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Abstract: Nonlinear model predictive control (NMPC) or economic NMPC (eNMPC) is a widely studied 

optimal control method for batch processes with strongly nonlinear dynamics, but its performance can 

degrade severely in the presence of uncertainties in feedstock quality and other process characteristics. 

Reinforcement learning (RL) can be a good alternative in such cases since it can address stochastic 

uncertainties in a near-optimal manner using data samples from simulations or real operation. The 
downside is a large data requirement and unstable learning behavior, especially when the target system 

exhibits highly time-varying behavior as most batch processes do. To apply an RL algorithm to batch 

process control in a more stable and effective way, this study suggests a phase segmentation approach to 

consider the distinct dynamic characteristics of different phases. The approach designs separate reward 

functions and actor-critic networks. As a case study, optimal control of a polyol batch polymerization 

process is simulated to demonstrate the improvement in control policy brought by the phase segmentation 

approach and to compare its control performance with standard eNMPC. 
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1. INTRODUCTION 

Batch or semi-batch process is widely used for producing low-

volume, high-value added products. Batch operation generally 
comprises three steps: feed charge, processing, and product 

discharge. Operating condition of a batch process is 

determined to meet given requirements for end product quality 

(e.g., composition, size, and shape) in a manner that is optimal 

with respect to productivity maximization or cost 

minimization. However, its inherent features, such as 1) 

nonstationary operation, 2) highly nonlinear dynamics, and 3) 

existence of path and end constraints, present significant 

challenges for operation and control. These problems are 

exacerbated by significant uncertainties in feedstock and other 

process variabilities (e.g. disturbances, noises, model errors). 

For optimal control of batch processes, nonlinear model 

predictive control (NMPC) has been the most widely studied 

method.  NMPC determines optimal control actions by solving 

an open-loop optimization problem at each time step after 
appropriate updates using measurements. Rather than 

following off-line determined reference trajectories, economic 

NMPC (eNMPC) tries to optimize a profit function on-line to 

enhance profitability of the process. However, when the model 

used has significant uncertainty, its performance can 

deteriorate and constraints can be violated.  This is despite the 

feedback and re-optimization as it reacts to effects of 

uncertainty rather than proactively navigate through them.  To 

overcome such limitation of MPC, various robust MPC 

strategies have been suggested, but the need for an uncertainty 

model, which often is not available, and significantly increased 

on-line computational load stand as obstacles to their practical 

implementations (Morari and H. Lee, 1999). 

In this regard, the reinforcement learning (RL) approach, 

which can address stochastic uncertainty through off-line 

simulations and sample based learning, can be an effective 

alternative and its potential was demonstrated through several 

set point tracking control problems (Lee and Lee, 2005). In 

that case study, the set point tracking error was used as the 

(negative) reward in training a RL-based controller. RL-based 

control using economic reward functions have been studied 

previously but the studies addressed problems with small and 

discretized  control space, which may be inadequate for many 

batch process control problems (Wilson and Martinez, 1997; 

Martinez, 1998). 

In this work, we propose a RL based control strategy for a 

batch process with high dimensional and continuous state and 

action spaces. Three types of rewards are considered and a 
phase segmentation approach is suggested to account better 

address distinct dynamic characteristics of different steps in 

batch operation. Deep deterministic policy gradient (DDPG) 

algorithm (Lillicrap et al., 2016) adopted as it is known to be 

effective in handling high dimensional continuous state and 

action spaces. Performances of the proposed RL based 

controller and the eNMPC controller are compared using an 

example of a polymerization process with uncertainty in its 

kinetic parameter.  
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2. METHODS 

2.1 Reward types 

In RL, the agent gets rewards (or penalties) from the 

environment, which reflect the goal of a decision-making 

problem. In this study, three types of reward terms (as shown 

in Table 1) are contemplated to train the agent for high process 
performance and constraint satisfaction. The first is a reward 

term for satisfying path constraints (rpath ). If all the path 

constraints are satisfied, the agent gets a reward, otherwise a 
penalty. The second is a reward term for satisfying end-point 

constraints (rend), expressed as a sum of the reward for each 

end-point constraint (rend,i). If the constraint is violated, the 

agent receives a penalty value proportional to degree of 

constraint violation. The last reward term is for process 

productivity (rprod ). This reward is needed to ensure high 

productivity in addition to on-spec product. For example, total 

mass in the reactor can be used as v to guarantee a sufficient 

production quantity as in the case study. αj for the reward and 

penalty terms are hyperparameters which should be tuned 

along with the discount rate γ. 

Table 1. Reward types 

𝐫𝐩𝐚𝐭𝐡 {
+αpath,     if satisfies all path constriants

−αpath,     otherwise                                       
 

𝐫𝐞𝐧𝐝,𝐢 {
+αend,          if satisfies end point constraint i

−αend′ − (var − boundary val. )scaled, otherwise
 

𝐫𝐩𝐫𝐨𝐝 𝑣𝑠𝑐𝑎𝑙𝑒𝑑  (𝑣 is a measure of process performance) 

2.2 Phase segmentation 

As said before, a batch process normally operates in three steps: 

feed charge, processing, and discharge. Without considering 

the discharge step, the entire reaction time can be divided into 

two phases. Phase I is the feeding-focused phase, so the 

reward is the sum of the rewards for satisfying the path 

constraints (rpath) and for achieving high productivity (rprod) 

without regard to the end constraints. Phase II is the reaction-

focused phase which must emphasize the satisfaction of end 

product quality specs, so rpath and rend are assigned to non-

terminal state and the terminal state, respectively. Even though 

rewards differ for different phases, the return value which is 

the cumulative rewards is calculated along the entire batch 

time and the critic network predicts that value. Table 2 

summarizes the choice of rewards for different phases. 

Table 2. Reward for each phase 

Phase I: Feeding-focused Phase II: Reaction-focused 

𝐫 = 𝐫𝐩𝐚𝐭𝐡 + 𝐫𝐩𝐫𝐨𝐝 if not terminal: 𝐫 = 𝐫𝐩𝐚𝐭𝐡 

if terminal: 𝐫 = 𝐫𝐞𝐧𝐝 

2.3 Monte-Carlo DDPG 

DDPG  is a method to train the actor and critic when state and 

action spaces are continuous and the policy trained is 

deterministic (Lillicrap et al., 2016).  This method uses the 

temporal difference (TD) update along with target networks to 

promote stable bootstrapping. However, even with the use of 

target networks, the critic and actor may converge to sub-

optimal ones or even diverge to the boundary values.  Due to 

the bootstrapping, the actor can be updated towards a wrong 

direction based on inaccurately estimated values and this in 

turn leads to bad samples with low rewards (Tsitsiklis and Roy, 

2000; Fujimoto, Van Hoof and Meger, 2018). The Monte-

Carlo (MC) update method can be a better choice for batch 

process problems which often involve irreversible transitions 
and require a precise prediction of the terminal reward early 

on. Therefore, we modified the DDPG algorithm to adopt the 

MC update in place of the TD update. The actors are updated 

with the same gradient calculation as in DDPG, but target 

networks and bootstrapping are not used. The return value is 

calculated once an episode ends (Gt(𝑠𝑡 , 𝑎𝑡) = rt + γGt+1), and 

this value is used as a target of the critic networks. To initialize 

the network parameters with reasonable values, a sub-optimal 

controller such as eNMPC can be used in the simulation for 

the first few episodes. 

3. CASE STUDY 

3.1 Propylene oxide (PO) batch polymerization 

To evaluate the performance of the proposed RL based control 

strategy, a polyether polyol process for polypropylene glycol 

production is used as it involves both path and end constraints. 

The monomer PO first reacts with the alkaline anion and then 

the oxy-propylene anion undertakes the propagation, which is 

followed by the cation-exchange and proton-transfer reactions. 
A first-principles dynamic model including the population 

balance equations of polymer chains and monomers and 

overall mass balance was reformulated with the method-of-

moments for the reactor simulation and eNMPC 

implementation (Nie et al., 2013; Mastan and Zhu, 2015). 

There are two path constraints, one on the heat removal duty 

and the other on the adiabatic temperature, and three end-point 

constraints, which represent the specs on the final number 

average molecular weight (NAMW), final unsaturated chains 

per mass (USV), and final concentration of unreacted 

monomer (Unrct). The manipulated variables are the reactor 

temperature T and the monomer feeding rate F (i.e., 𝑎𝑐𝑡𝑖𝑜𝑛 ∈
{𝑇, 𝐹} ). In this case study, the kinetic parameter of the 

propagation reaction 𝐴𝑝 is perturbed by assuming a uniform 

distribution in the range of ±10 % of its nominal value. Total 

reaction time and sampling interval are set as 480 min and 20 

min, respectively, as in the previous studies (Jung et al., 2015; 

Jang, Lee and Biegler, 2016) and perfect measurements of the 

state are assumed.  

3.2 Actor-Critic networks training 

To implement the proposed algorithm, we employed PyTorch 

(Paszke et al., 2017) in Python. The state comprises reaction 

time t and 11 physical variables of the dynamic model 

including the number of moles of PO and moments of polyol 

product. Phase I and Phase II are divided at 400 min according 
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Table 3. Rewards for the path and end-point constraints (Jung et al., 2015) 

𝐫𝐩𝐚𝐭𝐡 
Heat Duty Heat removal duty ≤ 430 [J/s] if (HeatDuty ≤ 430)&(Tads ≤ 192): rpath = 0.5 

else: 𝑟𝑝𝑎𝑡ℎ = −0.5 Tads Adiabatic temperature rise ≤ 192 [°C] 

𝐫𝐞𝐧𝐝 

NAMW Final NAMW ≥ 3027.74 [g/mol] 
if (NAMW ≥ 3027.74): rend,1 = 1 
else: rend,1 = −0.5 − (3027.74 − 𝑁𝐴𝑀𝑊)/1500 

USV Final Unsat. Value ≤ 0.02 [mmol/g polyol] 
if (USV ≤ 0.02): rend,2 = 1 
else: rend,2 = −0.5 − 3100 ∗ (USV − 0.02) 

Unrct Final unreacted PO ≤ 2000 [ppm] 
if (Unrct ≤ 2000): 𝑟𝑒𝑛𝑑,3 = 1 
else: rend,3 = −0.5 − (Unrct − 2000)/3900 

to the solutions from the initial sub-optimal controller, which 

is the eNMPC controller with a shrinking horizon, chosen to 

deal with the end-point constraints. v in rprod is defined as the 

total mass in the reactor and other reward terms are chosen as 

reported in Table 3. We initially trained the networks using 

samples from 21 episodes with eNMPC and then trained the 

resulting networks further with the MC-DDPG algorithm 

using data from 2500 more episodes. 

3.3 Results – Network training with phase segmentation 

To demonstrate the benefit of using the phase segmentation for 

training the RL based controller, two cases are compared: Case 

1) One actor-critic network for the entire batch, Case 2) Two 

actor-critic networks, one for each of the two phases of batch. 

In the first case, one actor and critic network are trained 

without using the phase segmentation approach and the sum of 

rpath and rprod are always used as the reward. The second case 

trains separate actor and critic networks for each of the two 

phases. Their performances are evaluated in the cases of -10, 

0 and +10% perturbations to 𝐴𝑝.  

As shown in Fig. 1, the actor trained without phase 

segmentation converged to the unreasonable value which also 

incurs less amount of product with unsatisfied quality (see 

Table 4). Note that, in this case study, the action policy should 

be given by a high feeding rate with a low temperature during 

Phase I and a low feeding rate with a high temperature during 

Phase II.  In Case 2, the correct phase-dependent trends in the 
feeding rate and temperature profiles are observed as shown in 

Fig. 3, and also the path constraints are almost satisfied 

showing that in -10% of Ap  the constraint for adiabatic 

temperature is slightly violated. From this result, we can see 

that the RL based controller gives a converged profile which 

satisfies all the constraints, similar to the result of robust MPC. 

In terms of end-point constraints, one constraint is violated by 

a small bit in the case of -10% of Ap as shown in Table 6. 

Table 4. Performance of Case 1 for handling the end-

point constraints  

 -10% 0% +10%  

NAMW 3247.17   3599.38    3953.41    ≥ 3027.74 

USV 0.0297      0.0279   0.0264      ≤ 0.02 

Unrct 3     3 2 ≤ 2000 

Total mass 797.67  797.64   797.63      

 

Fig. 1. Action profile of Case 1) One actor-critic network for 

the entire batch 

3.4 Results – Control performance 

Performances of the RL based controller with phase 

segmentation and the eNMPC controller are compared for the 

same three parameter perturbation cases tested in Section 3.3. 

Fig. 2 shows the simulation results using the eNMPC 

controller. It gives very different profiles of the feeding rate 

with the perturbations in 𝐴𝑝  and violations in both of the path 

constraints occur, especially the upper limit of adiabatic 

temperature. The end-point constraints are also violated with 

the -10% perturbation in 𝐴𝑝 as shown in Table 5. 

On the other hand, the RL based controller with phase 

segmentation and two actor and critic networks shows good 

performance, giving consistent action profiles despite the 

perturbations in the parameter (see Fig. 3). The resulting action 

policy satisfies the path constraints except for the near 

boundary in the case of -10% of Ap . The end-point constraints 

are satisfied except that for USV in the case of -10% of Ap as 

reported in Table 6. Compared with the eNMPC results, the 

RL based controller shows better performance in satisfying the 

constraints using a smoother action profile. The one slight 

constraint violation that remained will be addressed in our 

future work by relaxing the reaction time until all the 

constraints are fully satisfied. 

Table 5. Performance of eNMPC for handling the end-

point constraints 

 -10% 0% +10%  

NAMW 3158.95  3866.70 4680.56 ≥ 3027.74 

USV 0.0204  0.0200  0.0198 ≤ 0.02 

Unrct 2444.77 1974.27 1612.73 ≤ 2000 

Total mass 5555.16  6955.77   7839.42  
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Fig. 2. Performance of eNMPC with manipulated variables 

and path constraints for the three perturbation cases 

 Table 6. Performance of the RL based controller for 

handling the end-point constraints 

 -10% 0% +10%  

NAMW 3044.69  3059.14   3071.22   ≥ 3027.74 

USV 0.0214    0.0192  0.0174     ≤ 0.02 

Unrct 1898    1094 635   ≤ 2000 

Total mass 5798.88  5808.77  5817.14    

 

 

Fig. 3. Performance of the RL based controller with 

manipulated variables and path constraints 

 

4. CONCLUSIONS 

A RL based batch process control strategy was proposed along 

with the phase segmentation approach (i.e., feeding and 

reaction phases). The suggested strategy was tested on a batch 

polymerization example and the beneficial effect of the phase 

segmentation on the training and control performance was 

observed. Comparing with the eNMPC, the RL-based 

controller showed enhanced ability to satisfy the path and end-

point constraints in the presence of parameter errors. For future 

work, the RL based control formulation will be extended to 

minimize reaction time while satisfying all path and end-point 

constraints. 
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