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Abstract: Many modern optimization problems admit a composite form in which the objective
function is given by the sum of a smooth term and a nonsmooth regularizer. Such problems
can be solved via proximal methods and their variants, including the Douglas-Rachford (DR)
splitting algorithm. In this paper, we view the DR splitting flow as a dynamical system and
leverage techniques from control theory to study its global stability properties. In particular, for
problems with strongly convex objective functions, we utilize the theory of integral quadratic
constraints to prove global exponential stability of the ordinary differential equation that governs
the evolution of the DR splitting flow. In our analysis, we use the fact that this algorithm can
be interpreted as a variable-metric gradient method on the DR envelope and exploit structural
properties of nonlinear terms that arise from composition of reflected proximal operators.
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1. INTRODUCTION

Examining optimization algorithms as continuous-time
dynamical systems has been an active topic since the
seminal work of Arrow, Hurwicz, and Uzawa (Arrow et al.,
1958). This viewpoint can provide important insight into
performance of optimization algorithms and, during the
last decade, it has been advanced and extended to a broad
class of problems including convergence analysis of primal-
dual (Feijer and Paganini, 2010; Wang and Elia, 2011;
Cherukuri et al., 2016, 2018; Dhingra et al., 2019; Qu and
Li, 2018) and accelerated (Su et al., 2016; Wibisono et al.,
2016; França et al., 2018; Shi et al., 2018; Muehlebach and
Jordan, 2019; Poveda and Li, 2019) first-order methods.
Furthermore, establishing the connection between theory
of ordinary differential equations (ODEs) and numerical
optimization algorithms has been a topic of many studies,
including Schropp and Singer (2000); for recent efforts,
see Wibisono et al. (2016); Zhang et al. (2018).

Most algorithms can be viewed as a feedback interconnec-
tion of linear dynamical systems with nonlinearities that
posses certain structural properties. This system-theoretic
interpretation was exploited in Lessard et al. (2016) and
further advanced in a number or recent papers (Dhingra
et al., 2019; Hu et al., 2017; Hu and Lessard, 2017; Fazlyab
et al., 2018; Hatanaka et al., 2018; Hassan-Moghaddam
and Jovanović, 2018a,b; Seidman et al., 2019). The key
idea is to exploit structural features of linear and non-
linear terms and utilize theory and techniques from sta-
bility analysis of nonlinear dynamical systems to study
properties of optimization algorithms. This approach pro-
vides new methods for studying not only convergence rate
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but also robustness of optimization routines (Mohammadi
et al., 2018, 2019a,b; Michalowsky et al., 2019) and can
lead to new classes of algorithms that strike a desired
tradeoff between the speed and robustness.

In this paper, we utilize techniques from control theory
to establish global stability properties of an ordinary
differential equation that describes the Douglas-Rachford
(DR) splitting flows. This algorithm provide an effective
tool for solving nonsmooth convex optimization problems
in which the objective function is given by a sum of
a differentiable term and a nondifferentiable regularizer.
For strongly convex problems, we exploit the fact that
the DR splitting algorithm (Douglas and Rachford, 1956)
can be interpreted as a variable-metric gradient method
on DR envelope (Patrinos et al., 2014) and prove global
exponential stability by utilizing the theory of integral
quadratic constrains (IQCs).

The paper is structured as follows. In Section 2, we formu-
late the nonsmooth composite optimization problem and
provide background material. In Section 3, we introduce
a continuous-time gradient flow dynamics based on the
celebrated DR splitting algorithm and utilize the theory
of IQCs to prove global exponential stability for strongly
convex problems. We conclude the paper in Section 4.

2. PROBLEM FORMULATION AND BACKGROUND

We consider a composite optimization problem,

minimize
x

f(x) + g(x) (1)

where x ∈ Rn is the optimization variable, f : Rn → R
is a continuously differentiable function with a Lipschitz
continuous gradient, and g: Rm → R is a nondifferentiable
convex function. Such optimization problems arise in a
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number of different applications and different first- and
second-order algorithms can be employed to solve them.
We are interested in studying global stability properties
of the method based on Douglas-Rachford splitting dy-
namics. In the rest of this section, we provide background
material that we utilize in the paper.

2.1 Proximal operators and the associated envelopes

The proximal operator of a proper, closed, and convex
function g is defined as

proxµg(v) := argmin
z

(
g(z) +

1

2µ
‖z − v‖22

)
.

The value function of this optimization problem deter-
mines the associated Moreau envelope,

Mµg(v) := g(proxµg(v)) +
1

2µ
‖proxµg(v) − v‖22

which is a continuously differentiable function even when
g is not (Parikh and Boyd, 2013),

∇Mµg(v) =
1

µ
(v − proxµg(v)).

Combining the last two expressions yields,

Mµg(v) = g(proxµg(v)) +
µ

2
‖∇Mµg(v)‖22.

The Moreau envelope of g can be used to introduce the
forward-backward (FB) envelope (Patrinos et al., 2014;
Stella et al., 2017; Themelis et al., 2018) of the composite
function

F (x) := f(x) + g(x).

The FB envelope is determined by the value function of
the problem

minimize
v

J(x, v) (2a)

where J approximates F via a quadratic expansion of the
function f around x,

J(x, v) := f(x) + 〈∇f(x), v − x〉 + 1
2µ ‖v − x‖22 + g(v)

= g(v) + 1
2µ ‖v − (x − µ∇f(x))‖22 +

f(x) − µ
2 ‖∇f(x)‖22.

(2b)
The optimal solution of (2) is determined by

v?µ(x) = proxµg(x − µ∇f(x))

and it can be used to obtain the FB envelope of the
function F ,

Fµ(x) := J(x, v?µ(x)) = J(x,proxµg(x − µ∇f(x)))

= f(x) − µ 〈∇f(x), Gµ(x)〉 +
µ

2
‖Gµ(x)‖22 +

g(proxµg(x − µ∇f(x)))
(3)

where Gµ is the generalized gradient map,

Gµ(x) :=
1

µ
(x − proxµg(x − µ∇f(x))). (4)

Alternatively, the FB envelope Fµ can be also expressed
as

Fµ(x) = f(x) + Mµg(x − µ∇f(x)) − µ

2
‖∇f(x)‖22.

(5)
Moreover, when f is twice continuously differentiable, Fµ
is continuously differentiable and its gradient is deter-

mined by (Patrinos et al., 2014),

∇Fµ(x) = (I − µ∇2f(x))Gµ(x). (6)

The Douglas-Rachford (DR) envelope is another useful
object that is obtained by evaluating the FB envelope at
proxµf (x) (Themelis and Patrinos, 2017),

FDRµ (x) := Fµ(proxµf (x)). (7)

Alternatively, the DR envelope can be expressed as

FDRµ (x) = Mµg(x− 2µ∇Mµf (x)) + Mµf (x) −
µ‖∇Mµf (x)‖22.

(8)

From the definition of the proximal operator of the con-
tinuously differentiable function f , we have

µ∇f(proxµf (x)) + proxµf (x) − x = 0 (9)

and, thus,

∇Mµf (x) = ∇f(proxµf (x)). (10)

Equality (7) follows from substituting the expression for
∇Mµf (x) into (8), using equation (9), and leveraging the
properties of the Moreau envelope,

FDRµ (x) = Mµg(x− 2µ∇f(proxµf (x)) + f(proxµf (x)) +

1

2µ
‖proxµf (x) − x‖22 − µ ‖∇f(proxµf (x))‖22

= Mµg(proxµf (x)− µ∇f(proxµf (x)) +

f(proxµf (x))− µ

2
‖∇f(proxµf (x))‖22

= Fµ(proxµf (x)).

If f is twice continuously differentiable with∇2f(x) � LfI
for all x, the DR envelope is continuously differentiable and
its gradient is given by (Themelis and Patrinos, 2017)

∇FDRµ (x) =
1

µ
(2∇proxµf (x) − I)GDRµ (x) (11)

where

∇proxµf (x) =
(
I + µ∇2f(proxµf (x))

)−1

and

GDRµ (x) := proxµf (x) −proxµg(2proxµf (x)− x). (12)

2.2 Strong convexity and Lipschitz continuity

The function f is strongly convex with parameter mf if
for any x and x̂,

f(x̂) ≥ f(x) + 〈∇f(x), x̂ − x〉 +
mf

2
‖x̂ − x‖22

and equivalently,

‖∇f(x)−∇f(x̂)‖2 ≥ mf‖x − x̂‖2. (13)

The gradient of a continuously-differentiable function f is
Lipschitz continuous with parameter Lf if for any x and x̂,

f(x̂) ≤ f(x) + 〈∇f(x), x̂ − x〉 +
Lf
2
‖x̂ − x‖22

and equivalently,

‖∇f(x)−∇f(x̂)‖2 ≤ Lf‖x − x̂‖2. (14)

Moreover, if an mf -strongly convex function f has an
Lf -Lipschitz continuous gradient, the following inequality
holds for any x and x̂,
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〈∇f(x)−∇f(x̂), x − x̂〉 ≥ mf Lf
mf + Lf

‖x − x̂‖22 +

1

mf + Lf
‖∇f(x)−∇f(x̂)‖22.

(15)
Furthermore, the subgradient ∂g of a nondifferentiable
function g is defined as the set of points z ∈ ∂g(x) that
for any x and x̂ satisfy,

g(x̂) ≥ g(x) + zT (x̂ − x). (16)

3. GLOBAL EXPONENTIAL STABILITY

We next introduce a continuous-time gradient flow dy-
namics based on the celebrated Douglas-Rachford splitting
algorithm (Douglas and Rachford, 1956) and establish
global exponential stability for strongly convex f .

3.1 Douglas-Rachford splitting dynamics

The optimality condition for non-smooth composite opti-
mization problem (1) is given by

0 ∈ ∇f(x) + ∂g(x).

Multiplication by µ and addition/subtraction of x yields,

0 ∈ [I + µ∇f ] (x) + µ∂g(x) − x.

Since the proximal operator associated with µf is deter-
mined by the resolvent operator of µ∇f , we have

x = (I + µ∇f)−1(x − µ∂g(x)) = proxµf (x − µ∂g(x)).

Introducing a new variable z := x − µ∂g(x) allows us to
bring the optimality condition into the following form

x = proxµf (z)

or, equivalently,

µ∂g(x) = proxµf (z) − z.

Now, adding x to both sides of this equation yields

[I + µ∂g] (x) = x + proxµf (z) − z

= 2proxµf (z) − z

which leads to,

x? = proxµg(2 proxµf (z?)− z?) = proxµf (z?). (17a)

Furthermore, the reflected proximal operators (Giselsson
and Boyd, 2017) of the functions f and g,

Rµf (z) := [2 proxµf − I](z)

Rµg(z) := [2 proxµg − I](z)

can be used to write optimality condition (17a) as

[RµgRµf ](z?) = z?. (17b)

This follows from (17a) and

[RµgRµf ](z) = z+2(proxµg(2 proxµf (z)− z)−proxµf (z)).

Building on the optimality conditions, the DR splitting
algorithm consists of the following iterative steps,

xk = proxµf (zk)

yk = proxµg(2x
k − zk)

zk+1 = zk + 2α(yk − xk).

(18)

Under standard convexity assumptions (Eckstein and
Bertsekas, 1992), the DR splitting algorithm converges for
α ∈ (0, 1). Combining all the steps in (18) yields the first-
order recurrence,

zk+1 = zk + 2α
(
proxµg(2x

k − zk) − xk
)

= [(1 − α)I + αRµgRµf ] (zk)
(19)

where zk converges to the fixed point of the operator
RµfRµg and xk converges to the optimal solution of (1).

Optimality conditions (17) can be used to obtain the
continuous-time gradient flow dynamics to compute z?,

ż = −z + [RµgRµf ](z)

= proxµg(2 proxµf (z) − z) − proxµf (z)

= −GDRµ (z)

(20)

where GDRµ (z) is given by (12). We note that the discrete-
time system (19) results from the explicit forward Euler
discretization of (20) with the stepsize α.

Remark 1. Using the definition of ∇FDRµ (x) in (11), the
continuous-time system (20) can be written as

ż = −µ
(
2∇proxµf (z) − I

)−1∇FDRµ (z)

where the inverse is well-defined for µ ∈ (0, 1/Lf ).
Thus, the DR splitting algorithm can be interpreted as
a variable-metric gradient method on the DR envelope
FDRµ (Patrinos et al., 2014).

3.2 Global exponential stability via theory of IQCs

The continuous-time dynamics (20) can be also seen as a
feedback interconnection of an LTI system

ż = Az + B u

ξ = C z
(21a)

with a nonlinear term,

u(z) := [RµgRµf ](z). (21b)

Herein, the matrices in (21a) are given by

A = − I, B = I, C = I (21c)

and the corresponding transfer function is

H(s) = C(s I − A)−1B =
1

s + 1
I. (21d)

We first characterize properties of nonlinearity u in (21b)
and then utilize the theory of integral quadratic con-
straints to establish the conditions for global exponential
stability of (21) under the following assumption.

Assumption 1. Let the differentiable part f of the objec-
tive function in (1) be strongly convex with parameter mf ,
let ∇f be Lipschitz continuous with parameter Lf , and let
the regularization function g be proper, closed, and convex.

Lemma 1. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ).
Then, the operator Rµf is σ-contractive,

‖Rµf (x) − Rµf (y)‖2 ≤ σ‖x − y‖2
where σ is given by

σ = max {|1 − µmf |, |1 − µLf |} < 1. (22)

Proof. Given zx := proxµf (x) and zy := proxµf (y), x
and y can be computed as follows

x = zx + µ∇f(zx), y = zy + µ∇f(zy).

Thus,
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‖Rµf (x) − Rµf (y)‖2 = ‖2(zx − zy) − (x− y)‖2 =

‖(zx − zy) − µ (∇f(zx)−∇f(zy))‖2 = ‖zx − zy‖2 +

|µ(∇f(zx)−∇f(zy))‖2 − 2µ 〈∇f(zx)−∇f(zy), zx − zy〉
≤ max

{
(1− µLf )2, (1− µmf )2

}
‖zx − zy‖2

≤ σ ‖x− y‖2.
where the firm non-expansiveness of the proximal operator
is used in the last step. From the above expressions, we see
that σ < 1 if and only if,

−1 < 1 − µLf < 1 and − 1 < 1 − µmf < 1.

Since mf ≤ Lf , these conditions hold for µ ∈ (0, 2/Lf ),
which completes the proof.

Lemma 2. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ).
Then, the operator Rµg is firmly non-expansive.

Proof.
‖Rµg(x)−Rµg(y)‖22 =

4 ‖proxµf (x) − proxµf (y)‖22 + ‖x − y‖22 −
4
〈
x − y,proxµf (x) − proxµf (y)

〉
≤ ‖x − y‖22.

Remark 2. Since Rµg is firmly non-expansive and Rµf is
σ-contractive, the composite operator RµgRµf is also σ-
contractive. This yields the following lemma.

Lemma 3. Let Assumption 1 hold. Then, for any z ∈ Rn,
ẑ ∈ Rn, u := [RµgRµf ](z), and û := [RµgRµf ](ẑ), the
pointwise quadratic inequality[

z − ẑ
u − û

]T [
σ2I 0
0 −I

]
︸ ︷︷ ︸

Π

[
z − ẑ
u − û

]
≥ 0 (23)

holds, where

σ = max {|1 − µmf |, |1 − µLf |} . (24)

We next employ the KYP lemma in the frequency do-
main (Rantzer, 1996)[

Hρ(jω)
I

]∗
Π

[
Hρ(jω)

I

]
≺ 0, ∀ω ∈ R (25)

where Π is given by (23), ω is the temporal frequency, and

Hρ(jω) := C (jωI − (A + ρI))−1B =
1

jω + 1− ρ
I

(26)
to establish the global exponential stability of (21).

Theorem 4. Let Assumption 1 hold. Then, the DR split-
ting dynamics (21) are globally exponentially stable, i.e.,
there is c > 0 and ρ ∈ (0, 1− σ) such that,

‖z(t) − z?‖ ≤ c e−ρt‖z(0) − z?‖, ∀ t ≥ 0.

Proof. The KYP lemma implies the global exponential
stability of (21) if there exists ρ ∈ (0, 1) such that,

σ2Hρ(jω)∗Hρ(jω) − I ≺ 0, ∀ω ∈ R, (27)

where Hρ(jω) is given by (26). Inequality (27) is satisfied
if,

σ2 − (1 − ρ)2 − ω2 < 0, ∀ω ∈ R
which proves ρ < 1− σ.

3.3 Douglas-Rachford splitting on the dual problem

The DR splitting algorithm cannot be used to directly
solve a problem with a more general linear constraint,

minimize
x, z

f(x) + g(z)

subject to Tx + Sz = r
(28)

where T ∈ Rm×n, S ∈ Rm×n, and r ∈ Rm are problem
data. However, it can be utilized to solve the dual problem,

minimize
ζ

f1(ζ) + g1(ζ) (29)

where f1(ζ) = f?(−TT ζ) + rT ζ, g1(ζ) = g?(−ST ζ), and
h?(ζ) := supx(ζTx−h(x)) is the conjugate of the function
h. It is a standard fact (Eckstein and Bertsekas, 1992;
Gabay, 1983) that solving the dual problem (29) via the
DR splitting algorithm is equivalent to using ADMM for
the original problem (28). Next, we introduce a gradient
flow dynamics based on the DR splitting algorithm for
solving (29) and demonstrate global exponentially stability
under the following assumption.

Assumption 2. Let the differentiable part f of the objec-
tive function in (28) be strongly convex with parameter
mf , let ∇f be Lipschitz continuous with parameter Lf ,
let the function g be proper, lower semicontinuous, and
convex, and let the matrix T be full row rank.

The continuous-time DR splitting algorithm

ζ̇ = proxµg1(2 proxµf1(ζ) − ζ) − proxµf1(ζ) (30)

can be used to compute the optimal solution ζ? to (29).
It is well-known that the conjugate functions are con-
vex Boyd and Vandenberghe (2004). Since (30) is identical
to (20), if f1 satisfies the conditions in Assumption 1 global
exponential stability of (30) follows from Theorem 4. For a
full row rank T , f1 is strongly convex and ∇f1 is Lipschitz
continuous with parameters (Giselsson and Boyd, 2017,
Proposition 4),

Lf1 = ‖TT ‖2/mf , mf1 = θ2/Lf

where θ is a positive parameter that always exists and
satisfies ‖TT ν‖ ≥ θ‖ν‖ for all ν ∈ Rm. Thus, both f1 and
g1 satisfy Assumption 2 and global exponential stability
of (30) follows from Theorem 4.

4. CONCLUDING REMARKS

We study a class of nonsmooth optimization problems in
which it is desired to minimize the sum of a continuously
differentiable strongly convex function with a Lipschitz
continuous gradient and a nondifferentiable proper, closed,
and convex function. We employ the theory of IQCs to
prove global exponential stability of Douglas-Rachford
splitting dynamics. Our ongoing work focuses on establish-
ing stability properties in the absence of strong convexity.
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