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Abstract: This work suggests flatness-based Active Disturbance Rejection Control (ADRC)
to deal with the problem of trajectory tracking for Wheeled Mobile Robot (WMR). Based on
the differential flatness theory, the nonlinear WMR system is transformed into two integral-
chains, which makes the creation of a state feedback controller easier. In order to improve
the WMR tracking, slip and external environmental disturbance must be considered in the
controller design. Therefore, an Extended State Observer (ESO) is created to estimate the
obtained linearized system state and the extended state known as lumped uncertainties. The
latter represent the total effects of slip and the external environmental disturbances to WMR.
After that, according to the ESO results, a complementary element is added to the state feedback
controller to compensate the effects of lumped disturbances. Simulation results are introduced
to demonstrate the advantages of combining ADRC with flatness control.

Keywords: Wheeled mobile robot, robust tracking, extended state observer, active disturbance
rejection control, differential flatness.

1. INTRODUCTION

A Wheeled Mobile Robot (WMR) is a classic kind of
nonholonomic systems, which is extensively used in many
applications, such as national defense, industrial produc-
tion, home robotics and other areas. Moreover, trajectory
tracking control is the key to develop autonomous motion
for the WMR. Although the WMR is a nonlinear system
with multivariate and strong coupling, it is hard to obtain
good tracking control performance. In the last decade, the
differential flatness theory presented by (Fliess, 1995)
has proven to be a good tool to improve the trajec-
tory planning and to create tracking controllers for linear
and nonlinear systems. With flatness property, the state
and input variables of the system can be expressed as a
function of the flat outputs and their derivatives. Then
the integration of differential equations is not needed. In
addition, the flatness has specific advantages when used
in nonlinear control systems. Indeed, by permitting an
accurate linearization of the system’s dynamical model, it
can be possible to avoid using linear models with limited
validity in the controller design. This characteristic makes
flatness a good tool for solving various problems in many
areas such as robotics (Abadi, 2019; Markus, 2017) and
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electric domains (Garćıa, 2019) because the mathematical
models of these systems are strongly nonlinear. Usually,
the control method applied to a WMR enables obtain-
ing asymptotic tracking of the desired trajectory without
considering the existence of slips and disturbances in the
model, which is not true in practical applications. Thus,
a control law that compensates all perturbation effects is
needed to improve the WMR tracking performance. This
new control requires the measurement of the system state
and the lumped disturbance effect. In practice, direct mea-
surements of disturbances is not available, an estimation
algorithm is needed to estimate the lumped disturbance
effect. Recently, the Active Disturbance Rejection Con-
trol (ADRC), developed by (Han, 2009), appeared as a
good solution to deal with nonlinear systems containing
uncertainties and external disturbances together. The Ex-
tended State Observer (ESO) is an important element of
ADRC, which estimates not only system states but also an
extended state known as the lumped disturbance. Thus,
the internal disturbances caused by un-modeled dynamics
and the parameter uncertainties are lumped together as
an extended state, which can be estimated by the ESO
and eliminated in the control inputs. This observer does
not depend on the mathematical model of disturbances.
The prominent feature of the ADRC approach is that it
requires only a little knowledge of the controlled process.
The ESO advantages have been used to develop different
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robust tracking controllers, which can be applied strongly
in many applications such as nonlinear adaptive control of
hypersonic vehicle system (Pu, 2015), sliding mode control
of electric multiple units (LIU, 2017) and feedback lin-
earization of a rotor-active magnetic-bearing model (Ren,
2019).

In this paper, the contribution consists in the combination
of the ADRC strategies and the simplicity introduced
by the flatness control concept to design a robust track-
ing controller for the WMR in the presence of unmea-
surable states, slips and external environmental distur-
bances. First, it is proven that flatness control permits
transforming the nonlinear WMR system into a linearized
system known as the canonical Brunovsky Form. Hence,
for the obtained linearized model, a feedback controller
that enables accurate tracking is created. However, since
measurements are available just for some elements of the
transformed state vector and because the WMR system
can be affected by slips and external environmental dis-
turbances, an ESO is suggested to estimate every state
of the extended system for each channel of the linearized
system and the total uncertainties affecting it. Finally,
robust feedback control considering the ESO outputs can
be designed to compensate the effect of the lumped per-
turbation on the WMR.

The structure of the paper is as follows: In section II,
we present the robot mobile model. In section III, we
define the non-linear feedback control using the differen-
tial flatness property for the WMR without considering
uncertainties. Section IV is devoted to the robust tracking
controller design based on flatness and the ADRC, and
section V deals with the simulation results.

2. WHEELED MOBILE ROBOT MODEL

The considered system in our application is a WMR. It
is equipped with two independently driven wheels (right
and left) and a front wheel to ensure the equilibrium of
the robot movement. The generalized configuration of the
driven mobile robot is given by q = [x, y, θ], where x
and y are the center position coordinates of the mobile
robot in the fixed frame (O,X, Y ), and θ represents the
robot orientation angle with respect to the X axis. The
kinematic model of the robot mobile without any slip is
defined as follows:

ẋ = cos(θ)v
ẏ = sin(θ)v

θ̇ = w
(1)

where v and w are the transnational and rotational veloc-
ity of the robot, respectively. These latter can be written
as a function of right and left angular speeds of the wheels
(wr and wl) as follows:

v = (
wr + wl

2
)r (2)

w = (
wr − wl

2b
)r (3)

where r is the radius of the wheel, and 2b is the distance
between the wheels. According to the non-slip condition,
the non-holonomic constraint is defined as follows:

ẋsinθ − ẏcosθ = 0 (4)

3. NON LINEAR FEEDBACK CONTROL USING
DIFFERENTIAL FLATNESS

3.1 Differential flatness theory

Let us consider the following nonlinear system:

ẋ = f(x, u) (5)

where x and u represent the state and the input vectors.
The nonlinear system (5) is differentially flat if there exists
an output α in the following form:

α = Ξ1(x, u, u̇, ...., u(r)) (6)

such that the state and the input can be expressed as
follows:

x = Ξ2(α, α̇, α̈...., α(β)) (7)

u = Ξ3(α, α̇, α̈..., α(β+1)) (8)

where β and r are finite multi-indices, and Ξ1, Ξ2 and Ξ3

are smooth vector functions of the output vector α and its
derivatives.

3.2 Differential flatness of wheeled mobile robots

The kinematic model of the WMR is known as a dif-
ferentially flat system, with flat outputs defined as the
Cartesian coordinates of the robot center:

α = [α11, α21]T = [x, y]T (9)

All the states and control of the WMR system can be
calculated from the flat output α and their derivatives as
follows:

θ = arctan
α̇21

α̇11
(10)

v =
√
α̇2
11 + α̇2

21 (11)

w =
α̇11α̈21 − α̈11α̇21

α̇2
11 + α̇2

21

(12)

3.3 Flatness-based tracking control

The flatness property permits us to calculate a feedback
linearization, which transforms the nonlinear system into a
controllable linear system where the flat outputs depict the
state vector. The relationship between the control input
vector, w and v, and the flat output’s highest derivatives is
not invertible. This problem obviously exposes an obstacle
to realize static feedback linearization. To overcome this
fact, the control input v is considered as an additional
state for the kinematics model (1). Consequently, the new
system is defined as follows:

ẋ = cos(θ)v
ẏ = sin(θ)v
v̇ = u1
θ̇ = u2

(13)

where the state system of the mobile robot is X =
[x, y, v, θ]T and the new control input is defined by u1 = v̇
and u2 = w. To obtain the invertible relation between the
inputs u1 and u2 and the higher derivatives of the flat
outputs α11 = x and α21 = y, we differentiate the flat
outputs until an input appears as follows:[

α̈11

α̈21

]
= Br

[
u1
u2

]
(14)
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where Br is the decoupling matrix defined as follows:

Br =

[
cos(θ) −vsin(θ)
sin(θ) vcos(θ)

]
(15)

Matrix Br is not singular if v 6= 0. Under this assumption,
the control can be defined as follows:[

u1
u2

]
= B−1r

[
α̈11

α̈21

]
(16)

When substituting the control input defined by equations
(16) in equation (14), we obtain the state-space Burnovsky
form (BF) as follows:

(BF1)


α̇11 = α12

α̇12 = v1
Y1 = α11 = x

(BF2)


α̇21 = α22

α̇22 = v2
Y2 = α21 = y

(17)

where v1 and v2 are an appropriate feedback controller
defined as follows:

v1 = α̈xd + λx2(α̇xd − α12) + λx1(αxd − α11) (18)

v2 = α̈yd + λy2(α̇yd − α22) + λy1(αyd − α21) (19)

where αxd and αyd represent the reference trajectories for
the flat outputs α11 and α21, and λx1, λx2, λy1 and λy2
are the controller gains. The characteristic polynomials of
the BF (17) are defined as follows:

s2 + λx2s+ λx1 = s2 + 2ξxγxcs+ γ2xc (20)

s2 + λy2s+ λy1 = s2 + 2ξyγycs+ γ2yc (21)

where parameters ξx and ξy are the damping coefficient,
and γxc and γyc are the bandwidths of the controller.
Based on equations (20) and (21), the controller gain can
be calculated as follows:

λx1 = γ2xc, λx2 = 2ξxγxc, λy1 = γ2yc, λy2 = 2ξyγyc (22)

Plugging the feedback law given by equations (18-19) in
the flatness-based open loop control (16), we obtain the
Flatness-Based Tracking Control (FBTC) applied to the
WMR as follows:[

uF1

uF2

]
= B−1r

[
α̈xd + λx2ėrx1 + λx1erx1
α̈yd + λy2ėry1 + λy1ery1

]
(23)

where erx1 = αxd − α11 and ery1 = αyd − α21.

4. ROBUST CONTROLLER VIA FLATNESS AND
ADRC

4.1 Uncertain kinematic model

We consider that the WMR is subject to slips and external
environmental disturbance. In this case, the uncertain
kinematic model will be defined as follows:

ẋ = cos(θ)v + vtcos(θ) + vssin(θ) + ∆x

ẏ = sin(θ)v + vtsin(θ)− vscos(θ) + ∆y

θ̇ = w + ws

(24)

where ∆x and ∆y represent the external environmental
disturbances, vt and vs represent the slip velocities in the
forward direction and normal to the forward direction,
respectively, and ws represents the angular slip velocity
component. Based on (Ryu, 2011), we assume that the
slip components are defined as follows:

vt(t) = vs(t) = ws(t) = µ1v(t) (25)

where µ1 is a positive constant. We assume that the
component velocity and the external disturbance and their
derivatives are bounded as follows:

||vt|| ≤ µ1||v||, ||vs|| ≤ µ2||v||, ||ws|| ≤ µ3 (26)

||v̇t|| ≤ µ4, ||v̇s|| ≤ µ5, ||ẇs|| ≤ µ6 (27)

∆1 ≤ ∆x ≤ ∆1, ∆2 ≤ ∆y ≤ ∆2, (28)

∆3 ≤ ∆̇x ≤ ∆3, ∆4 ≤ ∆̇y ≤ ∆4 (29)

where µi, ∆i and ∆i i = 1, .., 4 are known values.
When considering the uncertain kinematic model (24) and
differentiating α11 and α21 until the input terms u1 and
u2 appear, we can write the following relationship:[

α̈11

α̈21

]
= Br

[
u1
u2

]
+ Cr +Dr

[
u1
u2

]
(30)

where Cr and Dr are two matrices defined as follows:

Cr =

(
(vsws + v̇t) cos θ − (vlws + vtws − v̇s) sin θ + ∆̇x

(vsws + v̇t) sin θ + (vlws + vtws − v̇s) cos θ + ∆̇y

)
(31)

Dr =

(
0 − vt sin θ + vs cos θ
0 vt cos θ + vs sin θ

)
(32)

When applying the control input defined by equation (23)
in system (30), we obtain two linear integrator plants with
uncertainties as follows:

MBF1


α̇11 = α12

α̇12 = v1 + τ1
Y1 = α11

MBF2


α̇21 = α22

α̇22 = v2 + τ2
Y2 = α21

(33)

with
τ = [τ1, τ2]T = DrB

−1
r vro + Cr (34)

and where vro = [v1, v2]T , and τ1 and τ2 are two bounded
additive functions that collect slips and external environ-
mental disturbances acting on the system. Let ρ1 and ρ2
indicate the differential of τ1 and τ2 about time t. Both
τi and ρi i = 1, 2 are assumed to be bounded. In a
real application, calculating the expression of the lumped
disturbances τ1 and τ2 represents a big challenge. As a
result, an observer to estimate them is necessary.

4.2 ESO design

An ESO is an observer that can estimate the uncertainties
together with the states of the system permitting dis-
turbance rejection or compensation. The ESO considers
all the elements affecting the system and integrating the
parameter uncertainties, the nonlinear dynamics and the
external disturbances as a lumped disturbance to be ob-
served. Since the observer estimates the uncertainties as an
extended state, it is called the ESO. Its advantage consists
in the independence of the system’s mathematical model,
the good performance, and the simplicity of implantation.
Consider α13 = τ1 , α23 = τ2 as an extended state for
systems (33). These latter takes the following form:

α̇11 = α12

α̇12 = α13 + v1
α̇13 = ρ1
Y1 = α11


α̇21 = α22

α̇22 = α23 + v2
α̇23 = ρ2
Y1 = α21

(35)

Systems (35) can be written in a matrix form as follows:{
α̇1 = Axα1 +Bxv1 + Exρ1
Y1 = Cxα1

{
α̇2 = Ayα2 +Byv2 + Eyρ2
Y2 = Cyα2

(36)
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with α1 = [α11, α12, α13]T , α2 = [α21, α22, α23]T ,

Ax = Ay =

[
0 1 0
0 0 1
0 0 0

]
, Bx = By =

[
0
1
0

]
,

Cx = Cy = [1 0 0] , Ex = Ey = [0 0 1]
T

The ESO of each extended system (36-37) can be written
as follows:

˙̂α1 = Axα̂1 +Bxvx + LgxCx(α1 − α̂1) (37)

˙̂α2 = Ayα̂2 +Byvy + LgyCy(α2 − α̂2) (38)

with Lgx = [l11, l12, l13]T , Lgy = [l21, l22, l23]T .
The observer gains lij (i = 1, 2, 3), (j = 1, 2, 3) can be
chosen according to (Gao, 2003) as follows:

s3 + l11s
2 + l12s+ l13 = (s+ Γxo)

3 (39)

s3 + l21s
2 + l22s+ l23 = (s+ Γyo)

3 (40)

where Γxo and Γyo are the bandwidth of ESOs (38-
39), which can be selected so that equations (40-41)
are Hurwitz polynomial regarding the complex variable.
Indeed, according to equations (40-41), the observer gain
can be written as a function of the bandwidth of the ESO
as follows:

l11 = 3Γxo, l12 = 3Γ2
xo, l13 = Γ3

xo

l21 = 3Γyo, l22 = 3Γ2
yo, l23 = Γ3

yo.
(41)

According to equations (36-37) and (38-39), the observer
error of each ESO is defined as follows:

˙̂ex = α̇1 − ˙̂α1 = (Ax − LgxCx)êx + Exρ1 (42)

˙̂ey = α̇2 − ˙̂α2 = (Ay − LgyCy)êy + Eyρ2 (43)

Equations (43-44) can be represented in a matrix form as
follows:

˙̂e = Ĥê+ Ed (44)

with ê = [êx, ˙̂ex, ¨̂ex, êy, ˙̂ey, ¨̂ey] , Ed = [0 0 ρ1 0 0 ρ2],

Ĥ =

[
Ĥ1 033
033 Ĥ2

]
, Ĥ1 =

[−l11 1 0
−l12 0 1
−l13 0 0

]
, Ĥ2 =

[−l21 1 0
−l22 0 1
−l23 0 0

]
Since bandwidths Γxo and Γyo are nonnegative, the roots

of the matrix of Ĥ in equation (45) are all in the left
half plane. Hence, all the estimated error dynamics defined
by equations (45) are stable provided Lemma 1 (Zhang,
2015).

4.3 Robust control

Except for α11 and α21, the states used in the feedback
controller given by equations (18-19) cannot be accurately
measured. Thus, they are replaced by their estimations
given by the two ESOs defined in equations (38-39). In
addition, the lumped disturbances τ1 and τ2 are replaced
by their estimations α̂13 and α̂23 in order to facilitate their
compensation. Therefore, a robust feedback controller can
be designed based on the results of ESOs as follows:

vr1 = α̈xd + λx2(α̇xd− α̂12) + λx1(αxd− α̂11)− α̂13 (45)

vr2 = α̈yd + λy2(α̇yd − α̂22) + λy1(αyd − α̂21)− α̂23 (46)

Based on the robust feedback controller given in equations
(46-47), the Flatness-Based-Active-Disturbance-Rejection
Control (FBADRC) can be proposed as follows:[

ur1
ur2

]
= B−1r

[
α̈xd + λx2 ˙̂erx1 + λx1êrx1 − α̂13

α̈yd + λy2 ˙̂ery1 + λy1êry1 − α̂23

]
(47)

with êr1 = αxd − α̂11 and êr2 = αyd − α̂21.

4.4 Stability of closed loop

The stability analysis of the closed-loop control system
with the ESO will be discussed in this part. The state
tracking error vector of position x is defined as follows:

erx = αd1 −X1 (48)

Note that αd1 = [αxd, α̇xd]
T and X = [α11, α12]T . It is

evident that the following equation holds:

α̇d1 = A1αd1 +B1α̈xd (49)

where A1 =

[
0 1
0 0

]
, B1 =

[
0
1

]
When using the new robsut feedback, system (MBF1) can
be written in a matrix form as follows:

Ẋ1 = A1X1 +B1(vr1 + τ1) (50)

Using the following relation :
êr1 = αxd − α̂11 = αxd − α11 + α11 − α̂11 (51)

feedback controller given in equation (46) can be written
as follows:

vr1 = λx(erx + êx) + α̈dx − τ̂1 (52)

with λx = [λx1, λx2]. Using equations (50), (51) and (53),
the state tracking error dynamics can be expressed as:

ėrx = (A1 −B1λx)(erx)−B1λxêx −B1êx (53)

Combining equations (43) and (54), we obtain:[
ėrx
˙̂ex

]
=

[
A1 −B1λx −[B1λx B1]

0 Ax − LgxCx

] [
erx
êx

]
+

[
0
Ex

]
ρ1 (54)

The stability of system x can be verified by checking the
eigenvalues of the error dynamics (55), which are given
by the eigenvalues of A1 − B1λx and Ax − LgxCx. Since
couple (A1, B1) is controllable and couple (Ax, Cx) is
observable, the stability of the error dynamics of position
x is ensured by appropriately selecting the controller and
observer poles. Based on the observer error dynamics of
ESOs (39) and the robust feedback controllers (47), the
error dynamics of the closed-loop of y can be defined by
the following system matrix:[

ėry
˙̂ey

]
=

[
A2 −B2λy −[B2λy B2]

0 Ay − LgyCy

] [
ery
êy

]
+

[
0
Ey

]
ρ2

(55)

where A1 = A2,B1 = B2, λy = [λy1, λy2]
Similar to position x, the same results about the stability
of the closed-loop system y can be concluded.

5. SIMULATION AND RESULTS

Simulation is carried out to check the performance of the
ESO in the estimation of uncertainties and to prove the
tracking performance of FBADRC. The parameters of the
considered WMR are given by: r = 0.1 m, b = 0.15 m. It is
desired to generate the trajectory which enables the robot
to move from an initial state q(0) = [0, 0, 45]T to a final
one q(10) = [3.5, 5,−90]T in a room full of obstacles. The
obtained trajectory should be minimal in energy, able to
avoid static obstacles and respect some state constraints
defined as follows:

0 m ≤ σxd ≤ 4 m, 0 m ≤ σyd ≤ 6 m (56)

The desired reference trajectory can be obtained by solving
a constrained optimization problem. To resolve this latter,
we use the optimal trajectory generation method (Abadi,
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2017) based on flatness, the collocation method and the
B-spline function. The controller design parameters are
chosen as ξx = ξy = 1 and γxc = γyc = 2 rad/s. According
to (Gao, 2003), the observer bandwidth must be chosen
at least three times higher than the controller bandwidth
to guarantee that the observer dynamics are still faster
than those of the system. Then the observer bandwidths
are chosen as Γxo = Γyo = 6 rad/s. We consider in the
simulation two other controllers for comparison as follows:
- FBTC defined by equation (23).
-Flatness Sliding Mode Control FSMC defined by equation
(60).
The sliding mode control enhances the tracking perfor-
mance by sliding surfaces. As it is still applicable for the
WMR (Mu, 2017) with good robustness, then SMC is
utilized for comparison. For more details about the princi-
ple of FSMC, the reader can refer to (Abadi, 2018). The
design of the sliding mode control needs two steps: The
choice of the sliding surface and the design of the control
law. In tracking example, the sliding variable σ = [σx, σy]T

is taken as the tracking error. Therefore, the sliding surface
for the WMR can be chosen as follows:

σx = ėrx1 + β1erx1 (57)

σy = ėrx2 + β2erx2 (58)

where gains β1 and β2, can be determined by using pole-
placement techniques.
The FSMC applied for WMR is defined as follows:[

us1
us2

]
= B−1r

[
α̈xd + β1ėrx1 + k1sign(σx)
α̈yd + β2ėrx2 + k2sign(σy)

]
(59)

where the controller gain of FSMC used in simulation
as chosen as: β1 = β2 = 5, k1 = k2 = 10. Indeed,
FSMC is discontinuous control due to the existence of
function sign(σ), which provokes the chattering of the
control inputs. Thereby, to reduce this problem, function
sign(σ) can be replaced by σ

‖ σ‖+γs , where γs is a tuning

parameter utilized to reduce the chattering effect.
In order to show the robustness of the proposed control,
FBTC, FSMC and FBADRC are applied to the uncertain
WMR system under the same conditions. As a conse-
quence, first, we consider that the WMR starts from an
uncertain initial condition x̂(0) = 1 and ŷ(0) = 1. Second,
we select µi = 0.5 i = 1, 2, 3, 4; i.e, the slip velocities vt
and vs can be up to 50% of the forward speed. Finally,
we assume that the WMR is subjected to an external
disturbance wind defined according to (Fethalla, 2018)
as follows:

∆x = ∆y = 1.5 + 2.5sin(4t) (60)

Fig. 2 depicts the tracking results under the application
of FBTC, FSMC and FBADRC to the uncertain WMR
systems. Fig. 3 illustrates the estimates of the lumped
disturbances by the ESO. From Fig. 2, it can be observed
that when the slips and external environmental distur-
bances are integrated into the WMR system, FBTC is a
poor controller for the WMR because the latter diverges
strongly from the reference trajectory, whereas FSMC and
FBADRC are robust enough against the lumped distur-
bances affecting the WMR model. As a result, the con-
trollers that are not based on an uncertain model, even if
they are feedback controllers, may not work correctly.
The main difference between both FSMC and FBADRC
controllers is that FBADRC integrates the performance of
the ESO, which is based on the estimation result of the

lumped disturbances depicted in Fig. 3. These latter are
compensated with relatively low gains, while FSMC uti-
lizes just tuned gains that should be relatively important
to carry out the disturbance rejection. Generally, the sug-
gested ESO-based design offers some distinct advantages,
because it does not need to know all the states and lumped
disturbances since the ESO estimates the states as well
as uncertainties in an integrated manner. This makes the
tracking controller for the WMR based on flatness and the
ESO computationally efficient compared to many other
formulations presented in the literature

6. CONCLUSION

We have studied in this paper the problem of tracking
trajectories for a WMR system subject to slips and dis-
turbances. The differential flatness theory has been used
to transform the nonlinear WMR system into an equiva-
lent linearized form that depends on the flat output and
its derivatives. To improve the robustness of the control
scheme against slip and disturbances, an ESO has been
designed to estimate the state vector of the linearized
system as well as the lumped disturbances in an integrated
manner. Therefore, by identifying the perturbation vari-
ables, their compensation is possible with the inclusion of
an additional term in the control input. The simulation
results have demonstrated the robustness of the proposed
FBARDC method compared to other tracking controllers.
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Fig. 1. Tracking simulation results of WMR subject to slips and external environmental disturbances
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