt m t mQ
t

T

mt m t mQ
t

j T

k

j T

k

 





 


















 




         


 




         





τ

ψ

p W z μ

c H z η

 

In this way, the required posterior distributions are updated 

iteratively until the ELBO reaches the convergence, after 

which the training procedure of DBCCA has been completed.  

3.2 Dynamic Bayesian Canonical Correlation Analysis for 

Online Monitoring 

In traditional process monitoring methods, T2 and SPE 

statistics are calculated to detect process anomalies. Similarly, 

DBCCA also utilizes these two statistics, but with slight 

difference, as T2 contains the comprehensive information of 

p  and c  while SPE only focus on the present data. 

Specifically, the monitoring statistics are given as follows:  

  2
T

T  z z
λ λ   (20) 

For residual monitoring, the SPE statistics can be formulated 

as:  

 TSPE  ε τε   (21) 

where the residual of present information is calculated by:  

   ε p Wz μ   (22) 

For online monitoring stage, newly coming data samples 

newp  and newc  can be given in the same way as that during 

the training stage. The statistics for online monitoring is 

derived as:  

 2 T

new new newT 
z

z υ z   (23) 

using the testing latent variable 

  1

new new new

 p c

z
z υ z z   (24) 

where 
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T
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  

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p

c

z W τ p μ

z H ψ c η
  (25) 

The testing residual statistics can also be obtained by:  

 T

new new newSPE  ε τε   (26) 

with 

 new new new  p
ε p Wz μ   (27) 

Considering the above monitoring statistics, the required 

control limits can be calculated by the following formulas:   

  2 2 2

limnewT T D    (28) 

  2

limnewSPE SPE M    (29) 

where   is the significance level, D  is the number of latent 

variable, and M  is the number of process variables. Under 

this scheme, the dynamic process can be monitored in real 

time. 

4. CASE STUDY ON TENNESSEE EASTMAN PROCESS 

In this part, TE benchmark process is used to verify the 

effectiveness of the proposed DBCCA model and its 

feasibility for fault detection. The TE process is a real 

industrial process simulation platform, which is widely 

utilized to evaluate the performance of process monitoring 

methods. It consists of 5 process units, including 12 

manipulated variables and 41 measurement variables, and 

detailed description of the process can be found in the 

original paper (Downs et al., 1993). The data under normal 

operation condition is used as training data, while the testing 

counterparts are obtained from 21 abnormal conditions of the 

process. When the monitoring statistics of the testing data 

exceed the corresponding control limit for several 

consecutive samples, it is considered that the process 

abnormally is successfully detected.  
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Table 1 Fault Detection Rate of TE Benchmark (%) 

  DPCA LDS ARDLV DBCCA 

IDV T2 SPE T2 SPE T2 SPE T2 SPE 

1 99.25  99.63  99.75  99.88  99.94  100 99.87  99.75  

2 98.75  98.50  98.63  98.38  98.63  98.75  98.62  97.75  

3 0.50  2.88  3.75  3.13  8.50  6.00  0.50  3.25  

4 2.50  100 1.13  90.75  10.31  100 6.38  100 

5 23.25  28.88  99.88  100 100 100 100 100 

6 98.88  100 100 100 100 100 100 100 

7 39.50  100 46.88  100 42.38  100 41.93  100 

8 96.63  97.63  97.75  98.00  98.50  98.31  98.12  93.12  

9 1.38  2.38  3.00  1.75  8.06  5.06  0.63  4.01  

10 31.38  26.00  88.38  90.38  92.63  90.94  89.61  85.23  

11 16.25  77.00  6.50  68.38  39.38  82.56  42.93  83.35  

12 98.25  97.63  99.75  99.75  100 99.88  100 99.87  

13 94.00  95.38  95.50  95.13  96.38  95.50  94.87  95.49  

14 89.50  100 1.25  100 99.44  100 100 99.87  

15 1.50  2.63  7.88  2.38  43.69  22.88  5.38  6.63  

16 12.75  21.75  81.13  91.00  91.56  92.75  91.36  82.60  

17 73.88  93.63  68.13  95.13  90.50  97.13  90.36  96.75  

18 88.50  90.25  89.63  90.63  91.50  91.19  90.61 90.49  

19 0.75  25.88  3.50  76.38  59.94  94.94  53.69  83.98  

20 27.25  49.88  80.25  87.13  73.38  91.06  87.36  81.48  

21 32.75  44.13  60.00  40.13  37.25  45.19  45.68  38.67  

In this work, process monitoring methods based on DPCA, 

LGSSM, and ARDLV are used to compare with the proposed 

DBCCA model. The fault detection results of these methods 

are listed in the Table 1, which is evaluated by fault detection 

rate (FDR). The online monitoring results are carried out with 

confidence level of 99%. It can be observed that the 

performance of ARDLV and DBCCA significantly 

outperform the other methods. It’s worth mentioning that 

although the detection rate of ARDLV on several faults is 

higher than that of DBCCA, it is at the cost of higher false 

alarm rate, which are not given here due to page limitation.  

For some faults, take IDV 11 for instance, DBCCA has 

advantages over alternative methods both in false alarm and 

detection rate, which is displayed by Fig. 2, 3, 4, and 5 of 

online monitoring results of IDV 11 based on DPCA, 

LGSSM, ARDLV, and DBCCA respectively. The reason is 

that the proposed method owns good description of process 

dynamics, and static structural characteristics that are not 

considered in the subspace-based methods are compensated 

by CCA modelling. Furthermore, the introduction of 

variational inference on such basic model brings the effects 

of regularization and alleviates the problem of local optimum, 

which accounts for the satisfying results. 

 

Fig. 2. Online monitoring of TE IDV11 based on DPCA 

 

Fig. 3. Online monitoring of TE IDV11 based on LGSSM 

 

Fig. 4. Online monitoring of TE IDV11 based on ARDLV 

 

Fig. 5. Online monitoring of TE IDV11 based on DBCCA 
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5. CONCLUSIONS  

Dynamic process monitoring is of great significance as it is 

related to process safety. However, methods considering 

process dynamics ignore the static structural characteristics. 

Although both characteristics are taken into account by 

probabilistic methods, they still face the problems of over 

fitting or local optimal in maximum likelihood estimation. In 

this work, a novel DBCCA model is proposed for dynamic 

process modelling and utilized for fault detection. Compared 

with former process monitoring methods, the proposed 

method not only simultaneously considers the dynamic and 

static characteristics of the process, but also alleviates the 

dilemma in traditional latent variable models based on 

maximum likelihood estimation. Through the case study on 

TE benchmark, it is proven that the proposed DBCCA model 

is superior to alternatives both in dynamic process modelling 

and fault detection task.  

With the advent of intelligent manufacturing, massive 

amount of data can be collected and requirement on process 

safety surges. On one hand, since the proposed model is 

trained by approach of coordinate ascending (Bishop, 2006), 

the computational efficiency is limited. As for the future 

work, the current training mode maybe modified by 

stochastic gradient descent, which can be appropriately 

extended to the distributed parallel pattern (Zhang and Ge, 

2019) for further training efficiency. On the other hand, 

subsequent process monitoring procedure, i.e. fault diagnosis 

ought to be conducted in time.  
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