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Abstract: The advent of wearable recorders poses new challenges to electrocardiogram (ECG)
analysis, such as robust feature extraction in front of long-term recordings with intervals of
extreme noise. This paper proposes a robust approach to improve the estimates of one particular
feature, the R-R interval (RRI), extracted by an arbitrary QRS detector operating in these
scenarios. The proposal performs three steps. First, a voting schema is used to detect noisy
intervals. Second, a rough estimate of the RRI evolution with time is obtained. Finally, this
estimate is used to guide the Kalman filter in charge of refining the RRI estimates. Two groups
of experiments have been performed. The first relies on 1674 real ECG corrupted with controlled
amounts of noise. The second one tests our proposal using the MIT-BIH Noise Stress Test
Database. Results show that influence of the initial error in our approach is small, leading to a
large improvement in front of highly corrupted electrocardiograms at the cost of reducing the
quality of the RRI estimates in absence of significant noise. Accordingly, the presented approach
is suitable to process data obtained from portable ECG devices in which localized intervals of
severe noise are present.

Keywords: Medical applications, ECG processing, Electrocardiography, R-R Interval, Signal
processing

1. INTRODUCTION

One of the most widely used noninvasive medical proce-
dures to measure the heart activity is the electrocardiog-
raphy. This procedure records onto an electrocardiogram
(ECG) the electrical changes on the skin due to the heart
electrophysiological patterns.

The popularity of portable ECG recorders (Patel et al.,
2012) is growing because its ease of use and compact
format. Moreover, the advances in small low-cost micro-
processor and microcomputer boards make it possible to
perform on-line ECG processing. Consequently, wearable
ECG technology is one of the main research lines nowadays
(Elgendi et al., 2014; Baig et al., 2013).

The portable devices tend to be single lead thus being
significantly less robust in front of noise. Moreover, since
the goal of these devices is long-term monitoring, they
have to deal with noise sources not present in controlled
ECG scenarios. For example, extremely noisy intervals
may appear while the patient is doing physical exercise
or in presence of external electromagnetic interferences. In
applications like epileptic seizure prediction or detection
(Hashimoto et al., 2013), the seizures themselves may be
responsible for extremely noisy intervals, jeopardizing the
whole application purpose.

? This work is partially supported by Ministry of Econ-
omy and Competitiveness under contracts DPI2017-86372-C3-3-R
(AEI,FEDER,UE) and TIN2014-58662-R (AEI,FEDER,UE).

Current state of the art computer-based ECG analyzers
exhibit exceptionally good results (Elgendi et al., 2017;
Burguera, 2019) even in presence of moderate and high
noise, being comparable to ECG labelled by experienced
cardiologists. However, these approaches tend to fail, pre-
cisely, in the mentioned intervals of extreme noise.

This paper focuses on these cases. Our goal is to robustly
estimate the inter-beat or R-R Intervals (RRI), defined
as the time between consecutive heart beats (see Figure
1-a), in long-term, single lead ECG involving extremely
noisy intervals. Thus, our approach constitutes a first step
towards robust continuous ECG monitoring based on low-
cost electrocardiographs.

More specifically, the proposal presented in this paper
is composed of three main blocks that are executed se-
quentially. The first block is the voter and is in charge
of isolating the intervals of extreme noise. The second
block, the guidance builder, provides a rough estimate of
the inter-beat intervals paying special attention to the
detected intervals of extreme noise. Finally, this rough
estimate is used by the RRI processor block to guide a
Kalman filter (KF) through the noisy intervals. Figure
1-b summarizes the structure and introduces some basic
notation and nomenclature that will be used throughout
the document.

It is important to emphasize that our proposal is not
aimed at detecting QRS complexes (Elgendi et al., 2017;
Köhler et al., 2002) within an ECG. Instead, this study
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Fig. 1. (a) The R-R interval. (b) Algorithm overview. (c) The voting mask VM obtained for MVM = 0.3Fs, NVM = 50,
r0 = 0.05Fs and m = 0.005Fs, being Fs = 360Hz. Brighter pixels correspond to higher values.

considers the inter-beat intervals computed by an arbitrary
QRS detector as a signal that evolves with time and
improves it globally. Thanks to that, a clean representation
of the overall evolution of the instantaneous heart rate
is obtained. Thus, our proposal can be used, among
other, to improve the average heart rate estimates, usually
obtained over a sliding window. As a side effect, our
study also classifies each individual inter-beat interval
as being normal, too large or too short. Accordingly, it
provides crucial information that could be used either to
improve QRS detection or to help cardiologists in detecting
abnormal regions within an ECG.

2. THE VOTER

The voter is aimed at determining which parts of the RRI
vector are likely to be correct and which ones are likely
to be severly corrupted by noise. To this end, the RRI at
each beat b, denoted by RRI(b), votes those RRI that are
acceptable from its own point of view by means of a voting
mask (VM ). Afterwards, a vote counting procedure is
performed resulting in a voting table (VT ). The most voted
regions within this voting table are likely to correspond to
the correct RRI.

The voting mask is a MVM × NVM matrix where each
row represents a possible RRI value and each column
represents a heart beat. Each cell of VM holds a value
of how likely the RRI it represents is correct if we assume
that the RRI represented by the matrix central position
is correct. In other words, each RRI assumes it is correct
and evaluates positively those that are consistent with it.
Let the RRI which is assumed to be correct be referred to
as the central RRI.

To build the matrix, the following two criteria are used.
The first criterion states that the allowed difference in
value between an RRI and the central RRI increases with
the difference in beat number. For example, given an RRI
of 1 second at beat b, an RRI of 0.5 seconds may not
be allowed at beat b + 1 but possible at beat b + 2.
This criterion involves two parameters: r0, which is the
difference in RRI that is acceptable for the same beat that
the central RRI, and m, which denotes how many units
can increase the RRI for each beat of distance from the
central position.

The second criterion states that those cells passing the first
criterion will be assigned a value that follows a bivariate
Normal distribution whose mean is at the central position.
The covariance is selected so that the 4σ bound fully lies
within the voting mask. Figure 1-c illustrates the voting
mask.

Vote counting begins by building a voting table VT .
This table is a matrix where, similarly to VM , each
row represents a possible RRI value and each column
represents a heart beat. However, contrarily to VM , the
voting table is global in the sense that it must cover all
the data in the RRI vector. Thus, the number of columns
is the number of beats NB and the number of rows is the
maximum RRI. All the VT cells are initialized to zero.

Afterwards, each RRI(b) generates a vote matrix, which
is summed to the corresponding cells of VT . The emitted
votes are computed by means of the voting mask assuming
that each RRI(b) is the central RRI of its VM . In other
words, each RRI(b) votes those RRI that could be correct
from its own point of view.

As an example, Figure 2-a shows an ECG with several
intervals of severe noise marked with red rectangles. Figure
2-b shows the resulting RRI vector after processing the
ECG with a QRS detector. As it can be observed, the
RRI estimates become very noisy at the noisy ECG areas.
Finally, Figure 2-c, which depicts the obtained voting table
VT , shows that the noise free areas are those where the
votes accumulate.

3. THE GUIDANCE BUILDER

The goal of the guidance builder is to generate a signal
that captures the main behavior of the true RRI of a given
ECG by means of the aforedescribed voting table.

In order to decide whether a cell of the voting table has
enough votes or not, a dynamic threshold τ is used (Otsu,
1979). In this way, VT (v, b) ≥ τ means that an RRI of
duration v at heart beat b is consistent with the original
RRI vector whilst VT (v, b) < τ means that the original
RRI vector does not provide enough information regarding
this particular RRI. Let us define the set GN of guidance
nodes as the set of RRI that are the most consistent with
the original RRI as follows:
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Fig. 2. An example of the voter block. (a) ECG corresponding to record 118e00 from the nstdb database (Moody et al.,
1984; Goldberger et al., 2000) with noise intervals marked with red rectangles. (b) The RRI obtained from a QRS
detector. (c) The vote table. Brighter values correspond to the most voted RRI.
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Fig. 3. An example of the guidance builder. (a) The guid-
ance nodes, depicted in red, over the corresponding
vote table. (b) The guidance signal depicted by the
mean (sb) and the 2σ bound ([sb − 2σb, sb + 2σb]).

GN = {[v, b]T ∀b ∈ N, 0 ≤ b < NB , v = argmax
r

VT (r, b)|v ≥ τ} (1)

As a result of this process, there are no guidance nodes
at the beats with severe noise because, in these cases, the
threshold τ will not be surpassed. Figure 3-a illustrates
this idea.

The guidance signal building pursues two main goals. First,
to fill the gaps corresponding to the beats not present in
GN . Second, to compute an error estimate for each beat
of the resulting signal.

Filling the existing gaps in GN is achieved by means
of a standard interpolation technique. Our proposal is
to use a shape-preserving piecewise cubic interpolation
that guarantees continuity C1. That is, it guarantees a
differentiable function whose derivative is continuous.

As for the error estimates, the vote table is used similarly
to the guidance node building step. In particular, for each
column b of VT , which represents a heart beat, we search
the lowest (vl) and the highest (vh) rows, which represent
an RRI, so that VT (vl, b) ≥ τ and VT (vh, b) ≥ τ . Given the
way in which VT was built, it is reasonable to assume that
given a guidance node [v, b]T the actual RRI value at this
beat is likely to lie in the interval [vl, vh]. Our proposal is
to use max(vh − v, v − vl) to approximate a 2σ bound for
this guidance node. In other words, we assume that given
a guidance node [v, b], the actual RRI will be within the
interval v ±max(vh − v, v − vl) in the 95% of the cases.

However, similarly toGN , gaps will appear in those regions
of extreme noise where no RRI had enough votes. The
uncertainty during these intervals grows and so the error
estimate. Our proposal is to make it grow at a constant
rate δ = 0.1. This specific value has been obtained
experimentally.

Let us define the guidance signal GS as a vector containing
both the interpolated values from the guidance nodes and
the error estimates. Under the aforementioned assump-
tions, the value, either interpolated or existing in GN , can
be seen as the mean value of the signal and the error as
two times the standard deviation.

More formally, GS(b) = [sb, σb]
T , b ∈ N, 0 ≤ b < NB .

The terms sb and σb, which denote the mean value and
the corresponding standard deviation, are computed as
follows:

sb =

{
v if [v, b]T ∈ GN

interpolate(b,GN ) otherwise
(2)

σb =


max((max(Vb)−sb),(sb−min(Vb)))

2 if Vb 6= ∅
σb−1 + δ if Vb = ∅ and b > 0
K otherwise

(3)
where K is a value used only if the first beat has no
corresponding node in GN (i.e. if the ECG was extremely
noisy at the very beginning). As for Vb = {v|VT (v, b) ≥ τ},
it is the set of RRI values at beat b that have enough votes.

It is important to emphasize that one guidance signal value
GS(b) exists for each initial RRI value RRI(b). Figure 3-b
shows an example of guidance signal.

4. THE RRI PROCESSOR

The goal of the RRI processor is to improve the initial RRI
vector, especially during the intervals of severe noise. As a
side effect, the RRI processor also identifies RRI that are
not statistically compatible with their neighbourhood and
classifies each of them as a long beat or a short beat.

A common approach to estimate time-varying signals
given a set of noisy measurements is the Kalman Filter
(KF). However, it is well known that KF may not be able
to recover from errors due to inconsistent measurements.
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To alleviate this problem, our proposal is to use a KF
to estimate the RRI and use the guidance signal GS

to prevent drift and allow recovery even in presence of
inconsistent data. Next, the KF particularized to our
specific application is described.

For each beat b, a KF operates in two steps: the predic-
tion step and the measurement update step. The former
provides a prior estimate by means of the a model of the
system and the posterior estimate obtained for beat b− 1.
The latter incorporates the measurements to obtain the
posterior estimate.

Our goal being to improve the initial RRI vector, let the
KF state vector at beat b represent an RRI estimate at
that beat. Also, as a KF works with Normal distributions
expressed by its mean and covariance, let xb = N(µb,Σb)
denote the prior estimate at beat b and xb = N(µb,Σb)
denote the posterior, being µb and Σb the mean and the
covariance respectively.

The filter is initialized by assuming that the first RRI in
the RRI vector is perfectly known. That is, x0 = RRI(0)
and Σ0 = 0. After the initialization, the prediction and the
measurement update steps are executed until the whole
RRI vector has been processed.

During the prediction step, we assume that the mean
RRI estimate obtained at beat b − 1 will not change
at beat b, but the covariance will increase to take into
account possible changes. That is, the prediction or process
equations are µb = µb−1 and Σb = Σb−1 + Q, where Q is
the covariance matrix of the process noise and represents
how much can the current RRI change with respect to the
previous one.

During the measurement update, both RRI(b) and GS(b)
will be used to obtain the posterior. In particular, the
measurement update equations are as follows:

Kb = ΣbH
′(Rb +HΣbH

′)−1 (4)

µb = µ̂b +Kb(zb −Hµb) (5)

Σb = (1−KbH)Σb (6)

where zb is the measurement vector, H is the observation
matrix and Rb is the measurement covariance.

Since our proposal is to use both the initial RRI and
the guidance as measurements, zb = [RRI(b), sb]

T where
sb comes from GS(b) = [sb, σb]

T . Accordingly, the ob-
servation matrix H is [1, 1]T . As for the measurement
covariance, our proposal is Rb = diag( 0.2Fs

2 , σ2
b ). That is,

we use the same error estimate used during the prediction
for RRI and the computed σb for the guidance signal.

By iterating through the prediction and the measurement
update steps, the processed RRI or RRIP is obtained so
that RRIP (b) = xb.

Figure 4-a exemplifies the obtained results. As it can be
observed, RRIP smoothly follows the original RRI except
for the intervals of extreme noise, where other values
are proposed. Also, the obtained Σb seems to provide an
approppriate 2σ bound, as most of the RRI corresponding
to noise free regions lie within these boundaries.
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Fig. 4. (a) RRI estimation. (b) Outlier detection.

Under the Gaussian assumption performed by the KF,
RRI(b) is expected to be within the interval [µb −
2
√

Σb, µb + 2
√

Σb] in the 95% of the cases. Thus, an RRI

below µb − 2
√

Σb is likely to be too short and an RRI

larger than µb +2
√

Σb is probably too large. Our proposal
makes it possible to detect some beats requiring further
inspection. This outlier detection could be used to help
cardiologists to detect heart problems or to improve the
detection rate of an existing QRS detector.

Figure 4-b shows an example of detected outliers. In this
case, the system properly detected beats that are too
short or too large with respect to their neighborhood.
Thus, using the outlier detection to help cardiologists in
detecting abnormalities also seems reasonable.

5. RESULTS AND DISCUSSION

Two groups of experiments have been performed in order
to test the validity of our proposal. The first group is a
stress test. In this case, a wide range of real ECG databases
has been used and different amounts of controlled noise
have been added in order to measure the quality of our
proposal as a function of the existing noise. The second
group evaluates our approach by means of a standard
ECG noise stress test database. In all cases, the initial
RRI is computed from the R-peaks provided by the QRS
detector described by Burguera (2019), whose source code
is publicly available at https://github.com/aburguera/
QRS_DETECT.

5.1 Stress test

To evaluate the quality of our proposal in front of known
amounts of noise, 8 different ECG databases (Goldberger
et al., 2000) have been used. Each database is composed
of different records and channels, leading to a total of 1674
different ECG involving a wide range of heart behaviours,
sampling frequencies, leads, ECG lengths and initial noise
conditions. Moreover, since these databases have been
properly tagged by expert cardiologists, the ground truth
is available.

The amount of added noise is controlled by two parame-
ters: the number of intervals (NI) and the interval length
(IL). The number of intervals defines with how many dis-
joint intervals of extreme noise is the ECG corrupted. The
interval length states the duration of the noisy intervals as
a percentage of the ECG length. Three different NI (one,
three and five) and two different IL (5% and 10%) have
been tested. Accordingly, the best possible configuration
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Table 1. Mean error of the initial (eI) and
the processed (eP ) RRI, standard deviation of
the initial (σI) and the processed (σP ) RRI
and percentage of processed error with respect
to the initial one (%e). Gray cells denote

situations in which eP is below eI .

NI 1 3 5

DB IL 5% 10% 5% 10% 5% 10%

AFTDB
eI/eP 17.1/18.5 18.5/19.2 21.9/19.8 26.5/22.1 26.8/21.5 34.6/25.8
σI/σP 17.1/13.6 16.6/13.3 16.1/13.2 14.7/12.5 15.4/12.8 13.4/12.0
%e 108.7% 103.3% 90.6% 83.1% 80.2% 74.6%

Fantasia
eI/eP 3.1/3.7 5.7/6.0 8.4/6.4 16.3/13.2 13.7/9.2 27.0/20.5
σI/σP 1.0/2.5 1.1/3.3 1.3/4.3 2.1/7.1 1.8/6.5 3.4/11.1
%e 120.4% 105.1% 76.7% 81.0% 67.0% 76.0%

INCARTDB
eI/eP 7.4/10.3 9.4/11.2 11.6/11.4 17.9/14.1 15.9/12.5 26.3/17.3
σI/σP 8.7/10.1 8.3/10.1 7.9/10.3 6.9/10.8 7.2/10.6 5.8/12.1
%e 140.1% 118.5% 98.2% 78.9% 79.0% 65.9%

QTDB
eI/eP 11.3/11.8 13.6/12.4 16.0/12.4 23.1/14.4 20.8/13.2 32.4/16.6
σI/σP 33.4/33.7 33.5/33.8 33.6/33.8 34.1/34.3 33.9/34.0 34.6/35.4
%e 104.5% 91.0% 77.6% 62.2% 63.4% 51.3%

SVDB
eI/eP 9.7/11.8 11.4/12.8 13.2/13.0 18.5/16.1 16.8/14.2 25.6/19.6
σI/σP 10.6/11.5 10.4/11.3 10.1/11.4 9.4/11.1 9.6/11.5 8.6/11.2
%e 122.4% 112.4% 98.0% 87.2% 84.4% 76.4%

EDB
eI/eP 21.2/21.0 23.4/22.5 25.5/22.4 32.1/26.8 29.9/23.8 40.9/31.2
σI/σP 47.2/47.0 47.3/47.3 47.5/47.4 48.1/48.3 47.9/47.7 48.8/49.5
%e 99.1% 96.1% 87.7% 83.3% 79.4% 76.2%

MITDB
eI/eP 10.5/12.3 12.5/13.1 14.6/13.2 20.7/15.4 18.7/14.2 28.8/17.9
σI/σP 8.5/9.8 8.2/10.0 7.8/10.2 7.0/11.2 7.3/10.7 6.2/13.0
%e 117.0% 104.2% 90.4% 74.8% 75.9% 62.2%

STDB
eI/eP 4.4/2.9 6.5/3.3 9.0/3.4 16.0/4.9 13.7/3.8 24.9/6.1
σI/σP 4.7/3.0 4.6/3.3 4.6/3.8 4.5/4.9 4.2/4.1 4.1/5.8
%e 65.4% 50.1% 37.7% 30.4% 27.5% 24.6%

Global
eI/eP 11.2/12.7 13.2/13.6 15.6/13.8 21.6/16.5 20.0/15.0 30.0/19.8
σI/σP 21.1/20.8 20.9/20.9 20.9/20.9 20.7/21.3 20.9/21.1 20.6/22.2
%e 112.9% 102.7% 88.4% 76.6% 75.1% 66.2%

is 1 interval of a 5% of the ECG length and the worst
scenario corresponds to five intervals of a 10% of duration,
meaning that half of the ECG is extremely corrupted.

The synthetic noise used for each corrupted interval is
additive with two components. First, a simulated baseline
drift involving changes in amplitude up to the maximum
amplitude difference within the clean ECG interval. Sec-
ond, a high frequency noise corrupting each sample with
random Gaussian values extracted with zero mean and a
standard deviation which is also the maximum amplitude
difference within the clean ECG interval. The corrupted
ECG has been processed by a QRS detector and the
initial RRI has been computed from its output. Then, our
proposal has been executed and RRIP has been evaluated.

This process has been repeated 100 times per combination
of parameters in order to obtain statistically significant
results. For each of the 100 trials, the disjoint intervals of
noise have been randomly placed over the ECG according
to a uniform distribution. As for the error of the processed
RRI, it is computed as follows:

eP =

NB−1∑
b=0

|RRIP (b)−RRIGT (b)|

NB
(7)

where RRIGT denotes the ground truth RRI, which is the
correct RRI. In other words, the eP measures the mean
error in amplitude of RRIP per heart beat. The error eI ,
which measures the mean error in amplitude of the initial
RRI has also been computed analogously.

Table 1 summarizes the mean and the standard deviation
of the errors corresponding to the initial and the processed
RRI as a function of the number of intervals and the
interval length. The improvement due to our proposal
increases with the amount of noise. That is, the worse is the
ECG the larger is the improvement of RRIP with respect
to RRII . Also, in most cases the standard deviation
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Fig. 5. (a) Global percentages of error after processing
the RRI with respect to the error before processing it
depending on the number and length of the extreme
noise intervals. Percentages below 100% corresponds
to improvements. (b) Mean execution times depend-
ing on the number and length of the extreme noise
intervals.
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Fig. 6. Summary of the errors before (eini) and after (eproc)
the RRI processing for the MIT-BIH Noise Stress Test
Database (a) record 118 and (b) record 119.

of the error after executing our proposal is similar to
the standard deviation before executing it. This suggests
that our approach is barely influenced by the specific
distribution of the noise over the ECG. Unfortunately, for
low amounts of noise the resulting RRIP is slightly worse
than the original one. However, results also show that our
proposal is able to reduce the initial error to less than
one fourth in the best case and to an overall 66.2% in the
worst scenario. These results, are summarized in Figure
5-a, where it can be observed that the quality of RRIP is
better than the original RRI from three intervals onward.

In order to evaluate the efficiency of the presented ap-
proach, the execution time was measured on an i7 CPU
at 3.1GHz using a single CPU kernel and a Matlab imple-
mentation. The results, summarized in Figure 5-b, show
that even though the execution time increases with the
amount of noise, the absolute difference between the best
and the worst case barely surpasses 45 ms, being the mean
ECG duration of 45 minutes. In particular, our proposal
spent an average of 4.3 ms to process one minute of ECG
in the best case and 5.4 ms in the worst case.

5.2 Standard database

The MIT-BIH Noise Stress Test Database (nstdb) (Moody
et al., 1984; Goldberger et al., 2000) has also been used to
evaluate the presented approach. This database was con-
structed from two clean half hour ECGs, named record 118
and record 119 composed of two channels each and made
using standard recorders. Then, six different amounts of
actual noise, typical of ambulatory ECGs, was added to
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Table 2. Errors before (eI) and after (eP ) the
RRI processing for each record in the MIT-
BIH Noise Stress Test Database. The shown
values consider the two existing channels of
each record and noise combination. Gray cells

denote situations in which eP is below eI

Record SNR eIeIeI ePePeP 100 · eP
eI

100 · eP
eI

100 · eP
eI

118

24 dB 1.930 3.156 163.478%
18 dB 2.038 3.180 156.028%
12 dB 3.784 3.238 85.567%
6 dB 13.506 3.726 27.590%
0 dB 21.271 4.081 19.187%
-6 dB 21.352 4.393 20.574%
GLOBAL 11.012 3.649 33.135%

119

24 dB 5.979 14.182 237.201%
18 dB 6.068 14.166 233.444%
12 dB 8.044 14.284 177.577%
6 dB 18.298 16.727 91.417%
0 dB 26.919 17.370 64.527%
-6 dB 27.431 15.556 56.708%
GLOBAL 16.089 15.456 96.065%

GLOBAL 13.407 9.220 68.770%

each channel of each clean record, leading to 24 different
datasets. The noise added contained baseline wander as
well as muscular and electrode motion artifacts. The spe-
cific signal to noise ratios (SNR) during the noisy segments
of the records are 24 dB (low noise), 18 dB, 12 dB, 6 dB, 0
dB and -6 dB (high noise). This noise was not added by us,
but it is part of the database, whose purpose is, precisely,
to test ECG processors in front of noisy intervals. As an
example, the ECG shown in Figure 2-a belongs to this
database.

Table 2, which summarizes the results, shows an error re-
duction trend similar to the one obtained during the stress
test: The improvement or RRIP with respect to RRII
increases with the amount of noise, our proposal leading
to estimates worse than the initial ones only in presence
of reduced amounts of noise. Figures 6-a and 6-b sum-
marize these results in terms of beats per minute (bpm).
Even with record 119, in which our approach exhibits less
performance than with record 118, the final error remains
almost constant independently of the amount of noise.

As for time consumption, our approach took a mean of
0.25 seconds per dataset with a standard deviation of 0.03
seconds, which implies a mean processing time of 0.11 ms
per heart beat.

6. CONCLUSION

A method to improve the RRI estimates obtained from
an ECG involving intervals of extreme noise has been
presented. The proposal has been evaluated by two groups
of experiments involving a wide range of ECG and noise
conditions. The results show that the presented approach
significantly improves the RRI estimates in presence of
large amounts of noise. This being the kind of data
that can be expected from portable ECG recorders, our
approach is suitable to improve the RRI estimates using
wearable technology.

Time consumption has shown to be very small. In par-
ticular, a Matlab implementation running on a standard
laptop computer processed in average one minute of ECG
in less than 6 ms. Portable devices with reduced computa-
tional capabilities could benefit from this execution speed.

As a side effect, our proposal is able to identify outliers,
classifying them as short or long RRI. Accordingly, an
interesting line of further research is to use these outliers
both to improve the underlying QRS detection and to help
cardiologists to find abnormal regions within an ECG.
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