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Abstract: The adoption of distributed resources by households, e.g., storage units and
renewables, open the possibility of self-consumption (on-site generation), sell energy to the
grid as a small producer, or do both according to the context of operation. In this paper, a
framework capturing the interactions between an aggregator and a large number of households
is envisaged. We consider households equipped with distributed resources and simple smart
technologies that look for the reduction of energy bills and can perform demand response actions.
A mixed-integer linear programming formulation that provides optimal scheduling of household
devices and minimal operation costs is developed. Results show that the model can be applied
considering up to 10000 households. Moreover, households can reduce up to 20% of their energy
bill on average using storage units and demand response. Besides, the aggregator can attain
profits by offering the resulting flexibility to upper-level players of the energy chain, such as the
distribution system operator.

Keywords: Energy storage, energy management systems, linear programming, optimization,
renewable energy systems.

1. INTRODUCTION

The European Union is imposing strict targets to their
members, mainly due to environmental concerns, expect-
ing a penetration of 20% of renewables by 2020 and in-
creasing that quantity up to 100% by 2050 according to
the EU renewable energy directive (2009/28/EC). Such a
target can only be reached throughout an elaborated and
systematic electrical grid evolution Connolly et al. (2016).

In this scenario, end-users with generation capabilities
(the so-called prosumer), equipped with photovoltaic (PV)
panels and small-scale storage units, can provide addi-
tional flexibility to the system and themselves Abrisham-
baf et al. (2019); Soares et al. (2018). Upon on this,
innovative forms of energy management, including demand
response (DR) programs Siano (2014), promise several
benefits, such as the reduction of energy bills and carbon-
emission footprints, if effective management optimization
approaches are developed.

Different approaches have been proposed in the literature
to take the most advantage of the use of distributed
resources and energy management. From the residential
point of view, the benefits that small battery systems can

? This work has received funding from FEDER Funds through
COMPETE program and from National Funds through (FCT)
under the projects UID/EEA/00760/2019 and COLORS
PTDC/EEI-EEE/28967/2017, and grants CEECIND/02887/2017
and SFRH/BD/133086/2017.

provide have been showed in several studies Zheng et al.
(2018); Angenendt et al. (2019). Results acknowledge the
influence of combined operation strategies and optimiza-
tion of components to take the most profit of resources.
Despite the efforts made so far, it is expected a massive
penetration of distributed resources at the local level, with
its associated variability, into the electrical mix Lezama
et al. (2019). This situation will pose a significant burden
to the developed models, requiring efficient approaches
that can be scaled to larger instances of the problem if
needed. This work follows the line of research presented
in Sṕınola et al. (2017), in which a methodology for the
management of a PV-battery system and DR, analyzing
the possible role of operating on-site generation and selling
energy to the grid was proposed. In that work, a mixed-
integer linear programming (MILP) model for a single
residential house was developed and tested for the day-
ahead scheduling of resources. The model was later refined
in Faia et al. (2019), where an evolutionary computation
approach was applied to find near-optimal solutions to the
problem. However, no large-scale optimization, i.e. a large
number of resources, was considered in those works.

In this paper, a MILP formulation is proposed for the
coordination of hybrid PV-battery systems of residential
houses. The optimization problem envisages a framework
in which a central entity (i.e., an aggregator) needs to
perform an optimization of a large variable number of
households (aiming at large-scale instances of the prob-
lem). The problem is formulated first to benefit households
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(e.g., reducing energy costs) while aggregating DR capa-
bilities to offer flexibility and avoid congestion or other
related grid issues. Results show that the problem can
be efficiently solved for up to 10000 households, reducing
operational costs and obtaining the optimal scheduling of
PV-battery operation and DR.

The contributions of this paper are as follows:

• An optimization framework for the coordination of
households minimizing cost while increasing the flex-
ibility provided by DR.
• A MILP formulation that can be applied to a large

number of households.
• An assessment of the framework under four different

cases studies with up to 10000 households with PV
and storage units.

The paper is organized as follows: after the introduction
in Sect. 1, the system architecture is presented in Sect.
2, the mathematical formulation is introduced in Sect. 3,
the case study and results are provided in Sects. 4 and 5
respectively, to finalize with the conclusions in Sect. 6

2. SYSTEM ARCHITECTURE

This section describes the developed methodology regard-
ing the aggregation model and energy management sys-
tems in the demand side. The main goal of the aggregator
in this model is to aggregate all small and medium scale
DR capacities of end-users and offer them as a unique
resource to the distribution system operator (DSO). Fig. 1
illustrates the overall architecture of the proposed model.
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Fig. 1. Overall view of the proposed model (AGG stands
for aggregator).

As Fig. 1 shows, the aggregator is a third-party entity
between the upstream players of the network (i.e., the
DSO in this model), and the demand side. In this model,
the DSO is in charge of monitoring and controlling the
distribution network, while the aggregator takes care of the
distributed renewable energy resources and DR programs.

Also, the aggregator can establish bidirectional contracts
with the end-users for DR programs to manage consump-
tion resources. This is clear also in Fig. 1, as the aggregator
has information exchange with the main controller (e.g.,
Programmable Logic Controller - PLC) in the households.
The PLC controller unit manages the consumption and
generation resources in the houses according to the com-
mands and orders received from the aggregator.

It is also considered that each household is a prosumer
(a consumer able to produce electricity), equipped with
a PV and an energy storage system. The PLC is in
charge of managing the produced energy by the PV. In
fact, the generated energy can be stored in a battery,
consumed by the local loads, or directly injected to the
main network. Furthermore, the PLC manages the flexible
loads in the household according to DR signals received
from the aggregator.

It is assumed that the DSO owns the smart meters in the
demand side, and the aggregator manages consumption
and generation behind the smart meter. Thus, the aggre-
gator has no interference with the smart meters owned by
the DSO (As Fig. 1 shows).

In the next section, it is presented the developed math-
ematical model employed by the aggregator to minimize
the operational costs.

3. MATHEMATICAL FORMULATION

The mathematical formulation is divided into four subsec-
tions concerning the general objective function (Sect. 3.1)
the households operational costs (Sect. 3.2), the aggregator
operational costs (Sect. 3.3), and the constraints of the
problem (Sect. 3.4).

3.1 Objective function

The objective function (1) aims at the minimization of
operational costs, considering possible revenues for both,
households and the aggregator:

minf =

I∑
i=1

OCHouse(i) + OCAgg (1)

where OCHouse(i) represents the operational costs or en-
ergy bill of each agent i, I is the number of households,
and OCAGG represents the costs and profits that the
aggregator obtains from the procurement and provision
of flexibility through DR.

3.2 Household operational costs

To capture the costs/revenues that household i can obtain,
the operational costs of each household i are represented
by (2):

OCHouse(i) =

T∑
t=1


P in
(i,t) × Pricebuy(i,t)−

P out
(i,t) × Pricesell(i,t)−

PDR
(i,t) × PriceDR

(i,t)

 · 1

∆t
, ∀i ∈ I

(2)
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where the first term is the cost of buying P in
(i,t) units of

power (in kW) from the grid at a price Pricebuy(i,t) (in

EUR/kWh); the second term is the revenue for selling
P out
(i,t) units of power (in kW) to the grid at a price

Pricesell(i,t); and the third term is the revenue of DR, i.e., for

reducing PDR
(i,t) power units at an incentive PriceDR

(i,t) given

by the aggregator. ∆t is used to adjust the considered
period of optimization (i.e., ∆t = 4 in this work since 15
min periods are considered), and T represents the total
horizon of time (i.e., one day consisting on 96 periods of
15 minutes each in this work).

3.3 Aggregator operational costs

Regarding the aggregator participation in the model, its
operational costs are captured through equations (3):

OCAGG =

T∑
t=1



I∑
i=1

PDR
(i,t) × PriceDR

(i,t)−

I∑
i=1

PDR
(i,t) · PriceFlexDSO

(t) +(
FlexDSO

(t) −
I∑

i=1

PDR
(i,t)

)
× PriceDSOPen

(t)


· 1

∆t

(3)

where the first term is the cost of paying an incentive
of PriceDR

(i,t) (in EUR/kWh) for each PDR
(i,t) units of DR

reduction given by household i at period t; the second
term are the revenues got by the aggregator due to the
DSO payment of PriceFlexDSO

(t) (in EUR/kWh) for the

total of DR activated by households; and the third term
is a penalty costs associated to flexibility imbalance, i.e.,
the difference between the amount of reduction required by
the DSO (FlexDSO

(t) ) and the total procured by households

(
∑NA

i=1 P
DR
(i,t)), at each period t. It is assumed that the

DSO payment is higher than the compensation given
to households, but the aggregator is responsible for any
deviation in the scheduling paying a penalty for it.

3.4 Constraints

The formulation is subject to different constraints cap-
tured in (4) - (15).

• Power balance constraint per household (4):

P in
(i,t) + P dch

(i,t) + PPV
(i,t) + PDR

(i,t) =

P out
(i,t) + P ch

(i,t) +

(
PLoad
(i,t) −

C∑
c=1

P cut
(c,i,t)

)
,

∀i ∈ I, ∀t ∈ T

(4)

where the left side of the balance equation (generation)
includes the energy bought from the grid P in

(i,t), the battery

discharged energy P dch
(i,t), the PV generation PPV

(i,t), and the

energy reduction PDR
(i,t) for DR; while the right side of the

balance equation (i.e., consumption) includes the energy

injected to the grid P out
(i,t), the battery charged energy P ch

(i,t),

and the net load including the load PLoad
(i,t) minus the total

load shedding of controllable loads P cut
(c,i,t) by the inverter

(Sect. 2); for each household i at each period t.

• Allowed limits of energy that households can buy and
sell from the grid, (5) - (7):

0 ≤ P in
(i,t) ≤ PContract

(i) ×Xin
(i,t), (5)

0 ≤ P out
(i,t) ≤

PContract
(i)

2
×Xout

(i,t),
(6)

Xin
(i,t) + Xout

(i,t) ≤ 1, ∀i ∈ I, ∀t ∈ T (7)

where PContract
(i) is the contracted power of household

(i.e., the maximum power available at the grid connection

point);
PContract

(i)

2 is the limit of energy that can be sold
to the grid (due to Portuguese regulation Decreto Lei n.o

153/2014.); and Xin
(i,t) and Xout

(i,t) are two binary variables

to avoid buying and selling energy in the same period t.

• Allowed limits of load shedding in the different loads
connected to the relays of households (8):

P cut
(i,c,t) = P cutMax

(c,i,t) ·Xcut
(c,i,t), ∀c ∈ C, i ∈ NA, t ∈ T (8)

where P cutMax
(c,i,t) is the maximum power reduction of con-

trollable load c ∈ C connected to the inverter (see Sect. 2),
and Xcut

(c,i,t) is a binary variable to control the interruption

of the loads. The users can also define preferences by for
instance, setting P cutMax

(c,i,t) = 0, allowing DR activation only

in certain periods and loads of interest for them.

• Allowed limits of DR power reduction determined by
the household, (9):

0 ≤ PDR
(i,t) ≤ PDRmax

(i,t) ,∀i ∈ I, t ∈ T (9)

where PDRmax
(i,t) is the limit of power reduction allowed

by household i for DR. We assume that households not
participating in DR can set PDRmax

(i,t) = 0, while the ones

that have a contract with the aggregator set PDRmax
(i,t) to

a given percentage of their total load. Notice that setting
PDRmax
(i,t) = 0 still allows household i to use the controllable

loads c ∈ C for their own benefice since P cut
(c,i,t) is still

included in the balance equation (4).

• Allowed limits of DR power reduction determined by
the aggregator, (10):

0 ≤
I∑

i=1

PDR
(i,t) ≤ FlexDSO

(t) , ∀t ∈ T (10)

where FlexDSO
(t) is the limit of power reduction consid-

ered by the aggregator at each time t. Notice that when
FlexDSO

(t) = 0, the aggregator does not collect any flexibil-

ity to avoid imbalance.

• Constraints related to household batteries, (11) - (15):
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Ebat
(i,t) = Ebat

(i,t−1) + P ch
(i,t) − P dch

(i,t), ∀i ∈ I, t ∈ T (11)

0 ≤ Ebat
(i,t) ≤ Ebatmax

(i,t) , ∀i ∈ I, t ∈ T (12)

0 ≤ P ch
(i,t) ≤ P chmax

(i,t) ×XPch
(i,t) , ∀i ∈ I, t ∈ T (13)

0 ≤ P dch
(i,t) ≤ P dchmax

(i,t) ×XPdch
(i,t) , ∀i ∈ I, t ∈ T (14)

XPch
(i,t) + XPdch

(i,t) ≤ 1, ∀i ∈ I, t ∈ T (15)

where Ebat
(i,t) represents the battery state of charge at each

period t, Ebatmax
(i,t) is the maximum battery capacity, and

P chmax
(i,t) /P dchmax

(i,t) is the maximum charging/discharging

rate of the battery. XPch
(i,t) and XPdch

(i,t) are two binary

variables to guarantee that only charge or discharge occurs
in the same period t. This is applied to all households i at
each time t.

4. CASE STUDY

In this section, we present the case study developed to eval-
uate our framework. We consider households representing
Portuguese consumers complying with actual Portuguese
legislation, which allows small producers (consumers with
local generation) to use their energy to satisfy their own
load needs, and inject excess of energy to the grid. We
assume that all households are equipped with PV panels
with a maximum power capacity of 7.5 kW. Households
can also possess a battery unit with a maximum storage
capacity of 1.2 kWh based on reference Xue et al. (2020),
and a maximum charge/discharge rate of 0.15 kW per
15 min period (i.e., 0.6 kWh). Households equipped with
controllable loads through an invertor can reduce 10% on
average of their total consumption.

To generate power consumption and PV generation data
of residential households, two sample power profiles, one
for consumption and one for PV generation, were built
using real open datasets available at PES ISS website
(online at http://sites.ieee.org/pes-iss/data-sets/). With
these profiles, 1000 households data was generated using
a randomized function with a uniform distribution, ±25%
around the standard profiles.

Fig. 2 shows the retail tariffs and PV generation of the base
profiles. We assume that households have a power supply
contract with a given retailer of 11 KVA characterized by
three different periods: peak (0.33 EUR/kWh), intermedi-
ate (0.16 EUR/kWh), and off-peak (0.093 EUR/kWh). We
also consider a feed-in tariff of 0.095 EUR/kWh and a DR
compensation given by the aggregator following a percent-
age of the retailer tariff, i.e., 50% peak (0.16 EUR/kWh),
30% intermediate (0.05 EUR/kWh), and 25% off-peak
(0.023 EUR/kWh). Tariffs are based on real values of a
Portuguese retailer.

From the perspective of the aggregator, we assume a remu-
neration given by the DSO 5% higher than compensation
paid to the households for DR reduction. However, an
imbalance penalty cost 5 times higher than the DR tariff
is applied to the aggregator for the flexibility reduction
not provided Ødegaard Ottesen et al. (2016). This high
imbalance price was set to represent extreme situations
and force the aggregator to fulfill the flexibility commit-
ments. The DSO request reduction was set intentionally to
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Fig. 2. Considered tariffs and PV generation base profile.

be equivalent to 10% of the total load in peak hours (i.e.,
hours 10-13 and 19-21). We also assume that each user
allows the reduction of their net load for DR purposes up
to 15% in peak hours and 5% in intermediate hours.

5. RESULTS AND DISCUSSION

In this section, we present the results of our method-
ology applied to the case study of Sect. 4. The ex-
periments were implemented using a CPLEX solver in
MATLAB2014b/TOMSYMTM, in a computer with Intel
Xeon(R) E5-2620v2@2.1 GHz processor with 16GB of
RAM running Windows 10.

We perform different experiments based on the available
equipment that households possess. Table 1 shows four
cases, identified by the letter C1-C4, related to the avail-
able equipment in houses. Therefore, households are able
to perform DR only if part of their total load can be
interrupted using the inverter.

Table 1. Available equipment in houses for
analysing the impact of storage and DR.

Case Battery Inverter (DR) PV

C1 !

C2 ! !

C3 ! !

C4 ! ! !

5.1 Baseline: No DR capabilities (cases C1 and C2)

Table 2 shows the results of the baseline cases C1 and C2,
i.e., households with no DR capabilities. It can be seen
that C1 case represents the higher costs that households
can pay since neither the option of storage energy nor
performing a reduction of their load for compensation is
available. Yet, households can obtain some revenue by
selling their excess of PV generation to the grid. The
optimization procedure considering 1000 households takes
around 20 seconds. On the other hand, when households
are equipped with batteries (i.e., C2 case), the total cost
slightly decreases from 3111.5 EUR (C1) to 3020.8 EUR
(C2) considering 1000 households. While this quantity
seems to be low (around 3% of improvements daily), it
can represent consistent profits when considering broader
horizons of time (for instance, a daily reduction of 1 cent
per household correspond to around 3 EUR a month, and
36 EUR a year). Regarding the time of optimization, when
the batteries are considered, it takes three times more time
to find the optimal solution. This can be explained since
adding one battery per household into the model increases
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Table 2. Baseline results considering 1000
households with no DR capability.

No. Total Mean Mean Mean
TimeHouses Cost Cost Revenue Profit

C1 3111.5 4.72 1.61 -3.11 19.97
C2 3020.8 4.58 1.56 -3.02 62.99
∗Negative value in profits represents costs. Costs, Revenues and
Profits in EUR. Time in seconds.

the number of variables to 96 ∗ 5 ∗ NA (96 corresponding
to the period T , and five corresponding to the battery:
P ch, P dch, Ebat, BinPch, and BinPdch), which results in a
large-scale search space when a large number of households
is considered.

5.2 Households with DR capability and aggregator influence

Table 3 presents the results considering DR capabilities. To
this end, we assume that an aggregator requires flexibility
(i.e., load reduction) in peak hours from households. We
considered a maximum of 10% reduction capacity from
households and an equivalent request of flexibility from
the DSO to avoid unbalance. Results show that the total
cost can be reduced using DR. Despite low 10% reduction
capacity, the reduction seems to be logical, since house-
holds are consuming less energy in peak hours, reducing
the cost they are paying to the grid and at the same
time getting incentives for such reduction. Compared to
baseline C1, the mean revenues have increased around 20
cents for each household, highlighting the benefits that
DR can bring to end-users. Moreover, compared to the
baseline C1, the total costs decreased around 27% for C3
and 30% for C4 (e.g., from 3111.5 EUR to 2280 EUR and
2205 EUR respectively), resulting in significant savings if
longer periods of time are considered.

The flexibility requested by the DSO has an impact on the
quality of solutions and is also critical in the aggregator
planning phase. This can be appreciated in Eq. 3, since
a strong penalty (5 times the DR remuneration in this
paper) is assumed by the aggregator if a deviation of the
agreed flexibility occurs. To analyse the impact of such pa-
rameter FlexDSO

(t) , we have varied the flexibility requested

from 10% to 90% of the total load, in increments of 10%.
Table 4 shows the cost of the aggregator (equivalent to the
revenues of the households), the revenues of the aggregator
for the flexibility provision, the penalties imposed by the

Table 3. Results considering 1000 households
with DR capabilities.

Houses

Total Mean Mean Mean Mean
Cost Cost Revenue DR Profit

C3 2280.5 4.62 1.87 0.48 -2.28
C4 2205.2 4.49 1.81 0.48 -2.21

Aggregator∗

Cost DR Revenue Penalty Profit Time

C3 479.82 503.81 0 24.99 26.52
C4 479.82 503.81 0 23.99 102.07

∗Negative value in profits represents costs. Costs, Revenues and
Profits in EUR. Time in seconds.

Table 4. Varying the total among of Flexibility
procured by the DSO.

DSO Aggregator
Request Cost Revenue Penalty Profit

10% 479.82 503.81 0.00 23.99
20% 960.61 1008.64 0.03 48.00
30% 1440.92 1512.96 0.00 72.05
40% 1921.22 2017.28 0.00 96.06
50% 2401.53 2521.61 0.00 120.08
60% 2833.57 2975.25 241.34 -99.66
70% 3181.78 3340.87 901.82 -742.73
80% 3472.89 3646.53 1847.80 -1674.16
90% 3715.76 3901.55 3034.94 -2849.16
∗Negative value in profits represents costs. Costs, Rev-
enues and Profits in EUR. Time in seconds.

DSO for the deviation of the flexibility requested, and
the total profit achieved. It can be seen that when the
request is below 50% of the total load, the aggregator
is able to achieve almost zero deviation, increasing its
profits gradually. However, when the request is 60% or
higher, the aggregator is not able to provide the flexibility
(either by non-existing capacity or because households
have no interests in selling their available flexibility). This
is an extreme case, and in principle, the aggregator should
have state countermeasures for these situations in their
established contracts with households. However, this ex-
periment highlights some situations that might arise when
a modification of the load profile (i.e., flexibility) is sold
to an upper-level party.

5.3 Scalability analysis: Varying number of households

To test the scalability of our approach, we generate 10, 100,
1000, and 10000 households with similar characteristics
using the same randomized function, as explained in
Section 4.

Table 5 shows the execution time for the different cases.
It can be seen that the optimization time remains similar
for C1 and C3, showing that the consideration of DR does
not impact the execution time severely (even though, an
increase in time started to be noticed when 10000 house-
holds were considered). However, the addition of batteries
makes the execution times to increase more drastically. For
instance, C1 considering 100 households takes around 20
seconds, while taking up to 60 seconds (three times more)
with the addition of batteries (case C2). Considering bat-
teries (C2 and C3), When the number is scaled to 10000,
e.g. one order of magnitude, the optimization times grow
exponentially, which might undermine the applicability
of the approach when a massive number of resources is
considered.

Table 5. Execution time (in seconds) varying
the number of households.

Households C1 C2 C3 C4

10 3.25 3.14 3.01 3.07
100 4.74 7.44 4.77 7.82
1000 19.97 62.99 26.53 102.07
10000 205.27 1435.24 582.75 7624.27
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Fig. 4. Consumption scheduling and total generation

5.4 Aggregated scheduling, Balance and DR use

To analyze in more detail the resulting scheduling, Figs.
3 and 4 present the aggregated energy scheduling of the
case C4 considering 10 households. C4 is interesting to
analyze since more resources are available. Notice that
increasing the number of households only results in a
proportional increase in energy due to the optimization
design. It can be seen that a balance between generation
and consumption is achieved (following Eq. 4). Also, notice
that the cut of controllable loads of households, and the
DR reduction offered to the aggregator (orange and purple
colors in Fig. 3) is only used in peak hours, being a support
to the existing PV generation in those periods. This is
because the DR request input was limited to 10% of the
total consumption (in line with the DR capabilities of
households of the case study), and has been designed to
simulate situations related with congestion management
which are expected to occur in peak load hours.

6. CONCLUSIONS

In this paper, a MILP model was tested considering up
to 10000 households, demonstrating capabilities to solve
large-scale instances of the problem, even when the opti-
mization time increases with the number of houses. Also, it
was shown that profits for households and the aggregator
can be obtained as long as enough flexibility is available.
When the request for flexibility surpasses the available re-
sources, severe penalties might affect aggregator incomes.
Despite validating the approach through a realistic case
study, several assumptions were made, which open differ-
ent lines for future research. For instance, a small battery
size (1.2 kWh) was used in this study, so the impact of
DR capability might be strongly affected by considering
batteries with a large capacity. Also, battery degradation

was not considered, yet its impact due to many cycles of
charge and discharge may affect the profits of households
in the long-term. Another line is related to the available
flexible assets like electric vehicles, A/C units or dryers,
that usually make up for more than 10% of the total load if
they run. Hence it would be interesting to see results based
on this model with values significantly higher than 10 %
(up to 80 %). Besides, considering network constraints can
be interesting to validate the operation of resources at
the local level. Finally, the intermittent and unpredictable
nature of PV generation and consumption suggest the
application of stochastic programming or robust optimiza-
tion to incorporate uncertainty in the formulation.
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