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Abstract: This paper is concerned with the distributed fault diagnosis problem for a class of
time-varying systems over sensor networks with nonlinearity and uncertainty. For the purpose
of solving the problem of data conflict, the stochastic protocol is used to determine which node
has the right to send data to the estimator at a certain transmission time. The aim of this
paper is to design a set of distributed estimators to detect, isolate and estimate fault signals.
The upper bound of estimation error covariance is obtained by solving two recursive matrix
equations and the upper bound can be minimized by designing appropriate estimator gain at
each step. Finally, a numerical example is provided to show the effectiveness of the proposed
design scheme.
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1. INTRODUCTION

Over the past decades, sensor networks have received much
attention from researchers due to its wide applications
in various fields such as military, industry, urban man-
agement and environment and so on, see, e.g. Ge et al.
(2019), Zuo et al. (2018). As a special type of complex
network, the sensor network is a distributed intelligent
network system consisting of a set of sensor nodes with
wireless communication and computing capabilities. The
fault detection and fault estimation problems have re-
ceived increasing research attention, see Chao et al. (2018),
Li et al. (2015). In Dong et al. (2014), the problem of finite-
horizon estimation was investigated for a class of nonlinear
time-varying systems with randomly occurring faults. In
Witczak et al. (2017), the problems of state and actuator
fault estimation were studied for nonlinear discrete-time
systems with unknown input decoupling based on neural
network approach. By introducing spectral decomposi-
tion and coordinate transformation, an integrated design
method was proposed in Liu and Yang (2019) for fault
estimation and fault-tolerant control of linear multi-agent
systems. It is worth mentioning that the problem of fault
isolation is seldom addressed in the existing literature on
fault diagnosis.

In the actual physical system, nonlinearity and model un-
certainty are inevitable and have attracted wide research
attention in the past decades Hu et al. (2013), Ding et al.
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(2015). For example, the joint state and fault estimation
problem was studied in Hu et al. (2018) for a class of
discrete time-varying systems with uncertainty and non-
linearity. In Huo et al. (2017), the problems of non-fragile
mixedH∞ and passive asynchronous state estimation were
dealt with for discrete-time Markov jump neural networks
with randomly occurring uncertainties and sensor nonlin-
earity. In Dong et al. (2015), the finite-horizon reliable
control problem was studied for time-varying systems with
randomly occurring uncertainties, nonlinearities and mea-
surement quantization by employing the approach of re-
cursive linear matrix inequality. However, up to now, little
research attention has been paid on the fault diagnosis
problem for systems over sensor networks with uncertainty
and nonlinearity, and still remains open.

It is worth noting that, distributed information transmis-
sion is very important in sensor networks because nodes
are distributed in different locations in space. In the exist-
ing literature on sensor networks, it is assumed that each
sensor node is allowed to simultaneously receive the in-
formation from all neighboring nodes. Unfortunately, this
assumption reduces network performance in most practical
projects due to the fact that multiple transmission at
the same time would lead to inevitable data collisions
in the case of limited bandwidth. In order to prevent
data conflicts, it is necessary to use some communication
protocol to arrange the signal transmission. Up to now,
the communication protocols that have been widely used
in practical systems include, but are not limited to, Round-
Robin protocol, stochastic communication protocol, Try-
once-discard protocol. Among them, the stochastic proto-
col is one of the most widely used protocols in industry
and its main idea is to randomly select the transmitted
sensor under a certain probability. In recent years, the
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problems of analysis and synthesis for networked systems
subject to communication protocols have attracted in-
creasing research attention, see Gao et al. (2019), Liu et al.
(2015). For example, the problem of neural network based
output feedback control was investigated in Ding et al.
(2019) for nonlinear systems under stochastic communi-
cation protocols. Unfortunately, the fault diagnosis for
time-varying systems over sensor networks with stochastic
protocol scheduling has not been fully addressed.

Based on the above discussion, in this paper, we aim to
investigate the problem of fault diagnosis for a class of
time-varying systems over sensor networks with nonlinear-
ity and uncertainty under stochastic protocol. The main
contributions of this paper as follows: (1) A comprehensive
system that accounts for nonlinearity, uncertainty and
stochastic protocol is considered; (2) A set of distributed
estimators that can detect, isolate and estimate faults
signals are designed, and estimators parameters can be
obtained by minimizing upper bound.

Notation The notations used throughout the paper are
standard expect otherwise noted. Rn×m and Rn denote,
respectively, the set of all n × m real matrix space and
the n-dimensional Euclidean space. X ≥ 0 represents that
X is a positive semi-definite matrix. XT represents the
transpose of a matrix X and X−1 denotes the inverse of
X. I denotes the unit matrix with appropriate dimensions.
X ≥ Y means that X − Y is positive semi-definite
matrix. E{x} means the mathematical expectation of the
stochastic variable x. tr{A} represents the trace of the
matrix A. diag{· · · } is a block diagonal matrix. ||·|| denotes
the Euclidean norm of a vector. ◦ denotes the Hadamard
product.

2. STATEMENT OF THE PROBLEM

In this paper, the sensor network with M sensor nodes
is considered. The topology is represented by a directed
graph G = (N , E ,A) where N = ( 1, 2, · · · ,M) denotes
the set of nodes, E ⊆ N × N is the set of edges, and
A = [aij ] stands for the weighted adjacency matrix with
non-negative element aij . An edge of G is denoted by the
ordered pair (i, j). The adjacency elements associated with
the edges of the graph are positive, i.e., aij > 0 ⇐⇒ (i, j) ∈
E , which represents that sensor i can receive information
from sensor j. The self edge (i, i) is allowed, i.e., (i, i) ∈ E
and aii = 1. The set of neighbors of node i is denoted by
Ni = {j : (i, j) ∈ E , j ̸= i}.
Consider the following time-varying uncertain nonlinear
system

xk+1 =
(
Ak +∆Ak

)
xk + h

(
xk

)
+Bkwk, (1)

over a sensor network with M sensor nodes, and the
measurement output of i-th node is given by

yi,k = Ci,kxk + Ei,kvi,k + Fi,kfi,k, i = 1, 2, · · · ,M (2)

where xk ∈ Rnx , yi,k ∈ Rny respectively represent the
state vector, the measurement output of the i-th node.
fi,k ∈ Rnf is the additive fault of the i-th node. ωk ∈
Rnv is a Gaussian white process noise with E{ωk} = 0
and E{ωkω

T
k } = Rk. vi,k ∈ Rnv is a Gaussian white

measurement noise with E{vi,k} = 0 and E{vi,kvTi,k} =
Si,k. Moreover, ωk and vi,k are assumed to be mutually
independent. Ak, Bk, Ci,k, Ei,k and Fi,k are known, real,

time-varying matrices with appropriate dimensions. The
uncertain time-varying matrix ∆Ak satisfies

∆Ak = HkQkJk, QT
kQk ≤ I, (3)

where Hk, Jk are known real time-varying matrices, and
Qk is an unknown real time-varying matrix. The nonlinear
function h(xk) satisfies

∥ h(x)− h(y) ∥≤∥ G(x− y) ∥, (4)

where G is a known matrix.

Assumption 1. In system (1)-(2), only one node occurs
fault at a certain time. Moreover, it is assumed that
fi,k+1 = fi,k +∆fi,k, and ∆fi,k is a constant amplitude.

Define an augmented state

x̄
(m)
i,k =

 xk

L
(m)
i fi,k

L
(m)
i ∆fi,k

 (5)

where

L
(m)
i =

{
I, i = m

0, i ̸= m

Then, system (1)-(2) can be rewritten as:
x̄
(m)
i,k+1 =

(
Āk + ∆̄Ak

)
x̄
(m)
i,k + h̄

(
x̄
(m)
i,k

)
+ B̄kwk,

y
(m)
i,k = C̄i,kx̄

(m)
i,k + Ei,kvi,k,

i = 1, 2, · · · ,M, m = 0, 1, · · · ,M

(6)

where

Āk =

[
Ak 0 0
0 I I
0 0 I

]
, B̄k =

[
Bk

0
0

]
, H̄k =

[
Hk

0
0

]
,

h̄(x̄
(m)
i,k ) =

[
h(xk)
0
0

]
, ∆̄Ak =

[
∆Ak 0 0
0 0 0
0 0 0

]
,

C̄i,k = [Ci,k Fi,k 0] , J̄k = [Jk 0 0] .

To avoid data collisions, the stochastic protocol is utilized
to select the neighboring node which obtains permission
to send information to the node i. A set of adjacent
nodes except the node itself of the i-th node is denoted
by Ni = {j : (i, j) ∈ E , i ̸= j}. Let node ρi,k ∈ Ni denote
the node which obtains the right to communicate to the
i-th node at the k-th transmission step. In the stochastic
protocol, the probability distribution of ρi,k is

Prob {ρi,k = j} = pij,k, (7)

where pij,k > 0(j ∈ Ni, i = 1, 2, · · · ,M) is the occurrence
probability that node j is selected to send measurement
data to node i. Suppose that pij,k = 0 (∀j /∈ Ni) and∑

j∈Ni
pij,k = 1( i = 1, 2, · · · ,M).

Then, the distributed estimator subject to the scheduling
of stochastic protocol is designed as follows:

x̂
(m)
i,k+1|k = Ākx̂

(m)
i,k|k + h̄

(
x̂
(m)
i,k|k

)
, (8)

x̂
(m)
i,k+1|k+1 = x̂

(m)
i,k+1|k +

∑
j∈Ni

aijK
(m)
ij,k+1

(
δ
(
ρi,k+1 − j

)
× y

(m)
i,k+1 − pij,k+1C̄j,k+1x̂

(m)
j,k+1|k

)
+ aiiK

(m)
ii,k+1

(
y
(m)
i,k+1 − C̄i,k+1x̂

(m)
i,k+1|k

)
,

m = 0, 1, · · · ,M, i = 1, 2, · · · ,M, (9)
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where x̂
(m)
i,k|k is the estimate of the state x̄

(m)
i,k with x̂

(m)
i,0 =

E
{
[x0 0 0]T

}
, x̂

(m)
i,k+1|k is the one-step estimate of the state

x̄
(m)
i,k , K

(m)
ij,k is the estimator parameter to be determined

and δ(·) ∈ {0, 1} is the Kronecker delta function.

Define one-step prediction error of the i-th node as

e
(m)
i,k+1|k = x̄

(m)
i,k+1 − x̂

(m)
i,k+1|k, and the estimation error of

the i-th node as e
(m)
i,k+1|k+1 = x̄

(m)
i,k+1 − x̂

(m)
i,k+1|k+1. Then,

subtracting the first equation in (9) from (6), we have

e
(m)
i,k+1|k = Āke

(m)
i,k|k +

[
h̄
(
x̄
(m)
i,k

)
− h̄

(
x̂
(m)
i,k|k

)]
+∆Ākx̄

(m)
i,k + B̄kwk. (10)

Similarly, the estimation error can be derived as follows

e
(m)
i,k+1|k+1 = e

(m)
i,k+1|k −

∑
j∈Ni

aijK
(m)
ij,k+1

(
δ
(
ρi,k+1 − j

)
× y

(m)
j,k+1 − pij,k+1C̄j,k+1x̂

(m)
j,k+1|k

)
− aiiK

(m)
ii,k+1

(
y
(m)
i,k+1 − C̄i,k+1x̂

(m)
i,k+1|k

)
. (11)

For simplicity, setting

x̄
(m)
k = colM

{
x̄
(m)
i,k

}
, x̂

(m)
k|k = colM

{
x̂
(m)
i,k|k

}
,

x̂
(m)
k+1|k = colM

{
x̂
(m)
i,k+1|k

}
, e

(m)
k+1|k = colM

{
e
(m)
i,k+1|k

}
,

e
(m)
k|k = colM

{
e
(m)
i,k|k

}
, ĥ

(m)
k|k = colM

{
h̄(x̂

(m)
i,k|k)

}
,

y
(m)
k = colM

{
y
(m)
i,k

}
, h̄

(m)
k = colM

{
h̄(x̄

(m)
i,k )

}
,

w̃k = colM {wk} , vk = colM {vi,k} , Ãk = diagM
{
Āk

}
,

∆Ãk = diagM
{
∆Āk

}
, B̃k = diagM

{
B̄k

}
,

C̄k = diagM
{
C̄i,k

}
, Ēk = diagM {Ei,k} .

Then, system (6) can be written as x̄
(m)
k+1 =

(
Ãk + ∆̃Ak

)
x̄
(m)
k + h̄

(m)
k + B̃kwk,

y
(m)
k = C̄kx̄

(m)
k + Ēkvk, m = 0, 1, · · · ,M.

(12)

The m-th one-step prediction error e
(m)
k+1|k is

e
(m)
k+1|k = Ãke

(m)
k|k + h̃

(m)
k +∆Ãkx̃

(m)
k + B̃kw̃k (13)

where h̃
(m)
k = h̄

(m)
k − ĥ

(m)
k|k and the estimation error as

follows

e
(m)
k+1|k+1 =Ψ

(m)
k e

(m)
k+1|k −

M∑
i=1

κiK
(m)
k+1Φi,k+1Ēk+1v̄k+1

−
M∑
i=1

κiK
(m)
k+1Φ̃i,k+1C̄k+1x̃

(m)
k+1, (14)

where

Ψ
(m)
k = I −

M∑
i=1

κiK
(m)
k+1Φ̄i,k+1C̄k+1,

κi = diag
{
0, · · · , 0︸ ︷︷ ︸

i−1

, I, 0, · · · , 0︸ ︷︷ ︸
M−i

}
, K

(m)
k =

{
K

(m)
ij,k

}
M×M

Φ̄i,k = diag {p̄i1,k, · · · p̄iM,k} , Φ̃i,k+1 = Φi,k+1 − Φ̄i,k+1,

Φi,k = diag {ai1σi1,k, · · · , aiMσiM,k} ,

p̄ij(k) =


1, j = i

pij,k, j ∈ Ni

0, j /∈ Ni

σij,k =


1, j = i

δ(ρi,k − j), j ∈ Ni

0, j /∈ Ni.

Let P
(m)
k+1|k = E

{
e
(m)
k+1|k

(
e
(m)
k+1|k

)T}
and P

(m)
k+1|k+1 =

E
{
e
(m)
k+1|k+1

(
e
(m)
k+1|k+1

)T}
be the one-step prediction error

covariance and estimation error covariance, respectively.
The aim of this paper is to design a set of estimators
for the system (1)-(2) such that the upper bound of the
estimation error covariance is guaranteed, that is, there

exists a sequence of positive-definite matrices Z
(m)
k+1|k+1

satisfying

E
{
e
(m)
k+1|k+1

(
e
(m)
k+1|k+1

)T} ≤ Z
(m)
k+1|k+1. (15)

Moreover, the upper bound can be minimized by designing
appropriate estimator gains a. Finally, the residual eval-
uation function and fault isolation logic are proposed to
detect, isolate and estimate the occurred sensor fault.

The following lemmas are needed in the subsequent sec-
tions.

Lemma 1. For given two vectors x, y ∈ Rn, the following
inequality holds:

xyT + yxT ≤ εxxT + ε−1yyT

where ε > 0 is any scalar.

Lemma 2. For given matrices M,N,L and Y with the
appropriate dimensions, the following equality holds:

∂tr {MYN}
∂Y

= MTNT ,
∂tr

{
MY TN

}
∂Y

= NM,

∂tr
{
MYNY TL

}
∂Y

= MTNTY LT + LMYN.

Lemma 3. Letting A = [aij ]n×n be a real-valued matrix

and B = diag
{
b1, b2, · · · , bn

}
be a diagonal stochastic

matrix, then

E
{
BABT

}
=


E
{
b21
}

E {b1b2} · · · E {b1bn}
E {b2b1} E

{
b22
}

· · · E {b2bn}
...

...
. . .

...
E {bnb1} E {bnb2} · · · E

{
b2n
}
 ◦A.

where ◦ is the Hadamard product.

3. MAIN RESULTS

3.1 Design of the estimator gain

In this subsection, the one-step prediction error covariance
and estimation error covariance are obtained based on (13)
and (14). Subsequently, their upper bound are computed
and minimized by selecting suitable gain matrices.

Lemma 4. For given positive scalars λ1, λ2 and λ3, the

state covariance matrix Ω
(m)
k+1 = E

{
x̄
(m)
k+1

(
x̄
(m)
k+1

)T}
satisfies

Ω
(m)
k+1 ≤(1 + λ1 + λ2)ÃkΩ

(m)
k ÃT

k + B̃kR̃kB̃
T
k

+ (1 + λ−1
1 + λ3)tr

{
J̃kΩ

(m)
k J̃k

}
H̃kH̃

T
k

+ (1 + λ−1
2 + λ−1

3 )ḠΩ
(m)
k ḠT (16)

where

Ḡ = diagM {diag {G, 0}} , R̃k = diagM {Rk} ,
J̃k = diagM

{
J̄k

}
, H̃k = diagM

{
H̄k

}
.
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Based on Lemma 4, the upper bound of the one-step
prediction error covariance and estimation error covariance
are given in the following theorem.

Theorem 1. Let λ4, λ5, λ6 and λ7 be positive scalars. For
the system (1)-(2), if the following difference equations

have solution under the initial condition P
(m)
0|0 ≤ Z

(m)
0|0 :

Z
(m)
k+1|k = (1 + λ4 + λ5)ÃkZ

(m)
k|k ÃT

k + B̃kR̃kB̃
T
k

+ (1 + λ−1
4 + λ6)tr

{
J̃kΩ

(m)
k J̃k

}
H̃kH̃

T
k

+ (1 + λ−1
5 + λ−1

6 )ḠZ
(m)
k|k ḠT , (17)

Z
(m)
k+1|k+1 = (1 + λ7)Ψ

(m)
k Z

(m)
k+1|k(Ψ

(m)
k )T

+
M∑
i=1

κiK
(m)
k+1Π1,i,k+1

(
K

(m)
k+1

)T
κT
i , (18)

where

Π1,i,k+1 =(1 + λ−1
7 )Φ̌i,k+1 ◦

(
C̄k+1Ω

(m)
k+1C̄

T
k+1

)
+ Φ̄i,k+1 ◦

(
Ēk+1Sk+1Ē

T
k+1

)
,

Φ̌i,k =E
{
Φ̃i,k

(
Φ̃i,k

)T}
then the estimation error covariance satisfies

P
(m)
k+1|k ≤ Z

(m)
k+1|k, P

(m)
k+1|k+1 ≤ Z

(m)
k+1|k+1. (19)

Moreover, the upper bound of the error covariance matrix
is minimized by selecting the appropriate gain

K
(m)
ij,k+1 =


0, aijσij,k+1 = 0[
N

(m)
i,k+1

(
M

(m)
i,k+1

)†
]♮

, aijσij,k+1 ̸= 0

(20)

where

N
(m)
i,k+1 =(1 + λ7)κiZ

(m)
k+1|kC̄

T
k+1Φ̄

T
i,k+1,

M
(m)
i,k+1 =Π1,i,k+1 +Π2,i,k+1,

Π2,i,k+1 =(1 + λ7)Φ̄i,k+1C̄k+1Z
(m)
k+1|kC̄

T
k+1Φ̄

T
i,k+1

and [A]♮ extracts the submatrix from matrix A associated

with K
(m)
ij,k+1.

Proof. Mathematical induction is used to prove this theo-

rem. According to initial condition P
(m)
0|0 ≤ Z

(m)
0|0 , assuming

P
(m)
k|k ≤ Z

(m)
k|k , then we should prove that P

(m)
k+1|k+1 ≤

Z
(m)
k+1|k+1.

Firstly, according to the definition of the one-step predic-
tion error covariance, we have

P
(m)
k+1|k = ÃkP

(m)
k|k ÃT

k + ÃkE
{
e
(m)
k|k

(
x̄
(m)
k

)T}
∆ÃT

k

+ E
{
h̃
(m)
k

(
h̃
(m)
k

)T}
+ ÃkE

{
e
(m)
k|k

(
h̃
(m)
k

)T}
+ E

{
h̃
(m)
k

(
e
(m)
k|k

)T}
ÃT

k +∆ÃkE
{
x̄
(m)
k

(
h̃
(m)
k

)T}
+ E

{(
h̃
(m)
k

)T (
x̄
(m)
k

)T}
∆ÃT

k +∆ÃkΩ
(m)
k ∆ÃT

k

+∆ÃkE
{
x̄
(m)
k

(
e
(m)
k|k

)T}
ÃT

k + B̃kR̃kB̃
T
k . (21)

Considering Assumption 1 and Lemma 1, we obtain

P
(m)
k+1|k ≤ (1 + λ4 + λ5)ÃkP

(m)
k|k ÃT

k + B̃kR̃kB̃
T
k

+ (1 + λ−1
4 + λ6)tr

{
J̃kΩ

(m)
k J̃k

}
H̃kH̃

T
k

+ (1 + λ−1
5 + λ−1

6 )ḠP
(m)
k|k ḠT (22)

where λ4, λ5 and λ6 are positive scalars. Since P
(m)
k|k ≤

Z
(m)
k|k , it is obvious that P

(m)
k+1|k ≤ Z

(m)
k+1|k from (22).

On the other hand, P
(m)
k+1|k+1 can be calculated as follows

P
(m)
k+1|k+1 = Ψ

(m)
k P

(m)
k+1|k(Ψ

(m)
k )T + E

{ M∑
i=1

κiK
(m)
k+1Φi,k+1

× Ēk+1Sk+1Ē
T
k+1Φ

T
i,k+1

(
K

(m)
k+1

)T
κT
i

}
+ E

{ M∑
i=1

κiK
(m)
k+1Φ̃i,k+1C̄k+1Ω

(m)
k+1C̄

T
k+1Φ̃

T
i,k+1

×
(
K

(m)
k+1

)T
κT
i

}
− E

{
Ψ

(m)
k )e

(m)
k+1|k(x̄

(m)
k+1)

T

×
( M∑

i=1

κiK
(m)
k+1Φ̃i,k+1C̄k+1x̄

(m)
k+1

)T}
− E

{ M∑
i=1

κiK
(m)
k+1Φ̃i,k+1C̄k+1x̄

(m)
k+1

×
(
e
(m)
k+1|k

)T
(Ψ

(m)
k )T

}
. (23)

From Lemma 1, there exists a positive scalar λ7 such that

P
(m)
k+1|k+1 ≤ (1 + λ−1

7 )E
{ M∑

i=1

κiK
(m)
k+1Φ̃i,k+1C̄k+1Ω

(m)
k+1C̄

T
k+1

× Φ̃T
i,k+1

(
K

(m)
k+1

)T
κT
i

}
+ E

{ M∑
i=1

κiK
(m)
k+1Φi,k+1

× Ēk+1Sk+1Ē
T
k+1Φ

T
i,k+1

(
K

(m)
k+1

)T
κT
i

}
+ (1 + λ7)Ψ

(m)
k P

(m)
k+1|k(Ψ

(m)
k )T . (24)

Furthermore, according to Lemma 3

P
(m)
k+1|k+1 ≤ (1 + λ7)Ψ

(m)
k P

(m)
k+1|k(Ψ

(m)
k )T + (1 + λ−1

7 )

×
M∑
i=1

κiK
(m)
k+1

(
Φ̌i,k+1 ◦

(
C̄k+1Ω

(m)
k+1C̄

T
k+1

))
×
(
K

(m)
k+1

)T
κT
i +

M∑
i=1

κiK
(m)
k+1

(
Φ̄i,k+1 ◦

(
Ēk+1

× Sk+1Ē
T
k+1

))(
K

(m)
k+1

)T
κT
i . (25)

Therefore, from (22) and (25), it is not difficult to verify

that P
(m)
k+1|k+1 ≤ Z

(m)
k+1|k+1.

Next, let us prove that the estimated gain in (20) can
minimize the trace of the upper bound. Noticing (18), it
can be rewritten in the following form:

Z
(m)
k+1|k+1 =(1 + λ7)Z

(m)
k+1|k − (1 + λ7)

(
I−Ψ

(m)
k

)
Z

(m)
k+1|k

− (1 + λ7)Z
(m)
k+1|k

(
I−Ψ

(m)
k

)T
+

M∑
i=1

κiK
(m)
k+1

×
(
Π1,i,k+1 +Π2,i,k+1

)(
K

(m)
k+1

)T
κT
i . (26)
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According to Lemma 2, taking the partial derivative of

the trace of (26) with respect to K
(m)
k+1 and letting the

derivative be zero yields

∂tr
{
Z

(m)
k+1|k+1

}
∂K

(m)
k+1

= 0− 2(1 + λ7)
M∑
i=1

κiZ
(m)
k+1|kC̄

T
k+1Φ̄

T
i,k+1

+ 2
M∑
i=1

κiK
(m)
k+1

(
Π1,i,k+1 +Π2,i,k+1

)
= 0 (27)

which implies

K
(m)
i,k+1M

(m)
i,k+1 = N

(m)
i,k+1 (28)

where K
(m)
i,k+1 =

[
K

(m)
i1,k+1, · · · ,K

(m)
iM,k+1

]
is the i-th row of

K
(m)
k+1. Since M

(m)
i,k+1 is not invertible, the gain K

(m)
ij,k+1 can

be calculated by (20), and the proof of this theorem is
complete.

3.2 Fault diagnosis strategy

In this subsection, we will propose a scheme to detect,
isolate and estimate sensor faults for the system (1)-(2).
Based on the designed estimator, the m-th residual signal

is defined as r
(m)
k = yk − C̄kx̂

(m)
k|k (m = 0, 1, · · · ,M). The

residual evaluation function is as follows

Dk =

{
1

L

k∑
s=k−L+1

(
r(0)s

)T
r(0)s

}1/2

, (29)

where k is current sample time and Dk represents the
average residual in L steps.

Let

Dth = sup
wk ̸=0,vi,k ̸=0,fi,k=0

Dk (30)

be the threshold, then the detection logic is designed as{
Dk ≤ Dth, no alarm, fault free

Dk > Dth, alarm, fault occuring.

In order to isolate the occurred fault, the following cumu-
lative value of the residual signal is defined

D
(m)
iso,k =

{
k∑

s=1

(
r(m)
s

)T
r(m)
s

}1/2

, m = 1, · · · ,M. (31)

By using the similar approach in Gao et al. (2019),
the node where the fault occurs can be isolated by the
following logic:

m = arg min
1≤m≤M

D
(m)
iso,k.

Furthermore, the estimation of the fault can be derived
from the output of the isolated augmented estimator.

4. SIMULATION RESULTS

In this section, we provide a numerical example to illus-
trate the validity of the proposed method. The topological
structure of the sensor network shown in Fig. 1 can be
represented by a directed graph G = (N , E ,A). Consider

Fig. 1. Topological structure of the sensor network.

Table 1. The probability distribution of ρi,k

pij,k j = 1 j = 2 j = 3 j = 4

i = 1 0 0 0 1

i = 2 0.4 0 0.6 0

i = 3 0 0.7 0 0.3

i = 4 0.2 0.4 0.4 0

the time-varying system (1)-(2) with four sensor nodes and
the following parameters:

Ak =

[
−0.44 + sin(0.12πk) −0.05

0.3 −0.35

]
, Bk =

[
0.1 0.1
0 0.1

]
,

C1,k = [0.82 0.82] , C2,k = [0.65 0.6] , C3,k = [0.34 0.45] ,

C4,k = [0.1 0.1] , Hk = [0.1 0.15]
T
, Jk = [0.5 0.1] ,

Qk = sin(0.5k), Ei,k = 0.1, Fi,k = 1, i = 1, 2, 3, 4

and the time-varying nonlinear functions is chosen as

h(xk) =

[
0.2 sin(x1

k)
0.1 sin(x2

k)

]
where xk = [x1

k x2
k]

T is the state vector, and it is easy to

verify that G =

[
0.2 0
0 0.1

]
. wk and vi,k are the zero-mean

Gaussian white noises with covariances Rk = 10−2I and
Si,k = 10−2I(i = 1, 2, 3, 4). The initial value of the system
is chosen as x̄0 = [1, 1.2, 0, 0]T . In this example, the other
parameters are chosen as L = 10, λ1 = 0.25, λ2 = 0.3, λ3 =
0.2, λ4 = λ5 = λ6 = 0.4, λ7 = 0.2. The probability
distribution of stochastic variables ρi,k(i = 1, 2, 3, 4) is
given in Table 1.

Assume that a constant fault occurs in node 2, i.e.,

f2,k =

{
0, otherwise

0.1, k ≥ 100.

The simulation results are shown in Figs. 2-4. From Figs.
2 and 3, it can be found that the fault is detected, and it
occurs in the 2-nd node. The faults and their estimations
are shown in Figs. 4.

5. CONCLUSIONS

In this paper, the distributed fault diagnosis problem
has been investigated for a class of time-varying systems
over sensor networks with stochastic protocol. A set of
distributed estimators has been presented to detect, iso-
late and estimate faults signals. By solving two recursive
matrix equations, the upper bound of estimation error
covariance has been obtained and it has been minimized by
designing appropriate estimator gain. Finally, a numerical
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Fig. 2. Fault detection.
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Fig. 3. Fault isolation.
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Fig. 4. The actual faults fk and their estimations f̂k.

example has been provided to illustrate the effectiveness
of the proposed design scheme.
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