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Abstract: This paper presents a hierarchical control framework for a kite-based marine
hydrokinetic (MHK) system that executes power-augmenting cross-current flight, along with
simulation results based on a high-fidelity turbulent flow model that is representative of flow
conditions in the Gulf Stream. The hierarchical controller is used to robustly regulate both the
kite’s flight path and the intra-cycle spooling behavior, which is ultimately used to realize net
positive energy production at a base station motor/generator system. Two configurations are
examined in this paper: one in which the kite is suspended from a surface-mounted platform,
and another in which the kite is deployed from the seabed. To evaluate the robustness of this
control framework in a realistic ocean environment, we present simulation results whereby we
superimpose low-frequency data from the Mid Atlantic Bight South Atlantic Bight Regional
Ocean Modeling System and acoustic Doppler current profiler measurements with a high-
frequency turbulence model, resulting in a high-fidelity 3D spatiotemporal flow field that
is presented to the kite system. Based on this simulation framework, we demonstrate the
effectiveness of the control system both in terms of robust flight and power generation.

Keywords: Energy systems, Marine systems, Emerging control systems, Hierarchical control,
Periodic control

1. INTRODUCTION

Marine hydrokinetic (MHK) resources have been esti-
mated to possess as much as 1229 TW/year of wave energy
(Jacobson (2011)), 334 TWh/year of usable tidal energy
(Haas et al. (2011)), and 163 TWh/year of usable ocean
current energy (Haas et al. (2013)) within the United
States alone. This collective MHK resource is sufficient
to power tens of millions of homes, in addition to pow-
ering oceanographic research buoys, navigational buoys,
autonomous underwater vehicles, and other entities that
comprise the so-called “blue economy” (LiVecchi et al.
(2019)). However, economically practical extraction of
MHK resources is complicated by the large required size of
such devices (for example, a fixed ocean turbine operating
in a 1 m/s flow speed must be approximately as large per
unit power as a towered wind energy system operating in a
10 m/s wind speed, yet the costs of building such a device
underwater are much larger) and the locations in which
these resources exist (for example, the strongest portion
of the Gulf Stream routinely lies in waters that are at
least 1 km deep, as noted in Zeng and He (2016)).

? This research is supported by the Department of Energy, award
number DE-EE0008635.

Underwater kites represent a relatively new technology for
harvesting tidal and current resources using an order of
magnitude less material than fixed turbines. Depicted in
Fig. 1, a kite-based MHK system consists of a rigid wing
that is tethered to either the seabed or a surface platform
and flown in a pattern perpendicular to the prevailing
current. Energy can be generated either through on-board
rotors (Minesto (2019)) or through cyclic spooling motion
(Ghasemi et al. (2015)), whereby tether is spooled out
under high tension and spooled in under low tension,
resulting in net positive energy generation at a winch
located on the seabed/platform. As shown in Loyd (1980),
for a high lift/drag wing, this cross-current motion can
easily result in more than an order of magnitude more
power than that of a stationary system of the same size.
The ability to achieve such high power density has led
to the popularization of kite-based systems not only for
harvesting MHK resources, but also in the sister field
of airborne wind energy, as practiced by companies like
Windlift, LLC (Windlift (2019)), Makani Power (Makani
(2019)), and Ampyx Power (Ampyx (2019)).

This work will focus specifically on an MHK kite design
that generates net energy through cyclic spooling motion,
which can in general be accomplished in one of two ways,
or a combination thereof:
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Fig. 1. Concept of operations for cross-current figure-8
flight, including body-frame and ground-frame coor-
dinate systems represented by three orthonormal unit
vectors, xk, yk, and zk with origin k and orthonormal
unit vectors xo, yo, and zo with origin o respectively.
Additionally, spherical coordinate angles λo and φo
and the vector from o to k, (denoted as x) are shown.

(1) multi-cycle spooling, where tether is continually spooled
out under high tension over multiple laps (where a
lap is one complete traversal of a path), and spooled
in under low tension either radially towards the base
station or in a path following configuration under low-
tension, low-lift flight, or

(2) intra-cycle spooling, where the spooling rate is ad-
justed over the course of each lap, spooling tether
out at high angles of attack on portions of the path
corresponding to high tension, and spooling tether
in at low angles of attack on portions of the path
corresponding to low tension.

Several studies, including Ghasemi et al. (2015), Ghasemi
et al. (2016), Olinger and Wang (2015), and Li et al.
(2015), have presented hydrodynamic characterizations,
dynamic models, and corresponding controllers for MHK
kites. These models have been validated in simulations, as
well as controlled pool and flume tests. While these works
provide meaningful modeling contributions, the results are
restricted to spatiotemporally uniform flow environments.
Thus, additional questions remain regarding how well
the MHK kite control systems will perform, in terms
of robustness and power production, in realistic ocean
environments that consist of both low-frequency (LF)
spatiotemporal flow variations and high-frequency (HF)
turbulence. While performance in turbulent conditions
has been studied in the sister field of kite-based wind
energy systems (for example, in Sternberg et al. (2012)
and Fechner and Schmehl (2016)), in addition to the field
of stationary MHK systems in Mycek et al. (2014) and
Pyakurel et al. (2017), the dissimilar time and length
scales of ocean currents, in addition to the different system
dynamics of kites vs. stationary systems, motivate kite-
specific studies in realistic ocean environments.

This work contributes to the existing body of literature by
presenting a hierarchical flight control system and intra-
cycle spooling controller for an MHK kite, which is shown
to be robust in the presence of a realistic turbulence
environment. To demonstrate this robust performance, we
present simulation results in a turbulent environment that
consists of the superposition of two components:

(1) A LF profile, taken from either observed acoustic
Doppler current profiler (ADCP) readings or a Mid
Atlantic Bight/South Atlantic Bight Regional Ocean
Model System (MSR) detailed in Yang and Copping
(2017) (one or the other is used in all of our sim-
ulations, depending on availability of ADCP data).
This provides the evolution of flow speed with respect
to both depth and time, over relatively long time
intervals.

(2) A HF turbulence model, adopted from Pyakurel et al.
(2017), which characterizes flow variations in depth,
cross-current location, and time, over time scales of
seconds.

2. PLANT MODEL

Following our earlier work in Reed et al. (2019), the
MHK kite is modeled as a combination of a rigid lifting
body wherein forces and moments are calculated from lift,
drag, buoyancy, and gravity, and a lumped mass tether
model whose links are characterized as non-compressive
spring-damper systems, as in Vermillion et al. (2014). The
instantaneous mechanical power produced by the system
Pgen(t), is modeled as:

Pgen(t) = ||F thr||ũT (t), (1)

where ũT (t) is the spool speed of the tether, and F thr is
the force from the tether.

3. REALISTIC OCEAN CURRENT MODELING AND
IMPLEMENTATION

The flow field, which is characterized as a function of depth
(zo), cross-current location (yo), and time (t), is computed
as the superposition of a LF flow profile and HF turbulence
model, as:

Ṽcomb(yo, zo, t) = Ṽturb(yo, zo, t) + Ṽ (zo, t), (2)

where Ṽ (yo, zo, t), Ṽturb(yo, zo, t), and Ṽcomb(yo, zo, t)
represent the LF flow field, HF turbulent field, and com-
bined flow model, respectively. Because the total cross-
current motion of the kite spans a tiny fraction of the total
current resource (e.g., the Gulf Stream), spatial variations
in yo are neglected in the LF model.

3.1 Low-Frequency Ocean Modeling

When available, observed ADCP data, collected by the
Renewable Ocean Energy Program of the Coastal Studies
Institute, was used to characterize LF flow variations.
This data profiles a location about 20 miles east of Cape
Hatteras, NC on the shelf slope and is available at 10-
minute time intervals and 4 m vertical resolution. Because
the ADCP data is specific to a particular location and
is not usable in the top 40 m of the water column
due to surface reflections, MSR data was used as an
alternative when simulating kite deployment of a sea
surface platform (e.g., a fixed buoy). The MSR model
was generated by North Carolina State University’s Ocean
Observing and Modeling Group, and provides current
profiles at 42 different locations in the Gulf Stream at 25
m vertical resolution. Each data set provides flow velocity
vectors, Ṽ (zo, t), along the water column (i.e., the zo
direction).
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3.2 Modeled High-Frequency Turbulent Variability

The turbulent HF components of the ocean currents are
calculated based on a discretization of the flow veloc-
ity’s power spectral density (PSD) equation. Specifically,
the model leverages fundamental techniques described in
Pyakurel et al. (2017) to generate a spatiotemporally vary-
ing turbulence profile that can be applied to the hydrody-
namic center of each component in the dynamic model.
Based on inputs of turbulence intensity, time-averaged
flow velocity profile, a specified frequency range, standard
deviations and spatial correlation coefficients for the flow
velocities, the model outputs a spatial grid of time-varying
velocity vectors on the inlet plane (which is ny by nz,
having indices i and j ranging from 1 to ny and 1 to
nz). The continuous PSD of flow velocity, G(f), where
f represents frequency, is given as:

G(f) ∝ f− 5
3 , (3)

which implies Gm, the one-sided PSD, is equal to:

Gm(f) = Amf
− 5

3 . (4)

Here, Am is a constant defined by the equation:

Am =
2U

2
T 2
m

3

[
1

f
2
3
min

− 1

f
2
3
max

] , (5)

where m is an index to the u, v, or w velocity compo-
nents, fmin and fmax define the frequency range of the
turbulence, U is the magnitude of the time-averaged flow
velocities, u, v, and w, defined as:

U =
√
u2 + v2 + w2, (6)

and where turbulence intensity, denoted by Tm, is equal
to:

Tm =
σm

U
, (7)

where the standard deviations (σm) in the axial, cross-
current, and down directions are calculated as:

σu =
Tu√

1 + P 2 +Q2
, σv = Pσu, and σw = Qσu. (8)

Here, P and Q are constants defining the ratios between
the standard deviations of the flow velocities in the cross-
current and down directions over the standard deviation
in the axial direction.

Correlated velocity components are then generated by a
discretized one-sided PSD equation, s̃m(f)) = Gm(f)δf ,
where f is the vector of user-selected frequencies, chosen
to capture the characteristic frequencies of the flow field,
f , f1, f2.....fn. A coherence function, Cij , defining the
flow component’s correlation between any two grid nodes
on the inlet plane, is defined by:

Cij(f) = exp

(
−Rc∆rijf

U

)
, (9)

where ∆rij is the distance between any two inlet plane
grid nodes and Rc is a coherence decay constant. The
amplitude of the fluctuating velocity component, Sm, is
written as:

Smij (f) = 2Cij(f)Am(f)−
5
3 δf. (10)

The velocity weighting factor, H(f), is then calculated in
frequency domain as:

Hm
11(f) = Sm11(f)

1
2 , Hm

21(f) =
Sm21(f)

Hm
11(f)

,

Hm
22(f) = (Sm22(f)−Hm

21(f)2)
1
2 , Hm

31(f) =
Sm31(f)

Hm
11(f)

,

Hm
ij (f) =

(Smij (f)−
∑l=j−1
l=1 Hm

il (f)Hm
jl (f))

Hm
jj (f)

,

Hm
jj (f) = (Smjj(f)−

l=j−1∑
l=1

Hm
jl (f)2)

1
2 ,

(11)

where Hm
ij is the element in the ith row and the jth column

of H ∈ Rnynz×nynz . The velocity weighting factor, Hm
ij (f),

is then used to calculate analytical expressions for the
velocity components, u, v, and w, as functions of time. The
amplitude of the fluctuating velocity component, m∗kj , can
be represented as

m∗kj =

j∑
l=1

Hm
lj (fk)eiθkl , (12)

where θkl is a random phase angle between 0 and 2π.
Because m∗kj = |m∗kj |eiθkj , where θkj is the resultant
phase angle associated with each frequency component at
each grid point, j, m∗kj can be converted from frequency
domain to time domain, where each fluctuating velocity
component is denoted as:

mj(t) =

N∑
k=1

|m∗kj | sin(2πf∗k t+ θkj). (13)

This calculation results in a grid of velocity vectors,
Ṽturb(yo, zo, t), at each node of the inlet plane.

4. CONTROL FORMULATION

The control system is designed to achieve two objectives:
(i) Traverse a prescribed cross-current path that results in
high tether tensions and (ii) strategically switch between
spool-out and spool-in behavior in a manner that keeps
the kite in a relatively consistent depth and flow range.
The former is accomplished via a hierarchical controller,
whereas the latter is accomplished through an intra-cycle
spooling controller. The complete control system block
diagram is shown in Fig. 2.

Fig. 2. Block diagram of kite system where ω is the angular
velocity vector and v is the velocity vector of the kite
in the body-frame. Additionally, φ, θ, and ψ are the
roll, pitch, and yaw Euler angles respectively, and lT
is the un-spooled tether length.

4.1 Flight Controller

As described in our earlier work in Reed et al. (2019),
the flight controller which enables the kite to track a pre-
scribed figure-8 path, contains four levels. This modular,
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hierarchical control structure is based on prior work in
Rapp et al. (2019) and is partitioned into:

(1) A path following controller that accepts the path
geometry and outputs a desired velocity angle as
defined in Fagiano et al. (2014).

(2) A tangent roll angle controller, which accepts a de-
sired velocity angle, γ(vdes), and outputs a desired
tangent roll angle, ξdes, which is the angle between yk
and the plane tangent to the surface of the sphere of
radius ‖x‖ at the kite’s position, termed the tangent
plane (shown in Fig. 1) – this angle dictates the
component of hydrodynamic lift that contributes to
turning.

(3) A desired moment controller, which accepts the tan-
gent roll setpoint and side-slip angle setpoint, and
outputs a desired moment vector.

(4) A control allocation module, which accepts the desired
moment vector and computes the required control
surface deflections to be actuated by the ailerons,
elevators, and rudder of the kite.

Path Following Controller The target cross-current
path, Γ(s), is specified in Cartesian coordinates based
on the Lemniscate of Booth, defined by abooth and bbooth
shown in Rapp et al. (2019). The variable s is a path pa-
rameter that varies from 0 to 2π. Given this path, the con-
troller calculates a three-dimensional vector representing
the desired direction of the kite’s velocity vector, which is
computed as a weighted average between the perpendicular
vector, p ∗⊥, and the parallel vector, p ∗‖ . The perpendicular

vector is given by:

p ∗⊥ =
p̂⊥
‖p̂⊥‖

where p̂⊥ =

[
(Γ(s∗)− x) · uφo

(x)
(Γ(s∗)− x) · uλo

(x)
0

]
. (14)

Here, uφ0(x) and uλo(x) are unit vectors in the elevation
(φ) and azimuth (λ) directions shown in Fig. 1, sometimes
referred to as “local north” and “local east.” The parallel
vector, p ∗‖ , is a unit vector that lies parallel to the path

at the path variable corresponding to the closest point on
the path, s∗, and is calculated by:

p ∗‖ =
p̂‖

‖p̂‖‖
where p̂‖ =

dΓ

ds

∣∣∣∣
s=s∗

. (15)

In (14) and (15), the closest point on the path is described
by the path variable s∗, which is the solution to the
minimization problem:

s∗ = arg min
s

α(s), where

tan (α(s)) =
‖x× Γ(s)‖
x · Γ(s)

.
(16)

Here, α(s) is the angle between the position vector, x and
the path Γ(s).

The desired velocity unit vector, vdes, is then calculated
as the linearly weighted sum of p ∗⊥ and p ∗‖ , according to:

α(s∗) = min
{
α(s∗), α0

}
vdes =

(
1− α(s∗)

α0

)
p ∗‖ +

α(s∗)

α0
p ∗⊥.

(17)

Here, α0 serves as an upper limit on the angle used in the
weighting.

The velocity angle, γ, which describes the orientation of
a given velocity vector on the sphere of radius ‖x‖ at the
current position x, is given by

γ(v) = atan

(
v · uφo

(x)

v · uλo(x)

)
. (18)

The desired velocity angle is therefore given by γ(vdes).

Tangent Roll Angle Controller The next level of the
flight controller maps γ(vdes) to a desired tangent roll
angle, ξdes, where ξ describes the kite’s orientation relative
to the tangent plane and is calculated as:

tan (ξ(yk(t))) =
yk · (uλo × uφo)√

(yk · uφo
)
2

+ (yk · uλo
)
2
. (19)

The desired tangent roll angle, ξdes, is calculated using
saturated proportional control, specifically:

ξdes=min{max{kγ (γ(v)− γ(vdes)) , ξmin}, ξmax}, (20)

where kγ is the proportional gain. Ultimately, adjustment
of ξ re-vectors the kite’s lift to provide the necessary force
to re-align the kite’s velocity angle with the target value
and ultimately get the kite back on its target path.

Desired Moment Vector Controller In selecting the de-
sired moments, we set a target rolling moment to drive
the tangent roll angle (ξ) to its setpoint (ξdes), whereas
we set a target yaw moment to drive the side-slip angle,
β, to zero. The tether spooling controller articulates the
elevator to trim the system to a high angle of attack during
spool out and a low angle of attack during spool in (which
is described in the subsequent sub-section). The desired
moment vector set within the flight controller is given by:

Mdes =

kpLeξ(t) + kiL
∫ t
0
eξ(t)dτ + kdL ėξ(t)
0

kpNβ + kiN
∫ t
0
βdτ + kdN β̇

 ,
where eξ(t) = ξ(yk(t)) − ξdes, and β is the fluid dynamic
side-slip angle.

Control Allocation Module In order to map the desired
moment vector to control surface deflections, we invert a
linearized approximation of the nonlinear mapping from
deflections to hydrodynamic moments. This approxima-
tion is calculated by neglecting the effect of angular ve-
locity on the apparent flow at each fluid dynamic surface,
then linearizing to obtain an expression in the following
form:

Mnet = Mo +Aδ, (21)

where δ , [ δa δe δr ]T represents the deflection angles
of the ailerons, elevator, and rudder, respectively. The
variable Mo represents the moment vector that occurs
with zero control surface deflections and A is the matrix
of linear control sensitivity coefficients. This results in a
system of three equations and three unknowns, which are
solved in computing the control surface deflections at each
time.

4.2 Winch (Spooling) Controller

The commanded rate of tether release, uT (t), is set by a
spooling controller that seeks to spool tether out at a high
angle of attack during the portions of the lap in which large
tensions are possible, then spool tether in at a low angle
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of attack during the remainder of the lap. The intra-cycle
spooling algorithm in this work is designed to maintain
a consistent tether length each lap, represented by the
constraint: ∫ tf,j

t0,j

ũj(τ)dτ = 0. (22)

where the index j refers to the lap number. This ensures
that the kite remains in a consistent depth within the
ocean shear profile. In attempting to find the command
sequence that satisfies this constraint, we make several key
simplifying assumptions:

• The winch is capable of achieving the commanded
speed.
• The winch is capable of achieving that speed quickly,

relative to the rate of change of the command.
• The commanded spooling speed is piecewise constant

over each of NR “spooling regions”, and alternates
between spooling in and spooling out at the maximum
speed, uspool.

The first two approximations should hold for a well de-
signed winch/generator system, meaning that ũT (t) ≈
uT (t). The three approximations together mean that the
constraint equation of (22) can be written as:

0 = 11×NRU j−1∆j
T , (23)

where the matrix U j−1 ∈ RNR×NR is a diagonal matrix
where the element in the pth and qth column is given by:

U j−1p,q =


uj−1spool p = q = odd

− uj−1spoolp = q = even

0 p 6= q.

(24)

Here, uj−1spool is one third of the mean flow speed at the
vehicle CM over the last lap of the system. The vector
∆j
T ∈ RNR is a vector containing the time durations

required to traverse a specific section of the path during
next (jth) lap. Because the timings of the next lap are
not known beforehand, it is desirable to define our tether
spooling controller in terms of the path variable, s, not
time. Therefore, we transform the time-domain constraint
of (23) to a path-domain constraint by using a numerical
approximation of the time derivative of the path variable
from the previous lap in each spooling region. Here,
we denote the spooling region with the index iR =
1, 2, . . . , NR. Specifically, we approximate the ithR element

of ∆j
T , written as ∆j

T,iR
in terms of the path variable using

logged data from the previous lap, j − 1. Specifically,

∆j
T,iR
≈
sj−1iR+1 − s

j−1
iR

δsj−1iR

(25)

=


1

δsj−1
1

0 . . . 0

0 1

δsj−1
2

. . . 0

...
...

. . .
...

0 0 0 1

δsj−1
NR+1

D

sj−11

sj−12
...

sj−1NR+1

 (26)

, δsjDSj−1. (27)

Note that sj−1iR
refers to the value of the path variable at

the end of the ithR region during the previous lap, j − 1.

Additionally, δsj−1ir
is the mean of the derivative of s(t)

over the ithR section of the path. Furthermore, because
the path is defined using a path variable s ∈ {0, 1},
sjNR+1 = 1 for all j. The discrete difference operation

matrix D ∈ RNR×NR is a matrix with ones along the main
diagonal and negative ones on the diagonal underneath
the main diagonal. Thus, after every lap, the problem
of meeting our approximation of the net-zero spooling
constraint becomes one of solving an approximated version
of the constraint equation,

0 = 11×NRU j−1δsj−1DSj , (28)

for the vector Sj ∈ RNR+1, the elements of which define
the spooling regions for the next lap. Note that in general,
this is a single scalar equation and cannot be solved
uniquely for the elements of Sj . However, if we prescribe
a structure to the spooling regions, we can reduce the
number of parameters that define the spooling regions to
one, resulting in a unique solution. In the case of the figure-
8 path geometry, we know that the tension profile over the
course of a figure-8 exhibits two local minima, which occur
roughly at s = 0.25 and s = 0.75. Therefore, our vector
Sj takes the form

Sj =


0.25
0.25
0.75
0.75

1

+


−1
1
−1
1
0

 sjw. (29)

By substituting this expression into (28), we can solve
directly for sjw, which defines the width of the spooling
region for the next lap. This then defines a simple, switched
spooling control structure:

ujT (s∗(t))=


uin 0.25− sjw ≤ s∗(t) ≤ 0.25 + sjw or

0.75− sjw ≤ s∗(t) ≤ 0.75 + sjw,

uout otherwise.

(30)

While (30) will yield zero net spooling under nominal
conditions, it is not robust to disturbances that cause
the actual flight speed (and therefore the time required
to traverse a particular section of the figure-8) to differ

from that which was used in computing ujT (s∗(t)). To
add robustness to the spooling strategy, we utilize a
simple feedback controller to track a target tether length,
ljT,SP (s(t)), which is obtained by integrating (30) over the
path as follows:

ljT,SP (s(t)) = lT,0 +

∫ s(t)

0

ujT (σ)

δsj−1
dσ. (31)

5. RESULTS

This section details two sets of simulation results, one in
which the kite is deployed from a floating platform at
the sea surface, and another in which the kite is deployed
from the seabed. Because the ADCP data is invalid at low
depths due to surface reflections, the MSR model is used
to characterize the LF component of flow in the former
case (to be referred to as the MSR case in simulation
results), whereas ADCP data is used to characterize the
LF component of flow in the latter case (to be referred
to as the ADCP case in simulation results). In both
simulation cases, an average tether length of 125 m is used.
For comparison purposes, two additional simulations were
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Fig. 3. One instant in time of the xo component of flow
velocity in the yo, zo plane for the ADCP data with
superimposed turbulence

performed under spatiotemporally constant flow profiles,
both at an average tether length setpoint of 125m, where
the constant flow speeds were set to the average flow speeds
seen in the MSR and ADCP data. By comparing our
results against constant flow simulations, we were able
to assess the effects of turbulence on the kite’s power
production. An example plot of the total xo component
of flow velocity at the inlet plane (including both the LF
flow and HF turbulence), for a single time step, is shown
in Fig. 3, using ADCP data for the LF component. The
parameters used in the simulations are shown in Table
1. Additionally, the average power produced in the MSR
and ADCP simulation sets, along with the constant flow
results, are shown in Table 2, as a function of average
tether length setpoint and mean flow speed at the kite’s
center of mass.

Table 1. Parameters used in simulation.

Variable Description Value Units

Ar Kite reference area 10 m2

mk Kite mass 945 kg

− Kite span 10 m

abooth Height path parameter 0.8 -

bbooth Width path parameter 1.6 -

fmax Maximum turbulent frequency 1 s−1

fmin Minimum turbulent frequency 0.1 s−1

T Turbulence intensity 10 %

5.1 Simulation Results

A plot of the flow speed at the kite’s center of mass
over two laps is shown in Fig. 4, for both the MSR and
the ADCP example simulations. The periodic behavior
that we observe in Fig. 4 results from the higher flow
speeds experienced near the top of the path, which is a
direct result of the ocean’s velocity profile, an example
of which can be seen in Fig. 3. The velocity of the kite
over two laps can be seen in Fig. 5 for both the MSR
and ADCP example simulations. Additionally, the tether
tension magnitude, ||F thr||, is shown in Fig. 6 for both
the ADCP and MSR example simulations. The average
power per lap is shown in Fig. 7 and Fig. 8 for the ADCP
and MSR example simulations, along with the constant
flow simulations (which were run at the same average flow
speeds as the MSR and ADCP example simulations to
provide a comparison of the kite’s power production in
constant flow vs. turbulent environments). The average
power produced in the MSR example simulation was
23.9 kW at an average flow speed of 1.43 m

s , which is

Fig. 4. Flow speed at the kite’s CM over two laps for the
MSR and ADCP example simulations

Fig. 5. The kite’s speed over two laps for the MSR and
ADCP example simulations

Fig. 6. The magnitude of tether tension over two laps for
the MSR and ADCP example simulations

Fig. 7. This plot shows the average power produced over
each lap for the constant flow and MSR simulations,
both with the same average flow speed.

90.5% of the average power produced in its constant flow
simulation, which was 26.4 kW. In the ADCP example
simulation, the average power produced was 16.4 kW at
an average flow speed of 1.26 m

s , which was 87.2% of the
power produced in the constant flow simulation, which
was 18.8 kW. Additionally, it is clear from the simulations
that the kite robustly executes cross-current flight in the
presence of turbulence.
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Fig. 8. This plot shows the average power produced over
each lap for the constant flow and ADCP simulations,
both with the same average flow speed.

Table 2. Parameters used in simulation.

Simulation
set

Average
Tether length
setpoint (m)

Mean flow
speed (ms−1)

Mean power
output (kW)

MSR 50 1.56 29.6

MSR 125 1.43 23.9

Const. flow -
MSR avg.

125 1.43 26.4

MSR 200 1.27 15.1

ADCP 50 1.17 14.4

ADCP 125 1.26 16.4

Const. flow -
ADCP avg.

125 1.26 18.8

ADCP 200 1.27 17.1

6. CONCLUSION

In this paper, the first implementation of a tethered
MHK kite with closed-loop control of cross-current flight
in a turbulent ocean flow environment was presented.
This was performed by generating two spatiotemporally
varying ocean current profiles, using data from the MRS
model for the first and observed ADCP data for the
second, both with superimposed turbulence. A hierarchical
flight controller and an intra-cycle spooling controller were
used to control the kite. Simulations showed robust flight
control in the presence of turbulence, along with power
production numbers approximately 90 percent as large as
in the constant flow case.
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