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Abstract: Enhancing the power performance of wave energy converters is undoubtedly a step
required to reduce the cost of energy from this source of renewable energy, thereby making
it competitive to other sources of renewable energy. Increasing the power absorption can be
achieved by utilizing smart and advanced control algorithms. There are theories for a variety of
advanced control algorithms, but few have proved stable and reliable for real applications. An
often used, and robust method for practical applications, is to apply a simple gain scheduling
controller where the control gains are parameterized in function of the sea state, and not at
wave-by-wave level. This paper presents a wave-by-wave adaptive controller, which has proven
a robust method that can increase the power absorption performance. The use of the wave
by wave adaptive controller is achieved by the identification of the instantaneous fundamental
frequency in real time. One numerical procedure to achieve this frequency is using non-linear
Kalman filters. But the pitfall of these non-linear filters is their sensitivity to the parameter
tuning, which decreases practical usability, reliability and robustness. This paper focuses on
two complementary topics. The first topic will tackle the implementation of a reliable filter for
the identification of the instantaneous fundamental frequency using a particle filter. The second
topic will demonstrate the implementation of the wave-by-wave gain scheduling controller. The
case study is a scaled absorber of the Floating Power Plant wave and wind energy converter.
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1. INTRODUCTION

In the attempt to shift the energy production from fossil
fuels to more sustainable choices, a growing number of
renewable energy resources have been used or theorized.
While wind, solar, hydro, geothermal, and biomass are
established technologies, other sectors are not mature yet;
nevertheless, their development is fundamental to bal-
ancing the future energy mix. Within those untapped
resources, ocean waves retain a huge energy potential,
but ocean waves converters, better known as Wave En-
ergy Converters (WEC), are still not ready from a cost
perspective. Several machines have proven the feasibility
of the concepts, regardless of the rough environment, but
not the economical viability of the project.

Optimizing the generator load in order to increase the
energy conversion efficiency is the most straightforward
way to decrease the cost of energy associated with WECs.
A variety of control algorithms have been adapted to fit
the requirements from the wave energy sector, for example:

o fixed gain feedback controller (Kramer et al. (2011))

e predictive controller (Coe et al. (2016); Beatty et al.
(2017))

e other controller type (Davidson et al. (2017); Fusco
and Ringwood (2012); Nguyen and Tona (2017))

This work will only focus on the so called passive feed-
back controller. The rationale behind this choice is the

Copyright lies with the authors

following: ”When we try to have an impedance matching
controller, the reverse flow of energy from the grid to the
wave is often times equal or even larger than the absorbed
energy: the global result are slightly better or even worse
than a simple damping control”, (see Ferri et al. (2016)).

A passive feedback controller, with the proportional (Kp)
gain scheduled in function of the sea state, has been
extensively used due to its implementation simplicity. A
sea state is considered to be statistically constant over a
period of roughly 15-30 minutes; therefore, the controller
gains can be changed on the same time scale. But since
the optimal controller gains depend on the wave frequency
and since a sea state is composed of multiple frequencies,
it might be beneficial to adapt the gains for each frequency
component, (Fusco and Ringwood (2012); Nguyen and
Tona (2017)). A critical step in those approaches is the
identification of the instantaneous fundamental frequency
of the excitation load. The same problem is encountered in
several other fields, such as power transmission or music,
and typically the Hilbert transform is adopted. Neverthe-
less, since the Hilbert transform is a non-linear transfor-
mation, its real-time implementation can be problematic.

The majority of the studies, available in the literature,
that use a real-time Hilbert transform adopt different
non-linear extensions of the Kalman filter. The non-linear
version of the Kalman filter is powerful, but also retains
some limitation; the most critical limitation being the
parameter tuning. There is no univocal method to tune

12480



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Relative pitch

Main bearing [0 Wave absorber

: B Absorber

Fig. 1. FPP machine. Left Side: P80 full machine render-
ing. Top Right Side: working principle of the absorber.
Bottom Right Side: 1:30 scaled physical model of the
wave absober section of the P80.

the parameters of a non-linear Kalman filter, but the filter
stability depends on this step and, albeit being crucial,
often no or little remarks can be found on this topic. In
order to avoid this uncertain step, this work makes use of
a different filter type, namely the Particle filter (PF).

Once the instantaneous wave frequency has been identi-
fied, it is possible to adapt the controller gain(s) to the
actual condition, implementing a wave-by-wave adaptive
controller or gain scheduling controller (GSC), similar to
the one proposed in Fusco and Ringwood (2012) and
Nguyen and Tona (2017).

The results presented in this work are all based on exper-
imental data. Therefore the non-linear filter and the GSC
were implemented in real-time on a scaled WEC model.
Due to space constraint, it has not been possible to also
include the numerical results in this work.

The experimental device is a subsection of the Floating
Power Plant (FPP) machine, reported in Fig. 1. The FPP
is a combined wind-wave energy converter, but in this
campaign only one half of the wave converter portion
is used. The machine scaled is 1:30 and it consists of a
platform, an absorber, and a power take-off (PTO) system.
The absorber is hinged and can only move in a single
degree of freedom (pitch) relative to the platform. The
PTO is modeled using a linear electrical actuator, which
is controlled using real-time operating system similar to
the one presented in Ringwood et al. (2017).

In the reported tests the platform was held fixed so the
only active degree of freedom was the pitch of the absorber.
A numerical study considering the complete multidof
system with 6 dof motions of the platform and individual
pitching absorbers relative to the platorm, showed that
an ideal GSC has the potential to improve the power
absorption up to 45% in some sea states. However, as this
is yet to be proven in practical experimental tests focus in
the following is on the measurements on the single degree
of freedom device.

For further information, see Rippol and Thomas (2018).
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Fig. 2. GSC framework: "WEC” represents the actual
machine, ”State Observer” is the excitation load ob-
serve, ”Quadrature Filter” is the non-linear instan-
taneous frequency observer for the excitation load
and ” Adaptive Feedback Controller” is the adaptive

control estimator.

The experimental campaign was carried out at the Depart-
ment the Built Environment, Aalborg University (AAU).
The basin is equipped with long-stroke segmented pis-
ton wave-maker for accurate short-crested (3-dimensional)
random wave generation with active absorption. Further
information is given in Tetu et al. (2017).

To summarize, the main objectives of this article are as
follows:

e to verify the usability of a particle filter to replace a
non-linear Kalman filter in a physical model and

e to implement and compare the GSC with a sea state
static gain feedback controller in the same physical
model.

The methods are presented in Sec. 2 along with the de-
scription of the material used for the physical implementa-
tion, while the results and their discussion are summarized
in Sec. 3. Finally, the conclusions of the work are given in
Sec. 4.

2. METHODS

This section introduces the main methods used throughout
the study. For simplicity the main controller architecture
is shown in Fig. 2. The GSC architecture can be divided
in four building blocks:

State Observer is the stage where the load exciting the
system is estimated, see Sec 2.1

Quadrature Filter is the stage where the excitation
load frequency and amplitude are assessed, see Sec 2.2

Adaptive Feedback Controller is the block where the
control signal is estimated based on the actual state of
the system and based on the excitation load frequency
and amplitude, see Sec. 2.3.

2.1 Euxcitation Load Observer

In order to identify the frequency and amplitude of the
wave excitation load, it is necessary to obtain the ex-
citation load itself. Since it is not possible to directly
measure the excitation load, a soft-sensing technique based
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on linear Kalman filter is adopted, as introduced in several
studies, see Ferri et al. (2015) and Hals et al. (2011). The
Kalman filter is built around the linear numerical model of
the WEC; this can be obtained using experimental data or
numerical models. In the latter case, a linear diffraction-
radiation numerical model is commonly used. The state
space formulation of the WEC follows the form presented
in Yu and Falnes (1995). The system state is augmented
then with the excitation force state. For this application a
simple integrator for the excitation model was sufficient,
but other alternatives are possible, e.g. single or multi-
ple oscillators, auto regressive models, etc. The measured
velocity and displacement were used in the Kalman filter
update stage.

2.2 Quadrature Filter

Once the excitation load has been estimated, it is possible
to extract its baseband signal, which is the fundamental
harmonic of the signal. As mentioned in the introduction,
the Hilbert transform or quadrature filter will be used to
estimate the fundamental frequency of the signal. For a
narrow-banded signal (s(t)), its analytic signal (s (t)) is
defined as:

sT(t) = s(t) + jH]s(t)] (1)

where j is the complex operator and H|[| represents the
Hilbert operator. Using the polar representation of the
analytic signal, it is possible to extract the instantaneous
amplitude (a(t)) and frequency (w(t)).

st(t) = a(t)e?*® (2)
de

=2 3

o 3)

¢ is the phase of the analytical signal (s (¢)). The state

space representation of the Hilbert transform described in
Fusco and Ringwood (2010) will be used, which is:

w(t)

gk = A(x)xp_1 + vk (4)
(5)

where:

cos(xzz/fs) sin(xs/fs) O
—sin(x3/fs) cos(zs/fs) O (6)
0 0 1

Here, fs represents the sample frequency in Hz, k is the
discrete time index, v is the vector of random disturbances
and zx = [¢, 0", w] is the state vector. w is the instan-
taneous fundamental frequency and the excitation load

amplitude |M,,| is defined as v/¢2 + ¢*>.

Unscented Kalman Filter  This section provides a short
description of the unscented Kalman filter (UKF), but the
reader can find further details in Lefebvre et al. (2004).
Contrary to the extended Kalman filter, where the process
and measurement functions are linearized using a first or-
der Taylor expansion around the updated state estimated,
the UKF linearizes the process and measurement functions
by statistical linear regression of the sampling points.
These sampling points are chosen such that their mean
and covariance matrix equals the estimated state and its

A:

covariance. The linear regression minimizes the error in
the least square sense, between the linearized and non-
linearized function at the sampling points. This approach
has been used in Nguyen et al. (2017), as a solution to the
divergence phenomena associated with Extended Kalman
filter as presented in Fusco and Ringwood (2012). Nev-
ertheless, as shown in the result section, the UKF perfor-
mance is also sensitive to the parameter definitions, and for
some parameters there is no straight forward identification
procedure.

Particle Filter  Particle filter (PF) is a sequential Monte
Carlo method that does not estimate the state directly but
from the posterior probability (p(zk|yx)) as:

N
p(xrlyr) = wa(xk — z}) (7)

Here y;, is the set of accumulated measurement up to time
k, N represents the number of particles, uﬂk is the particle
importance weight, and i is the particle state. At each
time k the particles are defined as:

P(k) = ((z},w})|i € 1, ..., N) (8)

The main PF algorithm consists of Sampling, Importance
weight, and Resampling. In the Sampling phase the pro-
posal distribution (g(x%|zi _,yx)) is used to generate the
samples. In this study the posterior function p(zy|yx) is
used:

a(klok_ 1, y0) = pakloi_ 1, i) (9)

Since this is a critical design choice, the reader can find
further information in Arulampalam et al. (2002). During
the Importance weight stage, the weights of the particle
are updated based on the prior state and measurements.
Finally, in the Resample phase the particles are resampled
based on the weight in order to keep only the meaningful
particles. The key parameter for the PF is NN, which
limited the utilization of this method until recent years
due to the computational cost. PF are widely used in
robotic/positioning applications (Gustafsson (2010)) and
for non-linear system identification (Schoén (2015)).

2.8 Adaptive Feedback Controller

The main controller used in this study is a simple feedback
controller, where the load exerted by the generator on
the absorber is proportional to the actual state of the
system. As presented in Hansen and Kramer (2011) the
control load can be proportional to the full state of the
system or just to a part of it. If the displacement and/or
the acceleration of the system are used, the controller is
capable of extending the bandwidth of the system, similar
to the impedance matching controller introduced in Falnes
(2002). Nevertheless, the use of a reactive/active controller
requires a reverse flow of energy, from the grid to the
absorber, which becomes promptly inconvenient or only
marginally convenient if the conversion chain efficiency has
to be considered.

Based on numerical results and based on the chosen
transformation efficiency of 70%, it has been decided to
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only use a passive controller, proportional to the velocity
of the absorber, defined as:

fu(k) = Kp(k)v(k)

Here, f, represents the power take-off load, Kp is the
controller gain, and v is the absorber velocity.

(10)

Kp is selected from a precomputed look-up table in
function of the fundamental frequency at time k. The look-
up table is based on experimental tests in regular waves,
which are not reported here due to space limitation. The
Kp search is configured to not extrapolate value outside
the given frequency range, and to use the closest frequency
range limit instead.

3. RESULT AND DISCUSSION

This section presents and provides discussion of the main
results of the PF and in general of the GSC; the section
follows closely the structure of the previous one.

A total of six irregular sea states were used to estimate the
power performance of the system: each condition contains
at least 1000 waves to ensure statistical convergence.
The conditions are reported in Tab. 1 in function of the
significant wave height H,,0 and the peak period 7},.
The prefix IR is an abbreviation of irregular, used to
distinguish between regular and irregular wave conditions.
The waves are generated using a white noise method
and the parameterized JONSWAP (y = 1.5) has been
used. For each sea state the wave generation signal is
recorded and repeated to ensure a direct comparison
between different controller setup.

Table 1. Sea State condition used in the test
campaign

IR1 IR2 1IR3 1IR4 IR5 IR7
Hyo (m) 0.035 0.035 0.035 0.035 0.035 0.075
Ty (s) 1.1 1.5 1.7 2.0 2.5 2.0

3.1 Excitation Load Observer

In order to assess the quality of estimated excitation load,
it is important to measure the excitation load in first place.
This is possible by locking the absorber at the equilibrium
position and measuring the load at the connection point of
the motor. Since the whole GSC is based on the availability
of a reliable excitation load measurement, the validation
of this step is of paramount importance.

From Fig. 3 it is possible to conclude that the linear
Kalman observer is well suited to estimate the excitation
load from the system state for this particular machine.
The goodness of fit between the two signal in the figure is
0.9957, and no condition with a goodness of fit below 0.985
was observed. The goodness of fit has been estimated using
the normalised mean square error. The zoomed view of
Fig. 3 (top-right corner), highlights the noise introduced in
the estimated signal, in particular a 50Hz noise component
was present. Although it is possible to introduce a smooth-
ing effect in the Kalman observer design, this might result
in a phase shift between the two signals, which in turn
deteriorates the overall estimation accuracy (goodness of
fit 0.95). It is possible to reduce the noise, without phase
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Fig. 3. Deterministic comparison of the observed (blue
line) and measured (red line) excitation loads (Mex)
for the sea state IR1. The top right box is a zoomed
section of the signal to highlight the signal noise.

deterioration, by using one or multiple oscillators for the
excitation load model as shown in Fusco and Ringwood
(2010). However, there was no evident benefit for this
particular application, and the controller was able to cope
with the level of noise introduced in the estimator.

3.2 Quadrature Filter

Once the accuracy of the excitation load observer is
assessed, it is possible to analyze the performance of
the two implementation of the quadrature filters. Fig. 4
is particularly important because it highlights the main
motivation of this study. Three different cases can be
identified:

Top Plot both PF and UKF are able to correctly demod-
ulate the excitation load signal.

Middle Plot the PF deviates from the correct solution,
but it is able to reduce the error in about 40 seconds
Bottom Plot the UKF diverges from the correct solution

and does not recover within the whole test.

As will be shown in the following figures, the UKF per-
forms better than the PF: for example reduced time to
converge and better noise rejection. But in some of the
tested conditions, the UKF became unstable. This insta-
bility was triggered randomly and at least once for each
of the tested sea states. It was not possible to identify
a clear cause for the instability to happen. A sea state
with an unstable UKF, would produce 10-20% less energy
if compared with a fixed gain controller, due to the non-
optimality of the controller gain.

All the filters, linear KF, PF, and UKF, were designed
using a numerical model of the WEC. The model was
estimated from experimental data in order to reduce the
inconsistency between numerical and experimental results.
Due to the difficulties to design a stable UKF, global
optimization methods have been tested also. Although
it was possible to identify a stable UKF for each sea
state, it was not possible to obtain a stable design across
the different conditions. Since the implementation of an
adaptive UKF would have added more complexity to the
system, it was decided to only use the best UKF found.
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Fig. 4. Comparison of the UKF (yellow line) and PF (red
line) observed excitation load amplitudes for the sea
state IR1. The measured excitation load (blue line) is
used for reference. (Top) fully developed sea state,
(Mid) highlights of the initial condition divergence
for the PF, and (Bottom) highlights of the initial
condition divergence for the UKF.

The uncertainty in the parameter definition for the UKF
is the main limitation for its usage in the author point
of view, and little emphasis is given to this problem in
available literature.

On the other hand, the PF produces similar results, with
comparable implementation effort and ease of tuning: the
major tuning parameter being the number of particle.
The process noise was estimated empirically. In order
to estimate its influence on the filter performance, a
sensitivity study was carried out, which resulted in a
negligible filter performance degradation.

Fig. 5 gives a visual indication of the effect of the number
of particles. The plot represents the timeseries of the esti-
mated instantaneous fundamental frequency, for two PF's
and the UKF. The vertical black dotted line represents the
end of the wave ramp-up phase. The black line represents
a PF with 20 particles, while the blue line a PF with 2000.
There is a great reduction of the ramp up time, when
more particles are used, but the tracking performance is
not deteriorated after the transient condition. Fig. 5 also
shows that the UKF (red line) results in a quicker response
to the transient or lower settling time. The filter reaches
a steady condition in 1-2s while the PF requires at least
10-20s. Once more, after the transient condition the filter
results are comparable.

During the experimental campaign the PF with 2000
particles was used, because 20 particles resulted in a
longer waiting time and 5000 particles did not increase
the quality of the results. Since a hard real-time operating
system was adopted, it is important to ensure that the
cpu is never overloaded: in the worst condition the average
computational time was 1/100 the sample time of 1ms.
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Fig. 5. Observed frequency comparison between UKF (red
line), PF (blue line), and under-sampled PF (black
line). The ending of the wave ramp-up time is marked
with a vertical dotted line.

3.8 Gain Scheduling Controller

The results of the GSC are compared with the max
absorbed average power using static Kp values. The max
average power is obtained by running each sea state six
times, each time with a different value of Kp.

The optimal K p range lies in the range 100-140 Nm/(rad/s)
for the tested condition. It is important to notice though,
that changing any of the sea state parameters (H,,0, T'p,
7, spectral distribution, etc...) will require the optimal Kp
identification procedure to be re-run. This is probably the
main limiting factor of the static gain methodology.

Tab. 2 summarises the main comparison between the
controller optimized for every sea state and the adaptive
one. The table reports the average power performance for
each sea state, for the two controller, and in the bottom
row the difference in % is given. On the average of the 7 sea
states, 2.5% improvement is achieved, with a low value of
-6% and a max value of 4%. It is important to notice that
the positive results are obtained in the energetic sea state
while the negative results are obtained in the less energetic
sea state. Therefore using a weighted average will improve
the result outlook.

Table 2. Average power production in function
of the sea state and control type

Controller IR1 IR2 1IR3 IR4 IR5 IR7

Static 0.613 0.811 0.829 0.853 0.719  3.839
Adaptive 0.574 0.817 0.86 0.863 0.74 3.99
Diff.(%) -6.3 0.74 3.74 1.17 2.92 3.93

4. CONCLUSION

The work presented in this study aims at increasing
the power production of wave energy converters from a
controller prospective, covering two main objective:

e robust/reliable implementation of a real-time quadra-
ture filter (Hilbert transform) to identify the base-
band frequency of the excitation load using a Particle
Filter.

e implementation of the gain scheduling controller,
where the instantaneous baseband frequency is used
to adapt the Kp of the outer feedback controller.

It is important to highlight that the overall frame is not
new in the wave energy sector (cf. Fusco and Ringwood
(2012) and Nguyen et al. (2017)). Firstly the system has
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been validated in a real-time implementation, with all the
embedded difficulties, and secondly the usage of Particle
filter for non-linear observer has not been used before for
similar applications to the author’s knowledge.

The Particle filter has been compared with the Unscented
Kalman filter through the article.

As shown in the results, the Particle filter returns similar
results if compared with a Unscented Kalman filter, while
providing two main advantages:

(1) simpler tuning procedure
(2) higher filter stability in function of the tuned param-
eters

Furthermore, within this study, the performance of the
GSC has been compared with a sea state optimized static
gain controller. Although the benefits of the GSC might
seem minimal (5%), they have a direct positive effect on
the cost of energy for the given machine. Assuming that
no additional cost will be introduced due to the GSC, the
economical benefit are directly related to the increased
power production. The costs for the controller design and
implementation and the operational cost of the controller
are marginal and do no effect on the overall cost.

The results of this study might be used as a starting
point for a more detailed economical analysis and for the
implementation into the full FPP machine.
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