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Abstract:
In this paper an infinite time horizon (ergodic) quadratic cost control problem for a linear
two dimensional stochastic system with a two dimensional Rosenblatt noise process is solved
by providing an explicit expression to determine the optimal feedback. The system has some
symmetry properties that allow for an explicit determination of an optimal control. The controls
are the family of constant linear feedbacks which is known to be the natural family of controls
for a Brownian motion noise to determine optimality. This family of constant linear feedback
controls allows for practical implementation of the optimal control. Rosenblatt processes are
continuous, non-Gaussian processes that have a long range dependence and a useful stochastic
calculus and they are generated by double Wiener-Itô integrals with singular kernels. The
long range dependence property of the Rosenblatt processes is a natural generalization from
an important subfamily of (Gaussian) fractional Brownian motions. Long range dependent
processes have been identified empirically in a significant variety of physical phenomena. An
expression is obtained to determine explicitly the optimal ergodic control. The ergodic control
result in this paper seems to be the first explicit ergodic control result for a multidimensional
control system with a continuous, non-Gaussian noise. Furthermore it seems to be the first
solution for a multi-dimensional game problem with a Rosenblatt noise.

Keywords: stochastic systems, ergodic control, non-Gaussian noise, Rosenblatt processes,
explicit stochastic optimal controls

1. INTRODUCTION

Since noise in stochastic systems is typically used to model
perturbations or unmodeled dynamics of the physical
systems, it is important to have physically justifiable noise
models. Historically noise in continuous time physical
systems was modeled as white Gaussian noise (the formal
derivative of Brownian motion). This noise model for
stationary systems was often justified by the fact that
the nonzero region of the spectral density of the noise
was significantly broader than the frequency description of
the dynamics of the system so a constant spectral density
was chosen on R that relates to a white noise and that
a suitable Central Limit Theorem should be applicable
to justify a Gaussian process. In the last few decades,
a family of Gaussian processes have been introduced as
an attempt to describe more effectively the empirical
properties of a noise in a variety of physical systems.
This family of processes indexed by the Hurst parameter
H ∈ (0, 1) is called fractional Brownian motions and
includes Brownian motion for H = 1

2 and some long

range dependent Gaussian processes for H ∈ ( 1
2 , 1) that

describe more effectively some observed behavior from

? Research supported in part by NSF grant DMS 1411412 and
AFOSR grant FA9550-17-1-0073 .

many physical phenomena such as rainfall, turbulence,
earthquakes, cognition, and epileptic seizures. The authors
have worked on these fractional Brownian processes in
both finite and infinite dimensions by developing some
stochastic calculus for these processes and solving a variety
of control problems e.g. Duncan, Jakubowski and Pasik-
Duncan [2006], Duncan, Maslowski and Pasik-Duncan
[2012], Duncan and Pasik-Duncan [2013] as well as solving
adaptive control problems with these noise processes. How-
ever all of these processes are Gaussian though significant
empirical evidence from physical systems demonstrates
that typically the noise in real world control systems is
not Gaussian ( Domański [2015]) and furthermore there
are mathematical justifications from non-Gaussian limit
theorems e.g. Dobrushin, Major [1979]. Specifically this
claim of non-Gaussian noise is partially based on data
from several hundred control loops operating in different
process industries located in many sites throughout the
world ( Domański [2015]). Thus the applicability of results
from control system models with Gaussian noise can be
questioned when applied to a variety of nonlocal physical
systems. Furthermore it seems both mathematically and
empirically important to have results for processes that
have self-similarity properties for scaling and long range
time dependence. Self-similar processes have probability
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laws that are invariant under suitable scaling and have long
range dependence that implies a relatively slow decay to
zero asymptotically which is often described in terms of
the asymptotic behavior of the corresponding covariance
function. The range of applications of self-similar processes
is significant. They have been identified in telecommu-
nications, hydrology, biophysics, geophysics, atmospheric
sciences, cognition, and finance (see the bibliographical
guides on the applications of self-similar processes by
Taqqu [1986]; and Willinger, Taqqu, and Erramili [1996]
that contain many references). An extensive review of some
turbulence models in given in Wilson [1998]. A fractional
Brownian motion (fBm), with the process denoted by
BH , is probably the most well known example of a self-
similar process. The fractional Brownian motions (fBm) are
indexed by the Hurst parameter H ∈ (0, 1). The reasons for
their importance are at least two-fold. First, the fact that
a fractional Brownian motion is self-similar, has stationary
increments, and exhibits long-range dependence when the
Hurst parameter H is in the interval (1/2, 1) makes it an
attractive model for many physical phenomena. The second
major reason is the fact that each fractional Brownian
motion is a Gaussian process. The stochastic calculus for a
fractional Brownian motion has been developed especially
for H ∈ ( 1

2 , 1). However, to generalize a noise to non-
Gaussian models, some major impediments arise in the
analysis and application of these processes for the solutions
of control problems such as having an effective stochastic
calculus to make useful models and determining explicit
expressions for control problem solutions for systems driven
by these non-Gaussian processes. A Rosenblatt process RH
with the Hurst parameter H ∈ (1/2, 1) is a stochastic
process which appears as the non-Gaussian limit of a
suitable limit theorem e.g. Dobrushin, Major [1979]. This
process shares some properties with a fractional Brown-
ian motion with the Hurst parameter H ∈ (1/2, 1). In
particular, a Rosenblatt process has a version with non-
differentiable Hölder continuous sample paths up to the
exponent H, stationary increments, and it also exhibits
long-range dependence and self-similarity of order H. In
fact, a fractional Brownian motion and a Rosenblatt process
are particular cases of the so-called family of Hermite
processes and as such, they have the same autocovariance
function. All of the Hermite processes can be described by
multiple singular Wiener-Itô integrals

Historically noise in stochastic systems has been modeled
by a Brownian motion or a formally equivalent Gaussian
white noise. More recently there has been some work
on linear systems with fractional Brownian motion noise.
However all of these processes are Gaussian. The authors
are not aware of any work on ergodic quadratic control
problems with continuous non-Gaussian noise other than
Čoupek, Duncan, Maslowski, and Pasik-Duncan [2019]
where an ergodic control is explicitly determined for a scalar
stochastic system with a Rosenblatt noise. The problem
considered here is a two dimensional linear stochastic
system where the two dimensional noise is two real-
valued Rosenblatt processes that are independent. Some
special symmetry assumptions are made to obtain explicit
solutions though the results can be extended to other linear
equations that lack the assumed symmetries. However
the results will not be as explicit as for the case that
is considered here. Furthermore some generalizations to

higher dimensional systems can be made. It seems that
no results for the optimal control of multidimensional
stochastic equations driven by Rosenblatt processes or other
continuous non-Gaussian and non-Markovian processes are
available. Since the Rosenblatt processes are not Markov,
Hamilton-Jacobi-Bellman equations are not applicable
for the control problem considered here. Furthermore
a stochastic maximum principle with forward-backward
stochastic differential equations is not available. Thus it
seems necessary to apply a direct method that has been
successfully used for linear-quadratic control problems with
Brownian motions and fractional Brownian motions e.g.
Duncan and Pasik-Duncan [2013], Duncan, Maslowski
and Pasik-Duncan [2012], linear-exponential quadratic
control and games Duncan [2013] Duncan [2016] and
control with Gauss-Volterra noise Duncan, Maslowski and
Pasik-Duncan [2017].

The probabilistic approach for the systems with a Rosen-
blatt noise process that occurs here uses a stochastic
calculus for these processes that is an evolution from the
stochastic calculus for Brownian motion and a family of
fractional Brownian motions Čoupek, Duncan and Pasik-
Duncan [2019]. An alternative approach to Rosenblatt
processes has used a white noise approach Arras [2015],
Arras [2016] that is an evolution from the white noise ap-
proach for Brownian motion Hida,Kuo,Potthoff,and Streit
[1994].

2. AN ERGODIC CONTROL PROBLEM

An ergodic control problem is chosen because it is important
not only for infinite time problems but even for long range
time problems and the limiting operation for T → ∞
simplifies some of the calculations that appear from the
Rosenblatt processes as is even the case for a Brownian
motion noise. For example an integral on the half line
to determine the optimal cost can be expressed as a
Gamma function while the integral on a bounded interval
cannot be related to a classical function. The ergodic
control problem considered here is formulated with a two
dimensional stochastic system and an ergodic quadratic
cost. The two dimensional aspect provides an indication
for possible generalizations to higher dimensions and how
the multidimensional system responds to the noise vector.
Some symmetries are assumed on the system that allow
for explicit computations and also imply the existence of
optimal ergodic costs for systems without these symmetries.
However even with the assumed symmetries the control
problem does not separate into two scalar problems.
The controlled stochastic system satisfies the following
stochastic equation

dX(t) =AX(t)dt+ CU(t)dt+ dRH(t) (1)

X(0) = x0 (2)

where X(t) ∈ R2, A ∈ L(R2,R2), A = AT , C ∈
L(R2,R2) and is C = I, and (RH(t), t ≥ 0) is a standard
two dimensional Rosenblatt process with parameter H
for both independent components of the two dimensional
Rosenblatt process. The term U is the control. The ergodic
quadratic cost, J∞(U), is
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J∞(U) = lim sup
T→∞

1

T
E[

∫ T

0

(〈QX(t), X(t)〉 (3)

+ 〈RU(t), U(t)〉)dt]
where Q,R are symmetric and Q > 0 and R > 0. The
family of admissible controls, U , is the collection of constant
linear feedbacks of the state X, that is,

U = {U(t) = KX(t)|K ∈ L(R2,R2)} (4)

This family of feedback controls is quite natural from the
result for a Brownian motion noise. However allowing
the controls to be adapted to the past of the process
here would imply functional dependence on the past of
the control because the control would be predicting the
future of the state process as is the case with fractional
Brownian motions e.g. Duncan and Pasik-Duncan [2013].
Such controls are not easily implementable. While the
assumption that C = I is restrictive it does not imply
that the problem reduces to two distinct scalar systems
because the cost functional cannot be split as the sum of
two separate costs for each scalar system without some
additional assumptions on the terms in the cost.

Initially some definitions of the Rosenblatt process, a
related fractional Brownian motion, and some differential
operators are given that are used in the change of variables
formula. Let (u)+ = max(u, 0) be the positive part of u
and define hHk as

hHk (u, y) =

k∏
j=1

(u− yj)
H
k −( 1

k+ 1
2 )

+ (5)

for H ∈ ( 1
2 , 1), u ∈ R, k ∈ (1, 2) and y = (y1, y2, . . . , yk) ∈

Rk.
Some fractional Brownian motions and Rosenblatt pro-
cesses are defined now. The fractional Brownian motions
are naturally associated with the Rosenblatt process.

Definition. Let H ∈ (1/2, 1) be fixed. A real-valued
fractional Brownian motion BH = (BH(t), t ∈ R) is
defined as follows

BH(t) = CBH

∫
R

(∫ t

0

hH1 (u, y)du

)
dW (y) (6)

for t ≥ 0 (and similarly for t < 0) where CBH is a constant
given below such that E(BH(1))2 = 1 and W is a standard
Wiener process on the probability space.

Definition. Let H ∈ (1/2, 1). A real-valued Rosenblatt
process RH = (RH(t), t ∈ R) is defined as follows

RH(t) =CRH

∫
R2

(∫ t

0

hH2 (u, y1, y2)du

)
dW (y1)dW (y2)(7)

=CRH

∫ s

0

u(H
2 −

1
4 )

(y1)I
−(H

2 −
1
4 )

s− I
(H

2 −
1
4 )

t− u(H
2 −

1
4 )

(y1)

× 1[s,t)(y1)u(H
2 −

1
4 )

(y2)I
−(H

2 −
1
4 )

s− I
(H

2 −
1
4 )

t− u(H
2 −

1
4 )

(y2)

×1[s,t)(y2)du dW (y1)dW (y2)

for t ≥ 0 (and similarly for t < 0) where CRH is a constant
such that E(RH(1)2) = 1, Is−, It− are fractional integrals
( Samko, Kilbas, and Marichev [1992]) and the integral
is a Wiener-Itô multiple integral (Itô [1951]) of order two

with respect to the Wiener process (standard Brownian
motion) W .

The normalizing constants CBH and CRH in the above two
definitions are given explicitly as

CBH =

√
H(2H − 1)

B
(
2− 2H,H − 1

2

) , CRH =

√
2H(2H − 1)

2B
(
1−H, H2

)
where B is the Beta function. For the subsequent Itô-type
formula (change of variables), it is also convenient to define
the following constants

cBH = CBH Γ

(
H − 1

2

)
, cRH = CRH Γ

(
H

2

)2

,

and

cB,RH =
cHR

cBH
2 + 1

2

=

√
(2H − 1)

(H + 1)

Γ
(
1− H

2

)
Γ
(
H
2

)
Γ(1−H)

(8)

where Γ is the Gamma function.

A change of variables (Itô formula) is described that is
important for the control solution and is verified in Čoupek,
Duncan and Pasik-Duncan [2019]. The subsequent change
of variables formula contains the following two differential
operators,

∇H
2 = I

H
2
+ D (9)

∇H
2 ,

H
2 = I

H
2 ,

H
2

+,+ D2. (10)

where D is the Malliavin derivative and

Iα+(f(x)) =

∫ x

−∞
f(u)(x− u)α−1du (11)

(Iα1,α2

+,+ f)(x1, x2) =
1

Γ(α1)Γ(α2)

∫ x1

−∞

∫ x2

−∞
f(u, v) (12)

(x1 − u)α1−1(x2 − v)α2−1dudv

These two differential operators occur in the description of
the Skorokhod integral for the Rosenblatt process from the
notion of the forward integrals (Russo and Vallois [1993]).
Specifically there is the following equality where the left
side of the equality has the forward stochastic integral and
right side has the Skorokhod (stochastic) integral and the
integrals depending on the above two differential operators.∫ t

0

gs d−RHs =

∫ t

0

gsδR
H
s (13)

+2cB,RH

∫ t

0

(∇H
2 gs)(s)δB

H
2 + 1

2
s

+

∫ t

0

(∇H
2 ,

H
2 gs)(s, s) ds

A change of variables formula is given for a time-varying
quadratic polynomial of the solution of a stochastic
equation driven by a two dimensional Rosenblatt process.

Theorem. Let f : R2 → R be a quadratic function and
g : R→ R is a smooth function and let (X(t), t ≥ 0) satisfy
(1). Then stochastic process (Y (t) = g(t)f(X(t)), t ≥ 0)
satisfies the following stochastic equation.
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Y (t) = Y0 +

∫ t

0

ϑ̃s ds+ 2cB,RH

∫ t

0

ϕ̃sδB
H
2 + 1

2
s (14)

+

∫ t

0

ψ̃sδR
H
s

where

ϑ̃s = f
∂g

∂s
(s, ys) +

g∂f

∂x
(s, ys)ϑs

+ cRH
g∂2f

∂x2
(s, ys)(∇

H
2 ,

H
2 ys)(s, s)

ϕ̃s =
g∂2f

∂x2
(s, ys)(∇

H
2 ys)(s)

ψ̃s = g
∂f

∂x
(s, ys).

and ϑs = Ax + Cu. The linear operators ∇H
2 ,

H
2 ,∇H

2 are
defined in (9), (10). The two stochastic integrals with
respect to a fractional Brownian motion and a Rosenblatt
process in the expression for Y are Skorokhod integrals
so they have expectation zero. This change of variables
(Itô formula) is verified in Čoupek, Duncan and Pasik-
Duncan [2019]. For a general smooth function of X a third
derivative term of X also appears.

3. OPTIMAL FEEDBACK CONTROL

The solution of the optimal feedback control for the ergodic
control problem described by (1), (3) is given in the
following theorem which is the main result in this paper.

Theorem. The stochastic control problem with the
stochastic equation (1), the ergodic quadratic cost (3), and
the family of controls (4) has an optimal feedback control,
K∗, given by the minimum of the following expression which
can be obtained by differentiation. The expression, g(K),
is strictly convex in K so the optimal K is determined by
the unique zero of the derivative.

g(K) =

∫ T

0

|R− 1
2 (RKX + CTPX)|2dt (15)

+ C̃H

∫ T

0

e(A+CK+AT+KTCT )rr2H−2dr

Proof. The change of variables formula is applied to
the real-valued process (〈P (t)X(t), X(t)〉, t ≥ 0) where
P satisfies a Riccati equation given subsequently. Initially
a change of variablez formula for Rosenblatt processes is
applied to 〈PX,X〉 using the result in Čoupek, Duncan
and Pasik-Duncan [2019] described above.

〈P (T )X(T ), X(T )〉 − 〈P (0)x0, x0〉 (16)

=

∫ T

0

[〈P (A+ CK +AT +KTCT )X,X〉

+ 2cHtr(∇
H
2 ,

H
2 Xs(s, s))]ds

+ 2

∫ T

0

〈∇H
2 Xs(s), dBH〉

+ 2

∫ T

0

〈X, dRH〉

+

∫ T

0

〈dP
dt
X(s), X(s)〉ds

Now take expectation of the equality (16) to obtain the
following equality.

E〈P (T )X(T ), X(T )〉 − 〈P (0)x0, x0〉 (17)

=E[

∫ T

0

[〈P (A+ CK +AT +KTCT )X,X〉

+ 2cHtr(∇
H
2 ,

H
2 Xs(s, s))]ds

+

∫ T

0

〈dP
dt
X(s), X(s)〉ds]

The two stochastic integrals with respect to BH and RH
are Skorokhod integrals (Skorokhod [1975]) so they have

expectation zero. It is necessary to compute ∇H
2 ,

H
2 Xt(u, u)

Initially the process X for this differential operator is
replaced by the Rosenblatt process RH . Recall that the
noise process in the stochastic equation (1) is dRH so it is
necessary to compute in the change of variables formula,

∇H
2 ,

H
2 RH where RH is a two-vector of independent real-

valued Rosenblatt processes. This computation is the
following

∇H
2 ,

H
2 RH,t(u, u) = C̃H

∫ t

0

|u− r|2H−2dr (18)

where the constant, C̃H , is given by

C̃H = 2cRH
B
(
H
2 , 1−H

)2
Γ
(
H
2

)2 . (19)

and B is the beta function. Note that the integral on the
right hand side is a two-vector each element having the
same integral because the two components of the Rosenblatt
process are independent.

Let Ξt(u) = ∇H
2 ,

H
2 Xt(u, u). Then it follows from the

solution of (1) that

Ξt(u) =

∫ t

0

[(A+ CK) + (AT +KTCT )]Ξs(u)ds (20)

+∇H
2 ,

H
2 RH.t(u, u)

because the operator ∇H
2 ,

H
2 Xt(u, u) is symmetric. Solving

this affine integral equation, it follows directly that

Ξt(u) = C̃H

∫ t

0

e(A+CK+AT+KTCT )(t−r) (21)

× |u− r|2H−2dr
which by an elementary change of variables is

Ξs(s) =∇H
2 ,

H
2 Xs(s, s) (22)

= C̃H

∫ s

0

e(A+CK+AT+KTCT )rr2H−2dr

Note that the term |u − r|2H−2 in (21) is a two vector
which has this same scalar term in both elements. Since
it is assumed that C = I and A = AT , it can be assumed
that K = KT . From the formula for the roots of a
quadratic polynomial, the three terms that determine K
occur explicitly in the roots. Let the roots be denoted c1, c2.
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The Riccati equation that is used for some computations
here is the one used for a Brownian motion noise so it
is not intrinsic for a Rosenblatt noise but it suffices for
some computations. Furthermore while some terms in the
equation are diagonal the Riccati equation is not. It is the
following equation.

dP

dt
−−ATP − PA+ PCTR−1CP −Q (23)

P (T ) = 0 (24)

Substituting the Riccati equation (23) in (17) and taking
expectation, the following equation results.

E〈P (T )X(T ), X(T )〉+ E

∫ T

0

〈QX,X〉dt (25)

+E

∫ T

0

〈RKX,KX〉dt

= E〈P (0)x0, x0〉+ E

∫ T

0

(〈RKX,KX〉dt

+〈P (CK +KTCT )X,X〉dt

+

∫ T

0

tr(C̃H

∫ t

0

e(A+CK+AT+KTCT )rr2H−2dr))dt

= E[〈P (0)x0, x0〉+

∫ T

0

|R− 1
2 (RKX + CTPX)|2]dt

+C̃H

∫ T

0

tr(

∫ t

0

e(A+CK+AT+KTCT )rr2H−2dr)dt

Initially consider a limit of the inner integral for the last
term on the right hand side, that is,

limt→∞C̃Htr(

∫ t

0

e(A+CK+AT+KTCT )rr2H−2dr) (26)

=
Γ(2H − 1)

Σ2
i=1c

2H−1
i

where (c1, c2) are the eigenvalues of the symmetric transfor-
mation (A+CK +AT +KTCT ). Clearly averaging of this

result as 1
T

∫ T
o

converges to the same value. Now divide
the previous equality by T and let T →∞.

limT→∞
1

T
EJ∞(K) =

1

T
E

∫ T

0

〈QX,X〉dt (27)

+E

∫ T

0

〈RKX,KX〉dt

= limT→∞

∫ T

0

|R−1(RKX + CTPX)|2dt

+
Γ(2H + 1)

Σ2
i=1c

2H−1
i

The minimization of the sum of the two integrals as T →∞
can be done with respect to the three distinct elements in K
by computing the derivative with respect to these variables
and likewise for the quadratic expression in the other
integral term. The characteristic polynomial of 2A+ 2K is
a polynomial of degree two so it can be solved with explicit
dependence on the elements of K that is k1, k2, k3 where
k3 is the off diagonal term. It follows directly from the

form of the two terms in (27) that both of them are strictly
convex functions of the elements of K and is the sum so
the minimum is determined by setting the derivative equal
to zero.
End of proof.
Thus the optimal feedback,K, can be explicitly determined.

The authors thank the referees for their comments that
clarified and improved the presentation.

4. CONCLUDING REMARKS

The result in this paper allows for the use of a Rosenblatt
noise for an ergodic control problem so that the noise
can better model the noise that is observed in control
systems for physical systems. For some generalizations it
is important to obtain optimal feedback control results
for higher dimensional stochastic systems and to eliminate
the symmetry conditions that are assumed here for A and
thereby K and to allow a general linear transformation for
C instead of I. Furthermore it is important to consider the
case where the Rosenblatt noise components are correlated
and likewise to study the corresponding multidimensional
finite time horizon control problems with Rosenblatt noise.
The finite time horizon linear-quadratic control problems
for a Rosenblatt noise are more complicated because the
term here that gave a Gamma function to determine an
optimal feedback control is an integral over a finite interval
for the finite time problem so this integral does not yield
a Gamma function or another classical function for its
integral. Given these optimal ergodic control results, it is
natural to consider some adaptive control problems where
some unknown parameters appear in the drift term of the
system equation. Another important generalization is to
consider some higher order Hermite processes. Rosenblatt
processes are order two Hermite processes because they
are defined by a double Wiener-Itô integral. However a
stochastic calculus needs to be developed for third or higher
order Hermite processes. Such a result would provide extra
flexibility in the choice of a noise model for a controlled
stochastic system. For the scalar ergodic control result for
a Rosenblatt noise process in Čoupek, Duncan, Maslowski,
and Pasik-Duncan [2019] it is important to understand
the scalar Riccati equation given there whose solution
determines the optimal feedback control and which has an
explicit dependence on the parameter H that determines
the optimal feedback control.
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