
Sensor Bias Fault Diagnosis for a Class of
Nonlinear Uncertain Hybrid Systems

Constantinos Heracleous, Christodoulos Keliris,
Christos G. Panayiotou, Marios M. Polycarpou

KIOS Research and Innovation Center of Excellence (CoE), and
Department of Electrical and Computer Engineering, University of

Cyprus, Nicosia, Cyprus (e-mail: con.heracleous@gmail.com;
keliris.chris@gmail.com; christosp@ucy.ac.cy; mpolycar@ucy.ac.cy).

Abstract: This paper presents a sensor bias fault diagnosis approach for a class of hybrid
systems with nonlinear uncertain discrete-time dynamics, measurement noise, and autonomous
and controlled mode transitions. The proposed approach uses an observer based on a modified
hybrid automaton framework and a fault detection scheme that employs a filtering method
tighter mode-dependent thresholds for the detection of sensor faults (even with small magni-
tude). An autonomous guard events identification (AGEI) module is also developed and linked
with both the fault detection scheme and the hybrid observer to eliminate any false alarms
due to autonomous mode transitions and allow effective mode estimation. Finally, an adaptive
sensor fault estimation scheme is included, which is activated once a fault is detected to isolate
and estimate the sensor bias fault magnitude.
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1. INTRODUCTION

Modern complex engineering systems consist of discrete
operating modes, with each having its time-driven dynam-
ics, thus are best represented as hybrid systems (see Daigle
et al. (2016); Heracleous et al. (2017)). As a result, fault
diagnosis methods, that help keep these systems running
smoothly, must take into account the combined discrete-
event and time-driven dynamics to be effective. This poses
a significant challenge since it requires the estimation of
the hybrid state that consists of continuous and discrete
states, and the diagnosis of faults in both dynamics parts
(i.e., discrete-event and time-driven).

Various approaches have been proposed in the literature
that addresses the problem of fault diagnosis in hybrid
systems. Some of these approaches, such as Narasimhan
and Biswas (2007); Zhao et al. (2005) are focused on
diagnosing faults only in the time-driven dynamic part,
while approaches such as Hofbaur and Williams (2004);
Bayoudh et al. (2008) are focused on diagnosing faults only
the discrete-event dynamic part. Some other approaches,
such as Cocquempot et al. (2004); Wang et al. (2007);
Heracleous et al. (2018b), can diagnose faults in both
dynamics parts. However, apart from faults in the time-
driven or discrete-event dynamic parts, a significant issue
is the occurrence of sensor faults, since they may affect the
functionality of automation and supervision schemes and
cause wrong decisions and disorientation of corrective ac-
tions (see Reppa et al. (2014)). Although various method-
ologies have been developed that deal with the sensor fault
diagnosis problem in time-driven dynamical systems, such
as Vemuri (2001); Zhang et al. (2005); Reppa et al. (2014);
Keliris et al. (2018), the research conducted for sensor fault
diagnosis in hybrid systems is still minimal according to

the authors’ knowledge. Specifically, the problem of sensor
bias fault diagnosis in hybrid systems with autonomous
mode transitions is challenging since the sensor bias fault
can cause the wrong estimation of the system mode and
subsequently, the triggering of false alarms and also the
failure to isolate the fault successfully.

Thus, the primary objective and main contribution of
this paper is the design of a sensor bias fault diagnosis
approach for a class of hybrid systems with nonlinear
uncertain discrete-time dynamics, measurement noise, and
autonomous and controlled mode transitions. The pro-
posed approach uses a hybrid automaton observer that
prevents the need for pre-enumeration of all modes in a
system level, while the fault detection scheme employs a
filtering approach to attenuate the effect of measurement
noise and allow tighter detection thresholds. An important
part of the fault diagnosis approach is the development
of a more improved version of the autonomous guard
events identification (AGEI) module that introduced in
our previous work in Heracleous et al. (2018a). The AGEI
module eliminates any false alarms due to autonomous
mode transitions by calculating and setting a new de-
tection threshold promptly in the fault detection scheme.
Moreover, it can identify when an autonomous mode tran-
sition occurred in the system and trigger it in the observer
allowing effective mode estimation. Finally, an adaptive
sensor fault estimation scheme is implemented and acti-
vated once a fault is detected. The scheme can estimate
the sensor bias fault magnitudes that are used for fault iso-
lation purposes and also by the observer through a simple
accommodation strategy to compensate the measurements
so that both the observer and AGEI module continue their
correct operation.
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2. PROBLEM FORMULATION

We consider a hybrid system S that consists of N subsys-
tems AI , I ∈ {1, . . . , N}, with each having several modes
of operation. The individual subsystems are modeled as
open hybrid automata (OHA), while the overall system is
the composition of those automata that operate in parallel
and interact via shared variables. We refer to the model
for the overall system as composition Open Hybrid Au-
tomaton (cOHA). Fig. 1 illustrates an example of a cOHA
composed of two OHAs that interact via shared variables.
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Fig. 1. Example of a cOHA composed of two OHAs.

Each subsystem OHA can be seen as an extension of a
finite-state machine (FSM) that incorporates nonlinear
uncertain discrete-time difference and algebraic equations
for each mode to capture the time-driven dynamic evolu-
tion of a subsystem. More specifically, based on Hofbaur
and Williams (2004); Heracleous et al. (2018b), we de-
scribe the OHA for the subsystem AI , I ∈ {1, . . . , N} as
a tuple

AI := 〈sI , QI ,wI , FI , ηI ,ΣI , γI , SI,0〉 (1)

where 1 :

• s = {q} ∪ x is the hybrid state, composed of the
operation mode (discrete state) q ∈ Q and the
continuous state variables x ∈ Rnx

,
• Q = {m1, . . . ,mNq

} specifies a finite set of Nq
operation modes,
• w = u ∪ z ∪ y is the set of I/O variables, that

aggregates the inputs u ∈ Rnu

, the shared variables
z ∈ Rnz

that models the interconnections with other
subsystems, and the outputs y ∈ Rny

,
• F : Q 7→ FDE ∪ FAE specifies the time-driven dy-

namics evolution in terms of nonlinear discrete-time
difference equations FDE (with sampling-period Ts)
and algebraic equations FAE , where both incorporate
the effects of local uncertainty ηI ,
• Σ = Ga ∪ Gc is a set of events that consists of: (a)

autonomous guard events ga ∈ Ga ⊂ Σ where each is
triggered by a continuous state value x based on an
enabling condition of the form x 4 ξa, with ξa ∈ R
and 4 ∈ {≤,≥,=, <,>}, (b) control guard events
gc ∈ Gc ⊂ Σ where each is triggered by an input
variable u value, based on an enabling condition of the
form u 5 ξc, with ξc ∈ R and 5 ∈ {≤,≥,=, <,>},
• γ : Q × Σ → Q are the transition functions labeled

by autonomous ga or control gc events,
• S0 denotes the initial hybrid state s0 = {q0} ∪ x0.

1 The components of an OHAAI are denoted by sI , QI , wI , FI etc.,
but when there is no risk of ambiguity and for the sake of simplicity
the subscripts will be omitted.

The overall system S is modeled by the cOHA CA that
specifies the parallel composition of the set of subsystems
automata A := {A1, . . . ,AN} as a tuple

CA := 〈A,u,y, η,v,σ〉 (2)

where u = [u1, . . . , unu ]T are the input variables and
y = [y1, . . . , yn]T are the output variables of cOHA, ag-
gregated from each subsystem AI to single vectors and re-
indexed by the mapping functions 2 Mu : {1, . . . , nuI } 7→
{1, . . . , nu} and My : {1, . . . , nyI} 7→ {1, . . . , n}, respec-
tively. η is the mode dependent nonlinear function that
denotes the overall uncertainty of the system, which acts
on the continuous states x = x1 ∪ . . . ∪ xN . The vector
v ∈ Rn represents the measurement noise, whilst the
vector σ : R 7→ Rn represents the sensor bias caused
due to a sensor fault. The cOHA describes the continuous
evolution of the overall system using the following set
of mode-dependent difference equations with time step k
(t = Tsk):

xk+1 =f(qk,xk,uk) + η(qk,xk,uk, k), k = 0, 1, . . .

yk =xk + vk + β(k −K0)σk (3)

where q = {q1, . . . , qN} is the system mode (as a collection
of the subsystems modes qI ∈ QI), and x = [x1, . . . , xn]T

are the system continuous states aggregated from each
subsystem AI and re-indexed using the mapping function
Mx : {1, . . . , nxI} 7→ {1, . . . , n}. f : Q × Rn × Rnu 7→ Rn
represents the mode-dependent time-driven dynamics of
the system, and η : Q×Rn×Rnu×N 7→ Rn represents the
overall mode-dependent uncertainty of the system. The
term β(k − K0) : R 7→ R models the time evolution of
the sensor fault(s), where K0 is the unknown discrete-
time step at which the sensor fault occurs. Without loss of
generality we consider all sensor faults to occur at the same
step K0. The time profile β(k−K0) can be used to model
both abrupt and incipient faults, however, in this paper
we only consider the case of abrupt sensor fault where

β(k −K0) =

{
0, if k < K0

1, if k ≥ K0.
(4)

The objective of this work is to develop a fault diagnosis
approach that will enable the detection and isolation of
sensor bias fault(s) for the hybrid system S, considering
the presence of autonomous mode transitions, modeling
uncertainty η and measurement noise v.

The following assumptions are used throughout the paper:

Assumption 1. The hybrid systems’ continuous state vari-
ables x belong to a compact and bounded set X before and
after the occurrence of fault(s), that is xk ∈ X ∀ k ≥ 0.

Assumption 2. All measurement noise components are
bounded with known bounds v̄i, i.e.,: |vi,k| ≤ v̄i, for all
k ≥ 0 and all i = 1, 2, . . . , n.

Assumption 3. Each component of the overall modeling
uncertainty η in (3) is an unstructured and possibly
unknown nonlinear function of qk, xk, uk, and k, but it is
bounded by some known functional η̄i, i.e.,

|ηi(qk,xk,uk, k)| ≤ η̄i(qk)

for all system modes qk = {q1,k, . . . , qN,k}.
2 For example in Fig. 1 the two subsystems OHAs each with inputs
u1 = {u1} and u2 = {u1, u2} will result a cOHA with aggregated
and re-index inputs u = u1 ∪ u2 7→Mu[u1, u2, u3]T as shown.
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3. FAULT DIAGNOSIS SCHEME

The proposed sensor bias fault diagnosis scheme for hybrid
systems is depicted in Fig. 2. It consists of the hybrid
automaton observer, the fault detection module, the au-
tonomous guard event identification (AGEI) module, and
the adaptive sensor fault estimation module. We describe
each of these parts in the following paragraphs.

3.1 Hybrid Automaton Observer

The hybrid automaton observer has a similar structure
to the cOHA in (2). Specifically, the hybrid automaton
observer is a parallel composition of the set of subsystems
OHAs A := {A1, . . . ,AN} as in (1) 3 and is represented
as a tuple

O := 〈A,u, ỹ, ga, q̂, x̂〉 (5)
where the observer inputs are the system’s input vector u,
the output vector ỹ , y − σ̂ (where σ̂ are the estimated
values for the sensor bias from the adaptive sensor fault
estimation module as shown in Fig. 2), and also the
autonomous guards triggering events ga provided by the
AGEI module. The observer outputs are the estimates
for the system mode q̂ and the continuous state x̂. Note
that the estimated values for the sensor bias σ̂ become
non-zero only after a fault is detected, and the adaptive
sensor fault estimation module is activated. Thus, before
the fault detection ỹ = y while after the fault detection
ỹ = y − σ̂. In this way, a simple fault accommodation
strategy is performed by replacing the measurements y
with the compensated measurements y − σ̂. Thus, the
hybrid state estimation is not affected by the sensor bias
fault σ contained in y since it is canceled out by σ̂.

The main task of the hybrid automaton observer is to
estimate the hybrid state ŝk = q̂k ∪ x̂k at each time step
k, given the initial hybrid state s0 = q0 ∪ y0, the values
for inputs uk and outputs ỹk of the system, as well as
the autonomous guard triggering events ga provided by
the AGEI module. To achieve the task of hybrid state
estimation, the observer carries out the following:

Mode estimation The observer estimates the system
mode q̂k = {q̂1,k, . . . , q̂N,k} at each time step k by:

(a) tracking transition functions that are labeled by con-
trol guard events, i.e., q̂I,k+1 = γI(gcI , q̂I,k), in each
subsystem OHA of the hybrid automaton observer,
and

(b) executing any transition functions labeled by au-
tonomous guard events, i.e., q̂I,k+1 = γI(gaI , q̂I,k),
that are triggered by the AGEI module in each sub-
system OHA of the hybrid automaton observer.

Continuous State Estimation The hybrid automaton
observer estimates the continuous state values using the
following estimation model:

x̂k+1 = f(q̂k, ỹk,uk) (6)

where f is obtained based on the estimated system mode
q̂k = {q̂1,k, . . . , q̂N,k} as in Hofbaur and Williams (2004);
Heracleous et al. (2018b) i.e., by solving

F (q̂k) = F1(q̂1,k) ∪ · · · ∪ FN (q̂N,k). (7)

3 The OHAs for the hybrid automaton observer don’t include any
modeling uncertainty η as in the OHAs for the system.
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Fig. 2. Sensor bias fault diagnosis scheme for hybrid
systems.

3.2 Fault Detection

The fault detection scheme utilizes the filtering approach
devised in Keliris et al. (2015) for uncertain discrete-time
systems and later adapted for the case of uncertain hybrid
systems in Heracleous et al. (2018a). The use of filtering
dampens the effect of measurement noise and allows the
derivation of tighter detection thresholds, which enhances
the detectability of smaller magnitude faults. We describe
the fault detection scheme in the following paragraphs, and
we derived analytical results regarding the detectability of
sensor bias faults by the proposed scheme.

Filtering Approach To dampen the effect of measure-
ment noise vk (see (3)), each measured output variable
yi, i = 1, . . . , n is filtered by H(z), where H(z) is an m-th
order, asymptotically stable filter (poles lie inside the open
unit disc |z| = 1) with proper transfer function

H(z) =
d0 + d1z

−1 + d2z
−2 + . . .+ dmz

−m

1 + c1z−1 + . . .+ cmz−m
. (8)

In general, each yi can be filtered by a different filter, but
in this paper, without loss of generality and to simplify
the presentation, we consider the same H(z) for all the
output variables. Also, note that the form of H(z) allows
both IIR and FIR types of digital filters.

Based on H(z), we can define the filter Hp(z) = z−1H(z)
where Hp(z) is also asymptotically stable since it com-
prises of the same poles as H(z) with an additional pole
at z = 0 (inside |z| = 1). Since the filters H(z) and Hp(z)
(with impulse responses h(t) and hp(t), respectively) are
asymptotically stable, they are also BIBO stable. Thus,
owing to Assumption 2, the filtered measurement noise
vF,k , H(z) [vk] is bounded as follows:

|vFi,k| ≤ v̄Fi,k i = 1, 2, . . . , n, (9)

where v̄Fi are computable bounds. The filter H(z) is
selected based on the noise characteristics so that the noise
is dampened.

Residual Signal Generation To generate the residual
error, we first examine the results of filtering the system’s
output and the observer’s (continuous) state estimates.
Note that before a fault is detected, σ̂k = 0 and thus
ỹk = yk. Therefore, by filtering the output signal ỹk we
obtain:

wk , H(z) [ỹk] = H(z) [yk] = H(z) [xk + vk] (10)
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and by using vF,k and H(z) = zHp(z), (10) becomes:

wk = Hp(z)
[
z[xk]

]
+ vF,k. (11)

By using Z-transform’s time-shift property, i.e., z[xk] =
xk+1+z[x0 ·δ(k)], where δ(k) is the discrete delta function,
and (3) under fault-free operation i.e., β(k−K0) = 0, (11)
becomes

wk = Hp(z)
[
xk+1 + z[x0 · δ(k)]

]
+ vF,k

= Hp(z)
[
f(qk,xk,uk) + η(qk,xk,uk, k)

]
+ h(k)x0 + vF,k. (12)

By also filtering the observer’s continuous state estimate
x̂k, given by (6) with initial condition x̂0 = y0, we obtain

ŵk = H(z)[x̂k] (13)

By using the filtered output wk and the filtered continuous
state estimate ŵk, the residual error to be used for fault
detection is given by:

rk , wk − ŵk, (14)

and it constitutes the basis of the fault detection scheme.
Specifically, a sensor fault is detected by the scheme when
|ri,k| > R̄i,k, for at least one component i, where R̄i,k is
the detection threshold that will be derived in the sequel.

Detection Threshold To derive a suitable nominal de-
tection threshold, we consider the maximum effect of the
modeling uncertainty on the residual signal in the case of
no sensor faults and also in the absence of any mode mis-
matches due to autonomous guards events (i.e., q̂k = qk at
all times). By using a similar procedure as in the derivation
of (12) and with ỹk = yk in (6), ŵk from (13) satisfies:

ŵk = Hp(z)
[
f(q̂k,yk,uk)

]
+ h(k)y0. (15)

Prior to any sensor fault(s) at time step k < K0, the
residual error can be written by using equations (12), (15)
and (14) as 4 :

rk = Hp(z)[∆f(qk, q̂k, k)+η(qk, k)]+vF,k−h(k)v0 (16)

where ∆f(qk, q̂k, k) is the mismatch function given by:

∆f(qk, q̂k, k) , f(qk,xk,uk)− f(q̂k,yk,uk). (17)

By taking the absolute value of (16) component-wise and
by using the triangle inequality we obtain for each i =
1, . . . , n:

|ri,k| ≤ |Hp(z)[∆fi(qk, q̂k, k)]|+ |Hp(z)[ηi(qk, k)]|
+ |vFi,k|+ |h(k)vi,0|.

To derive a suitable threshold for |ri,k|, the following
assumption is used:

Assumption 4. The filtered mismatch function in the ab-
sence of any mode mismatches is bounded as follows:

|Hp(z)[∆fi(qk, q̂k, k)]| ≤ ∆̄fi(q̂k, k), i = 1, . . . , n (18)

where ∆̄fi(q̂k, k) is a computable bounding function.

Assumption 4 is based on the fact that filtering damp-
ens the measurement noise from the mismatch function
∆fi(qk, q̂k, k). Thus, a suitable selection for ∆̄fi can be
made through the use of simulations (i.e., Monte Carlo

4 In the rest of the paper, when there is no risk of ambiguity,
and for the sake of simplicity, a compact notation like η(qk, k) ≡
η(qk,xk,uk, k) and ∆f(qk, q̂k, k) ≡ ∆f(qk, q̂k,xk,yk,uk) will be
used.

methods) by filtering the mismatch function in all oper-
ating modes using the known nominal function dynamics
and the available noise characteristics.

Therefore, owing to Assumptions 3 and 4 and also by
recalling (9), the following detection threshold can be
derived:

r̄i,k = ∆̄fi(q̂k, k) + H̄p(z)
[
η̄i(q̂k)

]
+ v̄Fi + |h(k)|v̄i, (19)

where H̄p(z) is a filter with impulse response h̄p(t) that
satisfies h̄p(t) ≥ |hp(t)| for all t ≥ 0 (methods for selecting
a suitable filter H̄p(z) are discussed thoroughly in Keliris
et al. (2015)), and v̄i is a bounding estimate of vi,0, i.e.,
v̄i ≥ |vi,0|. Note that the term |h(k)|v̄i affects the detection
threshold only during the initial transient, because the
impulse response h(k) of a proper and asymptotically sta-
ble transfer function H(z) converges to zero exponentially
fast.

The threshold in (19) guarantees no false alarms in the
case of no mode mismatches due to autonomous guard
event transitions (i.e., q̂k = qk) Therefore, the threshold
R̄i,k = r̄i,k is used most of the time in the fault detection
scheme. However, to guarantee no false alarms in the case
of mode mismatch due to autonomous guard events (i.e.,
q̂k 6= qk), a new detection threshold R̄i,k = r̄∗i,k is set
by the AGEI module when an autonomous guard event is
expected to occur. The derivation of the new threshold r̄∗i,k
and also the AGEI module are described in the upcoming
section 3.3.

3.3 Autonomous Guard Events Identification (AGEI)

Because of the presence of autonomous guard events trig-
gered by the continuous state values x, and the avail-
ability in the observer of only the output values y that
include measurement noise, the observer can trigger these
autonomous guard events at a different time step than
the system, causing mode mismatch (i.e., q̂k 6= qk) and
subsequently false alarms. To exclude the possibility of
such false alarms and also to trigger these events effectively
in the observer, the AGEI module is used. Specifically, the
AGEI module monitors for autonomous guard events in
the system. If it determines that an autonomous guard
event is expected to occur, it calculates and sets a new
detection threshold in the fault detection scheme to avoid
any potential false alarms. Moreover, the AGEI module
can identify if the expected autonomous guard event has
indeed occurred in the system and subsequently trigger it
in the observer allowing effective mode estimation.

For performing the above operations, the AGEI mod-
ule uses the AGEI Matrix, which keeps in each row all
the necessary details for every autonomous guard event
gaj , j = 1, . . . , nga in the system. Specifically, for each
gaj it keeps: (a) the enabling mode qIj which is the mode
of subsystem I from which gaj can be triggered, (b) the
enabling condition xi 4j ξaj that triggers gaj , (c) the
transition mode q∗Ij which is the mode that that subsystem

I transitions after gaj is triggered, and finally (d) the
residual(s) ri ∀i affected by gaj .

Moreover, we consider that there is a dwell-time between
consecutive autonomous guard events, as in Hespanha and
Morse (1999). Thus, only one autonomous guard event
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Fig. 3. AGEI algorithm diagram.

occurs at each time. Finally, to guarantee correct mode
estimation by the AGEI in case of a sensor fault, we con-
sider that the necessary time for learning the sensor fault
magnitude is always less than the dwell-time of consecutive
autonomous guard events. A diagram for AGEI algorithm
is shown in Fig. 3 and consists of three main sequential
phases, namely Monitoring, Expecting, and Triggering,
that we describe in the following paragraphs.

Monitoring Phase Based on the estimated mode q̂k
and the filtered measurements wk, the AGEI monitors
if any autonomous guard event gaj is possible to occur.
Specifically, to accomplish this, the algorithm makes the
following checks (see Fig. 3): (a) if the current mode
estimate q̂I,k matches the enabling mode qIj for the gaj ,
and (b) if the function λ̄(·) returns 1. The first check
determines if gaj is possible to occur based on the current
mode estimate. The second check determines if gaj is
possible to occur based on its enabling condition xi4j ξaj .
In more detail, λ̄(wi,k,4j , ξaj) uses the decision rule:

λ̄(·) =

 1

if Ξ−
aj ≤ |wi,k| ≤ Ξ+

aj and 4j ∈ {=}
if |wi,k| ≥ Ξ−

aj and 4j ∈ {>,≥}
if |wi,k| ≤ Ξ+

aj and 4j ∈ {<,≤}
0 otherwise

(20)

where Ξ+
aj and Ξ−

aj bounds are calculated by:

Ξ±
aj , (1± δ) |H(z)[ξaj ]| . (21)

The decision rule in (20) relies on the filtered measurement
wi,k and the filtered value of ξaj from the enabling condi-
tion. Also, the filtered noise and the delay that the filtering
imposes, are taken into consideration by incorporating the
design parameter constant δ ∈ (0, 1] that determines the
percentage to set Ξ+

aj up and Ξ−
aj down from H(z)[ξaj ],

as indicated by (21). In this way, the AGEI module can
anticipate the guard event gaj before it occurs, so that it
can set the new detection threshold accordingly. The value
of δ can be initially set around 5% and can be further
fine-tuned by observing when the new detection threshold
is applied in the Fault Detection scheme. If any or both
the above checks are false, then the algorithm determines
that the autonomous guard event gaj will not occur in the
system; thus, the nominal detection threshold that is given

in (19), i.e., R̄i,k = r̄∗i,k, is used in the Fault Detection
scheme. However, if both checks are true, then the algo-
rithm determines that the autonomous guard event gaj is
possible to occur and it continues to the Expecting phase.

Expecting Phase As can be seen in the expecting phase
in Fig. 3, the AGEI first set in the Fault Detection scheme
a new detection threshold R̄i,k = r̄∗i,k for any residual(s)
affected by gaj , according to the AGEI Matrix. The new
detection threshold considers the mode mismatch error
between system and observer, due to the expected gaj , as
well as the maximum bound on the modeling uncertainty
between either the current mode or the transitioning
mode. Thus, by following a similar procedure as in the
derivation of (19), the new detection threshold is given
by:

r̄∗i,k = ∆̄fi(q
∗
k, q̂k, k) + H̄p(z)

[
η̄∗i
]

+ v̄Fi,k + |h(k)|v̄i, (22)

where q∗ is the new mode that the system transitions if gaj
occurs (according to AGEI Matrix), ∆̄fi(q

∗
k, q̂k, k) is the

mode mismatch bounding function that can be obtained
similar to Assumption 4, and finally, the uncertainty
bound η̄∗i is calculated using η̄∗i , max

(
η̄i(q̂k, k), η̄i(q̂

∗
k, k)

)
.

The new detection threshold given in (22) is larger or equal
than the nominal threshold, i.e., r̄∗i,k ≥ r̄i,k, and it guar-
antees no false alarms due to possible mode mismatches
because of expected autonomous guard events gaj .

With the new detection threshold set, the algorithm works
on identifying if gaj has occurred in the system. This is
done by checking if the residual signal that is affected
by gaj has crossed its corresponding nominal threshold,
i.e., |ri,k| > r̄i,k. This is based on the fact that after
a mode change in the system due to gaj , there will be
an increase in the residual signal because of the occurred
mode mismatch, and it will be detected once it crosses its
corresponding threshold.

Triggering Phase Once it is determined that gaj has
occurred in the system, the AGEI algorithm moves to the
triggering phase, shown in Fig. 3. The AGEI first triggers
the anticipated autonomous guard event gaj in the hybrid
automaton observer. Next, the AGEI algorithm keeps
the new threshold given by (22) in the Fault Detection
scheme for the next K time steps. This is necessary for
avoiding any false alarms due to transients in the residual
signal because of mode change in the observer, which are
picked up by the filters. The number of the necessary time
steps K is equal to the number of time steps that the
impulse response of h(k) takes to converge to zero (or
sufficiently close to zero in the case of IIR filter). After the
K time steps are passed, the AGEI algorithm returns to
the monitoring phase and monitors again for autonomous
guard events.

3.4 Adaptive Sensor Bias Fault Estimation

When a fault is detected at time step k = Kd, the following
estimation model is activated to estimate the magnitude
of the sensor bias fault(s)

x̂sk+1 =f(q̂k, x̂
s
k,uk) + Λεsk, x̂sKd

= yKd
(23)

ŷsk =x̂sk + σ̂k (24)

σ̂k+1 =σ̂k + Pσ[Γεsk], σ̂Kd
= 0 (25)
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where εsk , yk− ŷsk denotes the output estimation error, Λ
is a design matrix that is selected so that is Schur stable,
and σ̂ ∈ Rn denotes the sensor fault estimation vector.
Finally, Pσ[·] is a projection operator that restrains the
estimation vector σ̂ in a predefined and convex region
Θσ ∈ Rn to guarantee the stability of the learning algo-
rithm in the presence of noise and modeling uncertainty.
In this paper, Θσ is considered to be a zero-origin hyper-
sphere of radius Mσ, with the projection operator in (25)
to be given by Keliris et al. (2017)

Pσ[Γεsk] =


Γεsk − Γ

σ̂kσ̂
T
k

σ̂T
k

Γσ̂k
Γεsk if |σ̂k| ≥Mσ and

σ̂k
TΓεsk > 0.

Γεsk, otherwise

(26)

where Γ ∈ Rn×n is a symmetric and positive definite
learning rate matrix. Note that the adaptive estimation
model above estimates the sensor fault magnitudes for all
the sensors in the system. Thus, the sensor fault estimates
σ̂ can be used to recognize which sensors are healthy and
which are faulty. In the case of healthy sensors, their sensor
bias fault estimates values will eventually converge close
to zero, while for faulty sensors, this will not be the case.
Also, as explained earlier in Section 3.1, the sensor fault
estimates are used for canceling the actual sensor faults,
which allows both the hybrid observer and AGEI module
to continue their correct function even in the presence of
sensor faults.

4. CONCLUSION

In this paper, a sensor bias fault diagnosis approach for
a class of nonlinear uncertain hybrid systems is proposed.
An observer based on a modified hybrid automaton frame-
work is used to estimate the hybrid state while a filtering
approach is employed in the fault detection scheme that
allows tighter mode-dependent thresholds while guaran-
teeing no false alarms. An autonomous guard events identi-
fication (AGEI) module is developed to eliminate any false
alarms due to autonomous guard event and also enable
effective mode estimation in the observer. Lastly, an adap-
tive sensor fault estimation scheme is activated once a fault
is detected to estimate the sensor bias fault(s) magnitudes
that are then used to compensate the measurements so
that both the observer and AGEI module can continue
their operation. Future research efforts will be devoted to
the designing of a modeling uncertainty learning approach
along with a comprehensive fault diagnosis architecture for
uncertain nonlinear systems that will handle discrete and
parametric faults along with sensor faults.
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