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Abstract: In this paper, the fault-tolerant control problem for the formation of unknown
quadrotor team with nonlinearities, couplings, and actuator faults in the dynamics is investi-
gated. A distributed observer is designed to estimate the position references for each quadrotor.
A hierarchical control scheme is constructed including a fault-tolerant position controller to
achieve the desired formation and a fault-tolerant attitude controller to track the attitude
references. Reinforcement learning algorithms are designed to learn the optimal control policies
of the position and attitude controllers. Simulation results are given to illustrate the effectiveness
of the proposed controller.
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1. INTRODUCTION

As a typical class of UAVs, quadrotors have received
much research interest because of their capabilities of
hovering, slow flight, and vertical take-off and landing.
Furthermore, the cooperation of the multi-agent quadrotor
system exhibits special superiority in the complicated task
such as telecommunication relay, cooperative load trans-
portation, and wilderness search (see, Dong et al. (2018)).
The quadrotors are composed of a rigid frame with four
individual rotors, which generate the control torques for
the quadrotor by changing the spinning speeds of the
four rotors. However, the actuating rotors are prone to
faults because of the degradation of the motors or the
damage of the propellers (see,e.g., Avram, Zhang, and
Muse. (2017)). For the multi-agent quadrotor system, the
probability of the system encountering actuator faults is
growing due to the increasing team scale and the com-
plexity of the multi-agent system (see, Qin et al. (2017)).
The appearance of the actuator faults may result in un-
desirable trajectory tracking performance, instability of
the multi-agent quadrotor system, and even catastrophic
consequence. Therefore, it is necessary to address the
fault-tolerant control (FTC) problem for the multi-agent
quadrotor system under actuator faults.

? This work was supported by the National Natural Science Foun-
dation of China under Grants 61873012, 61503012, and 61633007,
and the Office of Naval Research under Grant N00014-17-1-2239.

Recently, the FTC methods have been implemented to the
cooperative control of the multi-agent systems. In Deng
and Yang. (2017), the distributed adaptive FTC problem
was studied for the synchronization of linear multi-agent
systems under the effects of actuator faults. In Hua et al.
(2016), the distributed FTC problem was investigated to
achieve the formation for second-order linear multi-agent
systems in the presence of multiple actuator faults. In
Yu, Qu, and Zhang. (2019), a distributed fault-tolerant
controller was studied to achieve the desired synchroniza-
tion for multiple cooperative UAVs with nonlinearities
and actuator faults in the dynamics. In Shi et al. (2017),
a fault-tolerant formation controller involving a decen-
tralized state observer and an adaptive fault estimator
was developed for nonlinear quadrotor team to drive each
quadrotor to the desired formation pattern. However, in
the fault-tolerant controller design process of Deng and
Yang. (2017); Hua et al. (2016); Yu, Qu, and Zhang.
(2019); Shi et al. (2017), the dynamics of the system
was required, which is unpractical in the controller design
of quadrotor team. In fact, the quadrotor is a nonlinear
system subject to actuator faults and the dynamics of
the quadrotor system is difficult to obtain in practical
applications. Therefore, it is promising to design a fault-
tolerant controller for multiple unknown quadrotors sub-
ject to nonlinearities and actuator faults in the quadrotor
dynamics.

In the latest years, Reinforcement learning (RL) has be-
come a powerful approach to learn the optimal control
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policy and emerged in the fault-tolerant controller design
for single-agent systems (see, e.g., Liu, Wang, and Wang.
(2017); Wang et al. (2016); Zhang et al. (2018); Deptula
et al. (2018); Ma, Xu, and Yang. (2019)). In Liu, Wang,
and Wang. (2017); Wang et al. (2016), the RL-based
fault-tolerant controllers were developed to tolerant ac-
tuator faults for nonlinear multiple-input multiple-output
(MIMO) discrete-time systems. In Zhang et al. (2018), a
RL-based FTC algorithm was designed by using online
policy iteration approach to learn the optimal controller
for nonlinear tracking systems. In the RL-based optimal
controller design of Deptula et al. (2018), a data-based esti-
mator was constructed to estimate the loss of effectiveness
(LOE) actuator faults and then an approximate dynamic
programming approach was implemented to learn the opti-
mal control solutions for the system. In Ma, Xu, and Yang.
(2019), a series of RL algorithms were implemented in the
data-driven FTC design for a single quadrotor to estimate
the actuator faults and then compensate the actuator
faults. However, the FTC problem for the formation of
multiple nonlinear unknown quadrotor systems subject to
actuator faults has not been discussed in the literatures
mentioned before.

Therefore, the fault-tolerant cooperative control problem
for multiple unknown quadrotor systems with nonlineari-
ties and actuator faults in the dynamics remains an open
issue. In this paper, a distributed fault-tolerant coopera-
tive controller is designed including a distributed observer,
a fault-tolerant position controller, and a fault-tolerant
attitude controller. The distributed observer is constructed
to estimate the desired position for each quadrotor using
the information of its neighbors and itself. Then, a posi-
tion controller and an attitude controller are constructed.
The optimal control policies for the position and attitude
controller are learned by using RL approach. Then, the
fault-tolerant controllers are designed for the quadrotor
position subsystem and the quadrotor attitude subsystem
to compensate the actuator faults.

The rest parts of this paper are given as follows. Section 2
gives the preliminaries on the graph theory, the quadrotor
model, the actuator fault model, and the problem formu-
lation. The fault-tolerant formation controller is designed
in Section 3. In Section 4, the simulation results of six
quadrotor are shown and the concluding remarks are given
in Section 5.

Notations: Define IN as a N ×N unit matrix, λi(M) the
ith eigenvalue of the matrix M , 0k×l a k × l zero matrix,
and ca,b an a× 1 vector with 1 in the bth element and 0s
elsewhere.

2. PRELIMINARIES

2.1 Graph Theory

Consider a team of N quadrotors. Let Φ = {1, 2, · · · , N}.
The communication topology among the quadrotors is
described with a time invariant graph G = (V, E, W ),
where V = {vi} (i ∈ Φ) is the node set, E ⊂ V × V
the edge set, and W = [wij ] ∈ RN×N the weighted
adjacency matrix. For node vi and node vj (i, j ∈ Φ),
the weight wij satisfies that wij > 0 if and only if
(vi, vj) ∈ E, otherwise wij = 0. Denote the neighbors of

vi as Ni = {vj |(vi, vj) ∈ E }. Let di be the in-degree of
vi with di =

∑N
j=1 wij . Define L = D − W , where D =

diag(di) ∈ RN×N . The path from vi to vj is a sequence
of ordered edges with {(vi, vk), (vk, vn), · · · , (vl, vj)}. The
graph G contains a spanning tree if there is at least one
node connected to all the other nodes.

2.2 Quadrotor Model

Define EI = {eI
x, eI

y, eI
z} as the inertial frame and

EB = {eB
x , eB

y , eB
z } the body-fixed frame. Let pi =

[pxi pyi pzi]
T ∈ R3×1 be the position of the ith quadrotor

and Θi = [φi θi ψi]
T ∈ R3×1 the Euler angle of the ith

quadrotor. From Liu et al. (2019), one can obtain the
quadrotor dynamic model as

mip̈i = RfiFi,

JΘiΘ̈i = −C
(
Θi, Θ̇i

)
Θ̇i + τi,

(1)

where mi is the mass of the ith quadrotor, JΘi =
diag(Jφi, Jθi, Jψi) ∈ R3×3 the inertial matrix, C(Θi, Θ̇i) ∈
R3×3 the nonlinear Coriolis term described in Raffo, Or-
tega, and Rubio. (2010), and Rfi ∈ R3×3 the orienta-
tion matrix from EB to EI shown in Liu et al. (2019).
Fi ∈ R3×1 and τi ∈ R3×1 are the external force and the
torque generated by the four rotors with

Fi = c3,3kwi

∑4

k=1
ω2

i,k −RT
fic3,3mig (2)

and

τi=[ktikwi(ω2
i,1−ω2

i,3) ktikwi(ω2
i,2−ω2

i,4) lτi

∑4

k=1
(−1)k+1

ω2
i,k]

T

,(3)

respectively, where g indicates the gravity constant, ωi,j

(j = 1, 2, 3, 4) is the rotational speed of the jth rotor of the
ith quadrotor, and kti, kwi, lτi are positive scaling factors
for the ith quadrotor. Let ω̄2

i =
[
ω2

i,1 ω2
i,2 ω2

i,3 ω2
i,4

]T
. Due

to the existence of a power distribution board, the control
inputs can be distributed as:




uφi

uθi

uψi

uzi


 =




0 1 0 −1
1 0 −1 0
1 −1 1 −1
1 1 1 1







ω2
i,1

ω2
i,2

ω2
i,3

ω2
i,4


 = Gmω̄2

i . (4)

Define upi = [upxi upyi upzi]
T ∈ R3×1 as the virtual

position control input with

upi = Rfic3,3uzi. (5)

Then, one can rewrite the quadrotor model (1) as

p̈i = bpiupi − c3,3g,

Θ̈i = −J−1
Θi

(
C

(
Θi, Θ̇i

)
Θ̇i

)
+ bτiuτi,

(6)

where uτi = [uφi uθi uψi]
T , bpi = m−1

i kwiI3×3, and bτi =
J−1

Θi diag{ktikwi, ktikwi, lτi}.
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2.3 Actuator Fault Model

Similarly to Avram, Zhang, and Muse. (2018), the actuator
fault of the ith quadrotor in the jth rotor is described as(
ω∗i,j

)2 = ρijω
2
i,j , i ∈ Φ, j = 1, 2, 3, 4, where ω∗i,j indicates

the actual spinning speed and ρij an unknown positive
LOE gain with 0 < ρij ≤ 1. In this paper, the actuator
faults of the rotors are described with a diagonal matrix
Kρi ∈ R4×4 satisfying that Kρi = diag{ρi1, ρi2, ρi3, ρi4}.
Then, the quadrotor model with actuator faults can be
written as

p̈i = bpi (upi − µ(t− ts)u∆pi)− c3,3g,

Θ̈i=−J−1
Θi

(
C

(
Θi, Θ̇i

)
Θ̇i

)
+bτi (uτi−µ(t− ts)u∆Θi) ,

(7)

where µ(t − ts) is a step function with an unknown fault
occurrence time ts satisfying that µ(t−ts) = 0 if t < ts and
otherwise, µ(t− ts) = 1. u∆pi ∈ R3×1 and u∆Θi ∈ R3×1 in
(7) are the input uncertainties resulted from the actuator
faults of the rotors. From (3), (4), (5), (6), u∆pi and u∆Θi

can be derived as

u∆pi = Rfic3,3u∆zi,

u∆zi = [1− ρi1 1− ρi2 1− ρi3 1− ρi4] ω̄2
i ,

u∆Θi = [I3 03×1]Gm (I4 −Kρi) ω̄2
i .

(8)

In the practical applications, the uncertainties u∆pi and
u∆Θi are time-varying and bounded with ‖u∆pi‖ ≤ ū∆pi

and ‖u∆Θi‖ ≤ ū∆Θi. The bounds ū∆pi and ū∆Θi are
not directly available in practical applications and are
estimated by designing fault estimators, which will be
given in the following section.

2.4 Problem Formulation

The objective of this paper is to design a fault tolerant
formation controller for unknown quadrotor team with
nonlinear dynamics and actuator faults. Define p0 =
[px0 py0 pz0]

T ∈ R3×1 as the position of the virtual
leader in EI for the quadrotor team to track and δij =
[δx,ij δy,ij δz,ij ]

T ∈ R3×1 (i, j ∈ Φ) the desired position
deviation between the ith quadrotor and the jth quadro-
tor. Let δij = δi − δj , where δi = [δxi δyi δzi]

T ∈ R3×1

(i ∈ Φ) is the desired position deviation between the
ith quadrotor and the virtual leader. In this paper, the
ith quadrotor can only have access to the information
of its neighbors and itself. The position deviation δij for
the ith quadrotor is predesigned according to the desired
formation pattern. δi is not available if the ith quadro-
tor is not connected to the virtual leader. Let pri =
[pxri pyri pzri]

T ∈ R3×1 be the position reference with
pri = pr0 + δi and epi = [exi eyi ezi]

T ∈ R3×1 the position
tracking error for the ith quadrotor with epi = pi − pri.
A distributed observer is designed in the following section
to estimate p̂ri for the ith quadrotor using the available
information of its neighbors and itself.

3. CONTROL PROTOCOL DESIGN

3.1 Distributed Observer Design

Let xp0 = [pT
0 ṗT

0 ]
T ∈ R6×1 be the state of the leader.

The dynamics of the virtual leader is described as ẋp0 =

Ap0xp0, where Ap0 ∈ R6×6. Denote ςpi = [p̂ri
˙̂pri] ∈ R6×1

as the state of the ith observer for the ith quadrotor. Let
δ̄ij = [δT

ij 01×3]
T ∈ R6×1 and δ̄i = [δT

i 01×3]
T ∈ R6×1. The

distributed observer is designed as

ς̇pi=Ap0ςpi+γi

∑

j∈Ni

(
wij

(
ςpj−ςpi+δ̄ij

)
+ρi

(
xp0+δ̄i−ςpi

))
, (9)

where γi is a positive constant to be determined and ρi a
constant with ρi > 0 indicating that the ith quadrotor has
access to the virtual leader and otherwise ρi = 0. Define
x̃pi ∈ R6×1 as the estimation error of the ith observer
with x̃pi = ςpi− δ̄i− xp0. Assume graph G has a spanning
tree. Then, x̃pi will converge to 0 on condition that γi is
sufficiently large.

3.2 Position Controller Design

By using the estimated leader state and the quadrotor
state, from (7), an augmented system can be constructed
as

Ẋpi=ĀpiXpi+B̄pi (upi−µ(t−ts)u∆pi)−c12,6g+Dpiεpi,(10)

where Xpi = [xpi ςi]
T ∈ R12×1, Āpi = diag(Api, Ap0) ∈

R12×12, B̄pi = [BT
pi 0

3×6
]
T ∈ R12×3, Bpi = [03×3 bT

pi]
T ∈

R6×3, εpi =
∑

j∈Ni

(
wij

(
ςpj−ςpi+δ̄ij

)
+ρi

(
xp0+δ̄i−ςpi

))
, and

D̄pi = [06×6 γiI6]
T ∈ R12×6. εpi (i ∈ Φ) will converge to

0 i.e., p̂ri will converge to pri, by using the proposed dis-
tributed observer. The position tracking error epi satisfies
epi = [Cp −Cp]Xpi and Cp = [c6,1 c6,2 c6,3]

T . Define the
performance function for the augmented system as

Vpi (epi, upi)=
∫ ∞

t

e−α1i(τ−t)
(
eT
piQpiepi+uT

piRpiupi

)
dτ,(11)

where Qpi > 0, Rpi > 0, and α1i is a positive constant
to guarantee that Vpi is bounded for any given uτi (see,
Modares and Lewis. (2014)). From the optimal control
theory (see, Lewis and Syrmos. (1995)), one can obtain
the optimal position control policy u∗pi as

u∗pi = −1
2
R−1

pi B̄T
pi∆V ∗

pi, (12)

where ∆V ∗
pi = ∂V ∗

pi/∂Xpi and the performance function
V ∗

pi is the solution to the following equation:

eT
piQpi epi − 1

4
(∆V ∗

pi)
T B̄piR

−1
pi B̄T

pi∆V ∗
pi − α1iVpi

+ (∆V ∗
pi)

T
(
ĀpiXpi − c12,6g + Dpiεpi

)
= 0.

(13)

In order to achieve the desired formation for quadrotor
with the uncertainty u∆pi, the position controller in this
paper is designed as

upi(t) =
1
2
u∗pi(x) +

ˆ̄u2
∆piRpiu

∗
pi(x)∥∥Rpiu∗pi(x)

∥∥ ˆ̄u∆pi + σ1(t)
, (14)

where ˆ̄u∆pi is the estimated value of ū∆pi and σ1(t) a
positive function with

∫∞
t

σ1(t)dτ ≤ σ̄1 < ∞. The fault
estimator is designed to estimate the bound ū∆pi with
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Algorithm 3.2: RL algorithm for position controller

Initiation: Apply a stabilizing control input upi with
bounded upei to the quadrotor system and collect the data.
Determine the stopping criterion ϑl1 > 0.
Step 1: Solve the equation (16) for V n

i and un+1
τi , simulta-

neously.
Step 2: Stop if:

∣∣un+1
τi − un

τi

∣∣ < ϑl1, otherwise, let n = n+1
and go to Step 1.

dˆ̄u∆pi/dt = −kσ1σ1(t)ˆ̄u∆pi + 2kσ1

∥∥Rpiu
∗
pi(x)

∥∥ , (15)

where kσ1 is a positive constant. It can be seen from (14)
that the proposed fault-tolerant controller rely on the op-
timal control policy u∗pi. But the optimal control approach
(12), (13) requires the accurate dynamic information of the
quadrotor team, which is unpractical for quadrotor team
in the formation flight applications. In the following, a RL
algorithm is designed to obtain u∗pi without knowledge of
the quadrotor dynamic information.

For a given bounded signal upei ∈ R3×1, one can obtain
from (12) that

e−α1i∆tV n
pi (Xpi (t + ∆t))− V n

pi (Xpi (t)) =
∫ t+∆t

t

e−α1i(τ−t)
[
−eT

piQpiepi −
(
un

pi

)T
Rpiu

n
pi

]
dτ

−
∫ t+∆t

t

2e−α1i(τ−t)
(
un+1

pi

)T
Rpiupeidτ,

(16)

where V n
pi (Xpi) and un

pi indicate the updated value of
Vpi (Xpi) and upi in the nth iteration. It can be seen from
(16) that the V n

i and un+1
τi can be updated using (16),

which yields Algorithm 3.2.

In Algorithm 3.2, the performance function V n
i and the

control policy un+1
τi in the nth iteration can be approx-

imated by a critic neural network (NN) and an action
NN. The weights of the NNs can be updated by using the
least-square (LS) method under a persistence excitation
(PE) condition (see, Lewis and Syrmos. (1995)). Define
Θri = [φri θri ψri]

T as the attitude reference for the
attitude controller of the ith quadrotor. Once the fault-
tolerant position control policy upi in (14) is determined,
from (5), one can derive the desired control input uzi, the
desired roll angle φri, and the desired pitch angle θri for
the attitude controller with

uzi=upzi/ cos θi/ cos φi,

φri=arcsin ((cos φi sin θi sinψi − upyi/uzi) / cos ψi) ,

θri=arcsin ((upxi/uzi − sinφi sinψi) / cos ψi/ cos φi) .

(17)

3.3 Attitude Controller Design

Let xΘri = [ΘT
ri Θ̇T

ri]
T ∈ R6×1 be the state of the attitude

reference and xΘi = [ΘT
i Θ̇T

i ]
T ∈ R6×1 the attitude state

of the ith quadrotor. From (7), an attitude augmented
system can be constructed as

ẊΘi = F̄Θ (XΘi) + B̄τi (uτi − µ(t− ts)u∆Θi) , (18)

Algorithm 3.3: RL algorithm for attitude controller

Initialization: Apply a stabilizing policy uτi with bounded
uτei to the quadrotor and collect the system data.
Step 1: Solve for V n

Θi and un+1
τi simultaneously:

e−α2i∆tV n
Θi (XΘi (t + T ))− V n

Θi (XΘi (t)) =
∫ t+∆t

t

e−α2i(τ−t)
(
−eT

ΘiQΘieΘi − (un
τi)

T
RΘiu

n
τi

)
dτ

−
∫ t+∆t

t

e−α2i(τ−t)2
(
un+1

τi

)T
RΘiuτeidτ.

(24)

Step 2: Set un
τi = un+1

τi and V n
Θi = V n+1

Θi and go to Step 1
until a stopping criterion is reached.

where F̄Θ(XΘi) = [FΘi(xΘi)
T

FΘri(xΘri)
T ]

T ∈ R12×1,

XΘi = [xT
Θi xT

Θri]
T ∈ R12×1, B̄τi = [BT

τi 0]
T
, and Bτi =

[c6,4bτi,1 c6,5bτi,2 c6,6bτi,3]. FΘri (xΘri) ∈ R6×1 is an un-
known function related to xΘri. FΘi (xΘi) ∈ R6×1 is the
nonlinear function with

FΘi (xΘi) =

[
03×3 I3

03×3 −J−1
i C

(
Θi, Θ̇i

)
]

xΘi. (19)

Define eΘi = [eφi eθi eψi]
T ∈ R3×1 as the attitude

tracking error with eΘi = [Cτ −Cτ ]XΘi and Cτ =
[c6,1 c6,2 c6,3]

T . Then, a performance function for the at-
titude system is defined as

VΘi (eΘi,uτi)=
∫ ∞

t

e−α2i(τ−t)
(
eT
ΘiQΘieΘi+uT

τiRΘiuτi

)
dτ,(20)

where QΘi = QT
Θi > 0, RΘi = RT

Θi > 0, and α2i > 0.
Then, one can obtain an optimal attitude control policy
u∗τi as u∗τi = − 1

2R−1
Θi B̄

T
τi∆V ∗

Θi, where V ∗
Θi is the solution to

the following equation as

eT
ΘiQΘieΘi − 1

4
(∆V ∗

Θi)
T
B̄T

τiR
−1
Θi B̄τi∆V ∗

Θi

− α2iVΘi + (∆V ∗
Θi)

T F̄Θ (XΘi) = 0.
(21)

It can be seen that the equation (21) is nonlinear with
respect to V ∗

Θi and requires the dynamic model of the
quadrotor team. To track the desired attitude reference
for quadrotor team with actuator faults, similarly to
the position controller design, a fault-tolerant attitude
controller is designed as

uτi(t) =
1
2
u∗τi(x) +

ˆ̄u2
∆ΘiRΘiu

∗
τi(x)

‖RΘiu∗τi(x)‖ ˆ̄u∆Θi + σ2(t)
, (22)

where σ2(t) is a positive bounded function with
∫∞

t
σ2(t)dτ≤

σ̄2<∞. ˆ̄u∆Θi is the estimated value of ū∆Θi with

dˆ̄u∆Θi

dt
= −kσ2σ2(t)ˆ̄u∆Θi + 2kσ2 ‖RΘiu

∗
τi(x)‖ , (23)

where kσ2 is a positive constant. Therefore, similarly to
the position controller design, Algorithm 3.3 is designed
to learn the optimal attitude control policy u∗τi.

Similarly to the lines of reasoning of the position controller
design, the performance function V n

Θi and the control
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Fig. 1. Estimation error of observers.
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Fig. 2. 3-D trajectory of quadrotor team.

policy un+1
τi in (24) can be approximated by two NNs

and the weight of the NNs can be updated using the LS
technique under the PE condition.

4. SIMULATION RESULTS

In this section, three quadrotor systems are modeled as
(7) with the parameters being JΘi = diag(4, 4, 8) 10−3kg ·
m2, bΘi = diag{41, 41, 113}, gi = 9.81 m/s2, and bpi =
diag{1, 1, 1} (i = 1, 2, 3). The communication graph be-
tween the quadrotor team is described with w13 = w21 =
w32 = 1 and ρ1 = 1. The quadrotor team is required
to form a triangle formation and track a virtual leader,
simultaneously. The dynamic of the leader is set as Ap0 =
[06×3 c6,1 c6,2 c6,3] with the initial states as: p0(0) = 03×1

m and ṗ0(0) = [1 1 1]T m/s. the states of the quadrotors
are initialized as: p1(0) = [2.25 2.25 1.00]T m, p2(0) =
[−2.25 3.38 0]T m, p3(0) = [0 −3.38 0.50]T m, ṗi = 03×1,
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Fig. 3. Position tracking errors of quadrotor team using
the proposed controller.
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Fig. 4. Position tracking errors of quadrotor team using
traditional optimal control policies.

Θi = 03×1, and Θ̇i = 03×1 (i = 1, 2, 3). The position devi-
ations are set as δ13 = [1.5 3.75 0]T m, δ21 = [−3 0.75 0]T

m, and δ32 = [1.50 −4.5 0]T m. The distributed observer
is implemented for each quadrotor with the parameter as
γi = 80 and the position estimation errors are shown
in Fig. 1. The solid lines colored with red, black, and
blue represent the 1-3th quadrotor. After the estimation
errors of the observers converge to 0s, the RL algorithms
are applied to learn the optimal control policies u∗pi,u

∗
τi

for the position subsystem and the attitude subsystem.
The base functions of the critic NNs and the action NNs
are chosen to be multiple polynomials. The time interval
∆t is chosen to be ∆t = 0.05s. Then, the fault-tolerant
formation controller including the position controller and
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the attitude controllers is constructed. The parameters of
the fault-tolerant controller are set as: Rpi = RΘi = I3×3,
σ1(t) = σ2(t) = e−t, kσ1 = 0.1,kσ2 = 0.1, ˆ̄u∆pi (0) = 0.1,
and ˆ̄u∆i (0) = 0.1. It is assumed that one rotor of each
quadrotor is suffering from actuator faults and the LOE
gains are set as: ρ11 = 0.1, ρ22 = 0.3, and ρ34 = 0.1.
The occurrence time of the actuator faults ts is set as
ts = 4s. The three dimensional (3-D) trajectories of the
three quadrotors are shown in Fig. 2. The position tracking
error epi(t) in EI is shown in Figs. 3. In order to show the
effectiveness of the proposed controller, the optimal control
policies are directly applied to the quadrotor team under
actuator faults. The position tracking error is shown in Fig.
4. It can be seen from Figs. 4 that the traditional optimal
control policies can maintain a considerable formation
performance without actuator faults, but the formation
performance turns undesirable when the actuator faults
appear. When the actuator faults occur at 4 s, it can
be observed from Figs. 3 that the formation performance
of the quadrotor team is greatly improved by using the
proposed fault-tolerant formation controller.

5. CONCLUSION

In this paper, the fault-tolerant formation control problem
is addressed for multiple cooperative quadrotors with un-
known dynamics. The quadrotor is modeled as a nonlinear
and coupled system being subject to actuator faults. A
fault-tolerant formation controller is proposed including
a distributed observer to estimate the position references
for each quadrotor, a fault-tolerant position controller to
achieve the desired position formation, and a fault-tolerant
attitude controller to track the desired attitude. Reinforce-
ment learning algorithms are designed to learn the optimal
control policies of the position and attitude controller
without knowledge of the quadrotor dynamic information.
Simulation results are provided to show the effectiveness
of the proposed fault-tolerant formation controller.

REFERENCES

Avram, R. C., Zhang, X., and Muse, J. (2018) Nonlinear
adaptive fault-tolerant quadrotor altitude and attitude
tracking with multiple actuator faults. IEEE Transac-
tions on Control Systems Technology, 26(2): 701–707.

Avram, R. C., Zhang, X., and Muse, J. (2017). Quadro-
tor actuator fault diagnosis and accommodation using
nonlinear adaptive estimators. IEEE Transactions on
Control Systems Technology, 25(6):2219–2226.

Deng, C., Yang, G. H. (2017). Adaptive fault-tolerant
control for a class of nonlinear multi-agent systems
with actuator faults. Journal of the Franklin Institute,
354(12):4784–4800.

Deptula, P., Bell, Z. I., Doucette, E. A., Curtis, J. W., and
Dixon, W. E. (2018). Data-based reinforcement learning
approximate optimal control for an uncertain nonlin-
ear system with partial loss of control effectiveness.
2018 Annual American Control Conference, Wisconsin,
U.S.A., 6947–6968.

Dong, X., Hua, Y., Zhou, Y., Ren, Z., and Zhong,
Y. (2018). Theory and experiment on formation-
containment control of multiple multirotor unmanned
aerial vehicle systems. IEEE Transactions on Automa-
tion Science and Engineering, 16(1):229–240.

Hu, Q., Zhang, Y., Huo, X., and Bing, X. (2011). Adaptive
integral-type sliding mode control for spacecraft atti-
tude maneuvering under actuator stuck failures. Chi-
nese Journal of Aeronautics, 24(1):32–45.

Hua, Y., Dong, X., Li, Q., and Ren, Z. (2016). Distributed
fault-tolerant time-varying formation control for second-
order multi-agent systems with actuator failures and
directed topologies. IEEE Transactions on Circuits and
Systems II: Express Briefs, 65(6):774–778.

Liu, H., Tian, Y., Lewis, F. L., Wan, Y., and Valavanis, K.
P. (2019). Robust formation tracking control for multi-
ple quadrotors under aggressive maneuvers. Automatica,
105:179–185.

Liu, L., Wang, Z., and Wang, H. (2017). Adaptive
fault-tolerant tracking control for MIMO discrete-time
systems via reinforcement learning algorithm with less
learning parameters. IEEE Transactions on Automation
Science and Engineering, 14(1):299–313.

Modares, H. and Lewis, F. L. (1995). Optimal control. NJ,
Hoboken: Wiley.

Ma, H. J., Xu, L. X., and Yang, G. H. (2019). Multi-
ple environment integral reinforcement learning-based
fault-tolerant control for affine nonlinear systems. IEEE
transactions on cybernetics, unpublished.

Modares, H. and Lewis, F. L. (2014). Linear quadratic
tracking control of partially-unknown continuous-time
systems using reinforcement learning. IEEE Transac-
tions on Automatic control, 59(11):3051–3056.

Qin, J., Ma, Q., Shi, Y., and Wang, L. (2017). Recent
advances in consensus of multi-agent systems: A brief
survey. IEEE Transactions on Industrial Electronics,
64(6):4972–4983

Raffo, G. V , Ortega, M. G., and Rubio, F. R. (2010). An
integral predictive/nonlinear H∞ control structure for a
quadrotor helicopter. Automatica, 46(1):29–39.

Shi, J., Yang, Y., Sun, J., He, X. , Zhou, D., and Zhong,
Y. (2017). Fault-tolerant formation control of non-linear
multi-vehicle systems with application to quadrotors.
IET Control Theory & Applications, 11(17):3179–3190.

Slotine, J. and Li, W. (1991). Applied Nonlinear Control.
Englewood Cliffs, NJ, USA: Prentice Hall.

Wang, Z., Liu, L., Zhang, H., and Xiao, G. (2016). Fault-
tolerant controller design for a class of nonlinear MIMO
discrete-time systems via online reinforcement learning
algorithm. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 46(5):611–622.

Yu, Z., Qu, Y., and Zhang, Y. (2019). Distributed
fault-tolerant cooperative control for multi-UAVs under
actuator fault and input saturation. IEEE Transactions
on Control Systems Technology, unpublished.

Zhang, K., Zhang, H., Gao, Z., and Su, H. (2018). Online
adaptive policy iteration based fault-tolerant control al-
gorithm for continuous-time nonlinear tracking systems
with actuator failures. Journal of the Franklin Institute,
355(15):6947–6968.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2504


