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Abstract: This paper presents a novel Deep Neural Network aimed at fast and robust visual
loop detection targeted to underwater images. In order to help the proposed network to learn
the features that define loop closings, a global image descriptor built upon clusters of local
SIFT descriptors is proposed. Also, a method allowing unsupervised training is presented,
eliminating the need for a hand-labelled ground truth. Once trained, the Neural Network builds
two descriptors of an image that can be easily compared to other image descriptors to ascertain
if they close a loop or not. The experimental results, performed using real data gathered in
coastal areas of Mallorca (Spain), show the validity of our proposal and favourably compares it
to previously existing methods.
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1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM), which
is aimed at estimating the pose of a mobile robot while
it builds a map of the environment, is one of the most
important tasks in mobile robotics nowadays (Durrant-
Whyte and Bailey, 2006). A fundamental problem in
SLAM is the one of deciding whether the area observed
by the robot was previously visited or not. Solving this
problem, known as loop detection, is crucial to improve
the robot pose estimates as well as the constructed map.

The use of cameras to detect loops has gained popularity
in the last years (Davison et al., 2007), nowadays being
the most popular approach (Mur-Artal and Tardos, 2017).
Some of the existing studies rely on matching local descrip-
tors. For example, Burguera et al. (2015) make use of Scale
Invariant Feature Transform (SIFT) feature detection and
matching combined with RANSAC to decide if two images
depict an overlapping region of the environment and, thus,
constitute a loop. Other approaches rely on global descrip-
tors. Roughly speaking, they build image descriptors that
can be easily compared to decide if there is overlapping
between the corresponding images. For example, Negre-
Carrasco et al. (2016) build hash-based descriptors called
Hash based Loop Closure (HALOC) and compares them
using Euclidean distance to decide if two images overlap
or not. Other approaches based on global descriptors are
Vector of Locally Aggregated Descriptors (VLAD) (Jégou
et al., 2010) or Bag of Words (BoW) (Gálvez-López and
Tardós, 2012).

⋆ This work is partially supported by Ministry of Econ-
omy and Competitiveness under contracts DPI2017-86372-C3-3-R
(AEI,FEDER,UE) and TIN2014-58662-R (AEI,FEDER,UE).

When it comes to underwater environments, visual loop
detection is affected by several problems that exist only
up to a much lesser extent in terrestrial and aerial robotics
(Bonin-Font et al., 2013; Hong et al., 2016). Reduced
range, flickering or bad illumination, among many other,
are the reasons why underwater visual loop closing is par-
ticularly challenging and has to rely on robust techniques.

Loop detection using Deep Neural Networks (DNN) has
shown to be particularly robust, mainly because these
methods learn the image descriptions depending on the en-
vironment in which they will be deployed instead of relying
on general purpose pre-engineered features. For example,
Arandjelovic et al. (2018) use a DNN to automatically
parametrize the VLAD global image descriptors. Other
researchers such as Merril and Huang (2018) show that the
convolutional layers of a properly trained Convolutional
Neural Network (CNN) can be used as image descriptors.

In spite of their exceptionally good results, these methods
cannot be directly applied to underwater visual loop de-
tection for three main reasons. First, most existing Neural
Networks (NN) used to perform place recognition are slow
to perform feature extraction or querying. Speed is of
paramount importance when it comes to AUV because
battery and space limitations usually constrain the compu-
tational power. Second, they need large amounts of train-
ing data, and this is particularly difficult in underwater
environments due to the required equipment. Third, most
of the existing approaches rely, up to a certain extent, on
pre-trained networks (Razavian et al., 2014; Sünderhauf
et al., 2015). In our case, transfer learning is not possi-
ble. On the one hand, because underwater scenarios are
radically different to the kind of images used to train well
known networks. On the other hand, because most of the
pre-trained networks assume a forward looking camera
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whilst most AUV make use of bottom-looking cameras.
This difference in the camera orientation leads to view-
point changes for which most pre-trained networks are not
prepared.

This paper is focused on visual loop detection in underwa-
ter scenarios and centers its attention on the above men-
tioned problems. To this end, we propose an autoencoder
based NN with low latency. The NN is trained using a pre-
engineered description method to guide it when learning
the best features to detect loops. Since our proposal is
autoencoder based, the learned representation is smaller
than the image itself, thus reducing the storage problems
in the AUV on-board computers. Additionally, since the
proposed network has significantly less parameters than
state of the art NN, the required number of images to train
the system, as well as the training time, is dramatically
reduced.

As for training, an unsupervised approach not requiring
hand-labelled loops is presented. This approach, which
generates synthetic loops from real data, not only removes
the need to hand-label couples of images but it also makes
training the system with few real images possible.

2. OVERVIEW

An image autoencoder (Jimenez-Rezende et al., 2014) is
a NN composed of two parts: an encoder, which maps
the input image into a latent space and a decoder, which
decodes it back to the original image space. The encoder
is a succession of convolutional and pooling layers, each
layer reducing the dimensionality of the previous one. The
decoder inverts that process performing upscaling and
interpolation. Autoencoders are trained using the same
image both as input and as target data. In this way,
autoencoders can learn latent representations of the input
data which are smaller than the input data itself.

Contrarily to autoencoders, our goal is not to learn latent
representations of images by themselves but of loops. This
means that, instead of input and target data being the
same image, they should come from two different images
closing a loop. In this case the image space is not a
good choice for the NN output since it is not invariant
to rotation or scaling and barely to shifting, and these
transformations are precisely the most relevant when using
a bottom looking camera. Thus, a way to represent an
image that is robust in front of these transformations
is required. Let this representation be referred to as the
Global Image Descriptor (GID). The process to build the
GID is described in Section 3.

Our proposal is to adapt the standard autoencoder ar-
chitecture so that it learns the latent representation of
loops by targeting the GID of one of the loop closing
images using the other image as input. This architecture
is presented in Section 4.

Training this architecture requires couples of loop closing
images. When it comes to underwater scenarios, it is
difficult to obtain such training data and, more important,
it is particularly tedious and error prone to label the loops
since most of the images look similar to humans. That is
why we propose a method to synthetically generate loop
closing images in this kind of scenarios. A description of

Fig. 1. Summary of the GID building process.

this method as well as a description of how to train the
NN are provided in Section 5.

After training, our NN can be used to describe an image
without having to compute the GID. This description can
be compared to other images descriptors in order to decide
whether they possibly close a loop or not. That is, a set of
loop candidates is constructed. This process is detailed in
Section 6.

3. THE GLOBAL IMAGE DESCRIPTOR

The main goal of the GID is not to be able to robustly
discriminate between loop closing and non loop closing
images but to provide an alternative to the image space
that can be used as target data when training the proposed
NN. Thus, the GID is only computed to train the system
and is not required after training.

Merril and Huang (2018) proposed a GID based on the
Histogram of Oriented Gradients (HOG) since it has a
fixed length for images of the same size and can be easily
compared using Euclidean distance. Also, HOG is robust
enough to perform place recognition from terrestrial for-
ward looking cameras since only changes in scale and very
small rotations in the image plane appear. Unfortunately,
this is not the case of underwater bottom looking cameras.

In the case of bottom looking cameras attached to an AUV,
images closing a loop are often largely rotated one with
respect to the other since the camera observes a plane
parallel to the robot motion. Also, loop closing images can
have different scale and illumination because the AUV can
navigate up and down. Accordingly, we need a GID that
is robust to changes in scale, rotation, illumination as well
as to image shifts. Our proposal is to build the GID upon
SIFT, which has shown to be invariant to all these changes.

Even though a SIFT descriptor has a fixed length, the
number of descriptors changes from one image to another.
Moreover, since SIFT is aimed at providing local descrip-
tions of parts of an image, the SIFT descriptors are not
found in any particular order. That is, SIFT descriptors
cannot be directly used to describe an image since the
GID would have different lengths depending on the image
and, more important, the random order in which they are
found would make it impossible to compare different GID.
Accordingly, a method to deal with these two issues is
required.

Several approaches exist to achieve this goal (Perronnin
and Dance, 2007; Jégou et al., 2010), most of them
based on the Fisher kernel (Jaakkola and Haussler, 1999).
Our proposal is to aggregate the SIFT features based
on a distance criterion in the descriptor space and sort
the clusters depending on the number of corresponding
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Fig. 2. The Neural Network architecture

descriptors. This process, summarized in Figure 1, is
detailed next.

Given one image, the first step is to compute the SIFT
descriptors SD = {d0, d1, · · · , dn}. Each di is a vector
of fixed size 128. However, the number of descriptors n
changes from one image to another. These descriptors can
be compared using the L2-norm so that, ideally, ||di −
dj || ≃ 0 if and only if the regions around features i and j
depict a visually similar region of the environment.

Afterwards, a codebook SC = {c0, c1, · · · , cK} of K visual
words is built by applying K-Means to SD. Since the
descriptors are comparable using the L2-norm, K-Means
has to be applied using the Euclidean distance. Each ci
is the centroid of the i-th cluster found by K-Means,
which constitutes a representative of the visual appearance
shared between the descriptors belonging to the cluster

Since each cluster contains descriptors corresponding to
visually similar regions, the number of features assigned
to the cluster represents the visual importance of the
corresponding centroid. That is, the more descriptors
assigned to a cluster, the more relevant the cluster is.
Because of that, our proposal is to sort the centroids in
SC according to the number of descriptors assigned to
the corresponding cluster. Let SS denote the sorted SC.
In this way, similar images will not only lead to similar
descriptors but also to similarly sorted centroids. Since
each descriptor and thus each centroid can be compared
using the L2-norm, two SS coming from two different
images can also be compared using the Euclidean distance.

To facilitate further usage of SS in a NN, it is normalized
to the range [0,1] and converted to a 1D tensor by
flattening the data. This tensor of size DS = K · 128
constitutes the GID. Overall, two images that are rotated,
scaled or shifted one with respect to the other will produce
GIDs that are similar in Euclidean terms.

4. THE NEURAL NETWORK

The proposed architecture, which is based on an autoen-
coder, is summarized in Figure 2. As it can be observed,
our proposal has an encoder which is a set of convolutional
and pooling layers, aimed at reducing the data dimension-
ality. In particular, we use sets of convolutional layers with
sigmoid activation functions and maxpooling.

The decoder significantly differs from the ones in au-
toencoders. Since, in our case, the NN output is not an
image but a GID, the decoder does not perform transposed
convolutions and pooling. Instead, it goes from the latent
representation to the GID space through a set of fully

Fig. 3. The training process.

connected layers with sigmoid activation functions, the last
one having the size of the GID.

After training, the NN could be used in two different ways.
On the one hand, the encoder output (that is, the latent
representation) could be used to compare images. Let the
encoder output be referred to as the Learned Features
(LF). On the other hand, the output of the last dense
layer could also be used to the same end. Let this output
be referred to as the Learned Global Image Descriptor
(LGID). Both the LF and the LGID should be similar
between images closing a loop. This will be experimentally
assessed in Section 7.

5. UNSUPERVISED TRAINING

Training the proposed NN requires pairs of loop closing
images. One of the images in each pair will be the NN
input whilst the other is used to compute its GID, which
constitutes the target data. For the NN to be properly
trained, a large number of loop closing images is required.
The main problem here is that hand labelling the training
data is tedious and error prone. That is why a method to
build synthetic loops is advisable, thus making our system
unsupervised.

The overall training process, including the synthetic loop
generation, is illustrated in Figure 3. Given one underwater
image I0, our goal is, first, to build an image I1 that depicts
the same part of the ocean floor but from a different
viewpoint. Taking into account that our proposal is to
deal with underwater bottom looking cameras attached
to an AUV, this change in viewpoint will result only in
rotations over the image plane as well as scaling and
shifting. Accordingly, I1 is built by applying a random
rotation, scaling and shifting to I0. Random changes in
brightness and contrast are also performed to simulate
different illumination conditions. Mirroring is applied to
fill the pixels in I1 that have no corresponding pixel in I0
after the transformation.

One of these two images is randomly chosen to be the NN
input. Let this image be named INN . The other image,
named IGID, is used to compute the GID. This random
selection prevents training biases since in this way neither
the synthetic nor the original image will always be used
for the same purpose.

The training is aimed at reconstructing the GID corre-
sponding to IGID given INN . As stated in Section 3,
the Euclidean distance is a good metric to compare the
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Fig. 4. Online usage of the proposed architecture.

proposed GID. For this reason, the L2 loss function is used
to compare the GID with its reconstruction LGID.

6. OBTAINING LOOP CANDIDATES

Once the system is trained, it can be used to build either
the LGID or the LF as shown in Figure 2. To ease notation,
let Di denote the LGID or the LF, indistinctly, obtained
from image Ii.

The Euclidean distance between Di and Dj provides
information about how likely is for Ii and Ij to close
a loop. However, deciding loop closings solely with this
information would require the existence of a threshold
δ so that Ii and Ij close a loop if and only if ||Di −
Dj || ≤ δ. Instead of using such threshold, our proposal
takes advantage of how loop closings are used in visual
SLAM.

Basically, when performing visual SLAM, the most recent
image is matched against all the previously gathered
images. Our proposal is, thus, to select a subset of fixed
size of the previously gathered images as loop candidates
and confirm these loops in a posterior step.

The whole process is summarized in Figure 4. The first
step, called description, builds Di for all the gathered
images. We distinguish between Dt, which comes from the
most recent image or query image, and D0:t−1 which come
from the remaining images or database images. Due to the
incremental nature of SLAM, the query image will become
a database image in further steps. Thus, our proposal only
requires computing Dt, since D0:t−1 are already computed
from previous steps.

Afterwards, the candidate selection process is performed.
During this step, the query image is compared to all the
database images by computing the Euclidean distance
between Dt and all the D0:t−1. The N database images
leading to the smallest Euclidean distances are selected
and constitute the set Ct = {C0, C1, · · · , CN−1} of can-
didates to close a loop with the query (loop candidates).
That is, Ct contains the N images that are likely to close
a loop with It.

7. EXPERIMENTAL RESULTS

In order to evaluate our proposal, three datasets of RGB
images have been gathered in coastal areas of Mallorca
(Spain) using an AUV with a bottom looking camera.
Each dataset is divided in two parts: database images and

Table 1. Number of database images, query
images and loops each dataset.

Database Query Loops

Dataset 1 183 24 34

Dataset 2 177 25 26

Dataset 3 244 24 26

Table 2. The four tested variations of the NN
approach.

Name Training NN output

SLGID Supervised LGID

SLF Supervised LF

ULGID Unsupervised LGID

ULF Unsupervised LF

query images. Each query image closes a loop with at least
one database image. The loop closings have been manually
identified and constitute the ground truth. Table 1 shows
the number of images and loop closings in each dataset.
All the images are resized to a resolution of 320×240 pixels
prior to their use.

Four different variations of our proposal have been tested.
These variations are the combinations of using different
training methods and different NN outputs. As for training
methods, we have tested both the unsupervised approach
described in Section 5 and a supervised approach that uses
only the hand labelled loops in the datasets as training
data. As for NN outputs, as stated previously, both the
encoder output (LF) and the decoder output (LGID) have
been tested. Table 2 summarizes the four variations and
defines a name to ease further references.

Our proposal has been compared to the direct use of the
GID proposed in Section 3 by directly computing distances
between GIDs without using the NN. It has also been
compared to the Deep Loop Closure (DLC) approach by
Merril and Huang (2018). To provide a fair comparison,
the DLC synthetic loop generator has been changed to
our proposal (Section 5) since the original DLC method
assumed a forward looking camera. Thanks to that, it is
possible to test the four variations shown in Table 2 also
with DLC. To name these variations, the prefix DLC will
be used. For example, DLC-SLGID refers to DLC without
using synthetic loops during training and using the LGID
output to search loop candidates.

The system has been trained, validated and tested using
all the valid combinations of the three datasets. The only
hyperparameter that has been tuned during validation is
the number of epochs. Let the notation TxVySz denote a
system trained with dataset x, validated with dataset y
and tested with dataset z. Only the combinations where
x, y and z are different are considered valid.

In order to evaluate the quality of the loop candidates
we proceeded as follows. For each query image It in each
dataset the set of loop candidates Ct has been computed
using the four variations of our approach shown in Table
2, the corresponding four variations of DLC and GID as
described before.

As an example, Figure 5 shows some of the candidate loops
in each dataset according to ULF. The first column shows a
query image of each dataset whilst the remaining columns
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Table 3. AUC values of our proposal and DLC for all the tested configurations. The gray cells
emphasize the best method for each of the four tested variations.

T1V2S3 T1V3S2 T2V1S3 T2V3S1 T3V1S2 T3V2S1 Average

SLGID 88.75% 83.60% 88.17% 73.58% 88.24% 75.96% 83.05%

DLC-SLGID 88.08% 80.84% 86.54% 78.71% 84.60% 69.79% 81.43%

SLF 88.08% 86.16% 91.83% 73.79% 88.44% 75.88% 84.03%

DLC-SLF 90.46% 87.56% 87.88% 77.21% 87.56% 69.92% 83.43%

ULGID 89.50% 82.76% 92.50% 73.50% 86.48% 76.38% 83.52%

DLC-ULGID 87.12% 82.16% 85.62% 69.00% 81.20% 70.75% 79.31%

ULF 88.71% 90.32% 91.38% 70.62% 88.52% 72.75% 83.72%

DLC-ULF 90.96% 89.52% 89.04% 72.71% 87.68% 68.46% 83.06%

Table 4. AUC values of all the tested methods
aggregated per dataset. The gray cells em-
phasize the best method between supervised
and unsupervised for each of the four tested

variations.

Dataset 1 Dataset 2 Dataset 3 Average

SLGID 75.77% 85.92% 88.46% 83.38%

ULGID 74.94% 84.62% 91.00% 83.52%

DLC-SLGID 74.25% 82.72% 87.31% 81.42%

DLC-ULGID 69.88% 81.68% 86.37% 79.31%

SLF 74.84% 87.30% 89.96% 84.03%

ULF 71.69% 89.42% 90.05% 83.72%

DLC-SLF 73.57% 87.56% 89.17% 83.43%

DLC-ULF 70.59% 88.60% 90.00% 83.06%

GID 61.17% 39.00% 45.75% 48.64%
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Fig. 5. Examples of candidate loops in each dataset.

depict the first four candidates found by our approach. As
it can be observed, actual loops are within the candidate
sets in all cases.

To quantify the quality of the loop candidates, we pro-
ceeded as follows. The number N of items in Ct has been
set to values ranging from 1% to 100% of the number of
database images in the dataset. In each case the percentage
of query images for which at least one actual loop was in
the candidate set has been computed. Let this percentage
be referred to as the hit ratio.

Figure 6 shows some of the obtained hit ratios as a function
of the percentage of database images. The labels in the ex-
amples corresponding to our proposal and to DLC specify
the training, validation and test sets using the aforemen-
tioned TxVySz notation. The examples corresponding to
GID do not use that notation since GID is neither trained
nor validated, and thus only the tested dataset is specified
as Sx, x being the dataset number. Results using GID
are significantly worse than those using the deep learning
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Fig. 6. Examples of hit ratio evolution.

approaches. This suggests that even though GID is not well
suited to find loops, it is to provide useful information to
train a NN to achieve this goal.

The evolution of the hit ratio with respect to N (the num-
ber of candidates expressed as a percentage of database
images) defines a curve so that the better the approach
the larger the area below the curve. Let this Area Under
the Curve (AUC), defined as the percentage of the whole
space of possibilities that falls below the curve, be used
as a quality measure of the overall behaviour of a loop
detection method.

Table 3 shows the AUC corresponding to the four varia-
tions of our proposal and DLC for each valid combination
of training, validation and testing. Our proposal leads
to better average results either using LF or LGID and
independently of using the supervised or the unsupervised
approach. It can also be observed that both in our proposal
and in DLC better results are obtained when using LF
instead of LGID. This is particularly interesting since, LF
being the encoder output, computing it is faster than com-
puting the LGID and less parameters have to be stored.

By aggregating the previous results per dataset, it is
possible to compare them to the AUC corresponding to the
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direct use of the GID. Table 4 summarizes these results and
show that all the tested methods greatly improve the direct
use of GID. This suggests that the NN is able to learn good
representations of loops even with the weak information
provided by the global image descriptor. The results in
the table are grouped in order to ease the comparison
between supervised and unsupervised approaches. Overall,
the supervised approach leads to better results, though
they are quite similar to their unsupervised counterparts.
In other words, our proposal to unsupervised training is
almost as accurate as training the system with a hand
labelled ground truth.

8. CONCLUSION

A novel deep neural network aimed at robust and fast
visual loop detection has been presented. The proposal is
based on an autoencoder architecture, the decoder part
being replaced by three fully connected layers. In order
to help the proposed network to learn the features that
define loop closings, a global image descriptor based on
clusters of SIFT descriptors has been defined and used.
Also, a method allowing unsupervised training has been
presented.

Once trained, the NN builds two descriptors of an image
that can be easily compared to descriptors of other images
in order to ascertain if the images close a loop: the LGID
and the LF, which are the outputs of the decoder and the
encoder parts of the NN respectively. The former is the
target output during training whilst the latter represents
the learned latent representation.

The ability of the NN to detect loops has been experimen-
tally tested and compared to previously existing methods.
The results have shown that our proposal surpasses the
previously existing methods and that the NN greatly im-
proves the ability of the global image descriptor alone.
Also, results show that the unsupervised approach leads
to results similar to a classical supervised training, thus
making it an interesting method in underwater scenarios
in which hand-labelling loops is a tedious and error prone
task.

Our proposal being lightweight and unsupervised, it is
an interesting replacement for larger and slower NN,
especially when it comes to AUV where computational
capabilities are limited.

We are now working on a loop confirmation method able
to robustly filter the candidate set so that loops can be
properly used to perform underwater visual SLAM.
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