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Abstract: In this paper, a method is introduced for probabilistic power flow calculations based on arbitrary 

polynomial chaos. For the polynomial chaos, orthogonal polynomial sets are used to represent the 

uncertainties of renewable power generation, and these orthogonal polynomials are generated from actual 

data. The aforementioned method is applied to probabilistic power flow calculations, and its applicability 

is confirmed in application to an actual transmission network. The calculation time and accuracy achieved 

using the arbitrary polynomial-chaos method are compared with those achieved using the popular 

Monte Carlo method. The results show that the calculation speed is 246–680 times greater than that with 

the direct Monte Carlo method, while the accuracy is almost same. 
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1. INTRODUCTION 

In this paper, a method is introduced for representing 

probabilistic uncertainties by means of orthogonal 

polynomials based on arbitrary polynomial chaos (APC). The 

proposed method is then applied to probabilistic power flows 

(PFs) in actual transmission networks that involve multiple 

renewable power sources such as wind power generation. 

To date, many methods have been devised for calculating 

probabilistic PFs. There are three types of methods, numerical, 

analytical, and polynomial-chaos method. The representative 

of first one is Monte Carlo (MC) method. Dopazo (1975) 

introduced power distribution functions into PF calculations. 

In MC methods, after selecting probabilistic variables 

according to probability distribution functions (PDFs), these 

variables are input into the PF equation, and the output of a 

specified power line is obtained iteratively. For faster 

calculation, point estimation technique (Morales 2007) and 

Gram–Charlier expansion technique (Yuan 2011) are applied. 

For analytical method, the combination technique of 

convolution and linearization (Allan 1981) is proposed. The 

convolution method uses Tayler expansion and obtained 

linearized equations are solved. 

For polynomial-chaos method, a relationship is obtained 

between probabilistic distribution functions and polynomial 

chaos represented by a class of orthogonal polynomials, and 

this relationship can be extended to any probability 

distribution function that appears in engineering. Polynomial 

chaos is an uncertainty representation for PDFs by means of 

orthogonal polynomials. There are two methods for 

implementing the polynomial-chaos approach, namely general 

polynomial chaos (GPC) and APC. GPC represents PDFs that 

correspond to the Wiener–Askey scheme (WAS) (Xiu, 2012), 

which is a natural expansion that arises from a class of 

hypergeometric functions. Nguyen (2016) applied adaptive 

sparse polynomial chaos based on GPC to a probabilistic PF 

simulation of a test network. By contrast, APC represents 

PDFs that are based on actual data, but in engineering many 

PDFs are not concerned with distributions in the WAS; for 

example, the Weibull distribution, which is said to 

approximate wind power generation, is not included in the 

WAS. In wind power, a probabilistic distribution is usually 

approximated by the Weibull distribution, and in solar power 

any distributions represented by the Gaussian mixture model 

are used. Therefore, the APC method would also be adequate 

for solving actual engineering problems. Further, 

Laowantitwattana (2018) applied APC to PDFs and showed 

aspects of APC. 

In the present paper, because probabilistic PFs with wind 

power generation are considered, the APC method is used. Our 

paper describes aspects of the calculation algorithm of APC in 

more detail. The APC method is outlined in Section 2. Section 

3 presents the algorithm that is used to solve probabilistic PFs. 

Moments to obtain orthogonal polynomials in APC are 

calculated. Furthermore, the collocation method, which is a 

calculation-point selection method that is often used in 

numerical simulations, is used to obtain the probabilistic 

response equation instead of using the PF equation iteratively. 

In Sections 4 and 5, this algorithm is applied to an actual power 

transmission network, and the APC method is compared with 

the popular MC method regarding the calculation time and 

accuracy. In Section 6, Sensitivity application by an outage of 
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a transmission line is explained. Finally, an application is 

presented in Section 6 and conclusions are drawn. 

2. MODELING BASED ON APC 

2.1 Polynomial-Chaos Method 

The probabilistic response equation based on polynomial 

chaos is introduced, where 𝜉1, 𝜉2, … , 𝜉𝑁  are probabilistic 

variables, 𝛷𝑖  is a basis of orthogonal polynomials, Ci is a 

coefficient and constant, and K and N are the numbers of 

polynomials and probabilistic variables, respectively. The 

response R(𝜉1, 𝜉2, … , 𝜉𝑁) is 

𝑅(𝜉1, 𝜉2, … , 𝜉𝑁) = ∑ 𝐶𝑖𝛷𝑖(𝜉1, 𝜉2, … , 𝜉𝑁).

𝐾−1

𝑖=0

  (1) 

There is a relationship between K and N. If d is the maximum 

order of the orthogonal polynomials and aCb is a combination 

operator, then 

𝐾 = 𝐶𝑑𝑁 + 𝑑  =  (𝑁 + 𝑑)!/𝑁! 𝑑!.   (2) 

If N = 1 (single probabilistic variable), then K = d + 1. In this 

manner, the order expansion of the orthogonal polynomials is 

restricted. 𝛷𝑖 is divided into multiple one-variable functions as 

follows: 

𝛷𝑖(𝜉1, 𝜉2, … , 𝜉𝑁) = 𝛷𝑖1
(𝜉1)⨂𝛷𝑖2

(𝜉2)⨂ ∙∙∙ 𝛷𝑖𝑁
(𝜉𝑁) 

 = ∏𝜙
𝑗

(𝑘𝑗)
(𝜉𝑗),

𝑁

𝑗=1

  (3) 

I = 0, 1, 2, …, K−1, kj = 0, 1, …, d, 

∑𝑘𝑗

𝑁

𝑗=1

≤ 𝑑. (4) 

Equation (4) means that the sum of the orders of the 

polynomials for a single probabilistic variable must be less 

than d. 

In (3), 𝜙
𝑗

(𝑘𝑗)
(𝜉𝑗) are single-probabilistic-variable orthogonal 

polynomials, with constant ℎ𝑗,𝑖
(𝑝)

: 

𝜙
𝑗

(𝑘𝑗)
(𝜉𝑗) = ∑ℎ𝑗,𝑖

(𝑝)

𝑝

𝑖=0

𝜉𝑗
𝑖 , (5) 

where p is selected in {0, 1, … , 𝑑}. Thus, the basis polynomials 

are organized by powers of the single probabilistic variable. 

2.2 Orthogonalization 

By orthogonalizing the polynomials, the PDFs can be 

represented by linear combinations of orthogonal polynomial 

bases. Orthogonalization is represented by the inner-product 

formula. {𝑃𝑛} 𝑛 = 0, 1, … , 𝑑(where d is the maximum order of 

the polynomials) is a sequence of orthogonal polynomials, 

G𝑛 is a constant value, and 𝛿𝑚𝑛 is the Kronecker delta defined 

as 

𝛿𝑚𝑛 = {
0   𝑚 ≠ 𝑛
1   𝑚 = 𝑛

 

〈𝑃𝑚(𝑥), 𝑃𝑛(𝑥)〉 = ∫ 𝑃𝑚(𝑥)𝑃𝑛
𝑆

(𝑥)𝑑𝜇 = 𝐺𝑛𝛿𝑚𝑛  (6) 

µ is called a measure on Domain S of functions, Pi(x). dµ(x) is 

represented by the PDF function w(x), called the weight: 

𝑑𝜇(𝑥) = 𝑤(𝑥)𝑑𝑥.   (7) 

A coefficient ℎ𝑗,𝑖
(𝑝)

 is calculated based on moment analysis. 

Because 𝜙
𝑗

(𝑘𝑗)(𝜉1) are orthogonal, the following is satisfied: 

〈𝜙𝑚

(𝑘𝑗)(𝜉), 𝜙𝑛

(𝑘𝑗)(𝜉)〉 = 𝐺𝛿𝑚𝑛,   (8) 

from which the following are obtained, 

∫ ℎ0
(0)

[∑ℎ𝑗,𝑖
(𝑝)

𝜉𝑗
𝑖

𝑘

𝑖=0

]
𝑆

𝑑𝜇 = 0, 

∫ [∑ℎ𝑗,𝑖
(1)

𝜉𝑗
𝑖

1

𝑖=0

] [∑ ℎ𝑗,𝑖
(𝑝)

𝜉𝑗
𝑖

𝑘

𝑖=0

]
𝑆

𝑑𝜇 = 0,     (9) 

∙∙∙∙∙ 

∫ [∑ ℎ𝑗,𝑖
(𝑘−1)

𝜉𝑗
𝑖

𝑘−1

𝑖=0

] [∑ ℎ𝑗,𝑖
(𝑝)

𝜉𝑗
𝑖

𝑘

𝑖=0

]
𝑆

𝑑𝜇 = 0 

When j is omitted and (7) is used, the above equations are 

converted into 

∫ ∑ℎ𝑖
(𝑘)

𝜉𝑖

𝑘

𝑖=0

𝑤(𝜉)𝑑𝜉 = 0
𝜉∈Ω

, 

∫ ∑ℎ𝑖
(𝑘)

𝜉𝑖+1

𝑘

𝑖=0

𝑤(𝜉)𝑑𝜉 = 0,
𝜉∈Ω

  (10) 

∫ ∑ℎ𝑖
(𝑘)

𝜉𝑖+𝑘−1

𝑘

𝑖=0

𝑤(𝜉)𝑑𝜉 = 0,
𝜉∈Ω

 

……. 

ℎ𝑘
(𝑘)

= 1 

When 𝜉 is defined in the Domain D, the moments m𝑝 for order 

p are calculated by 

𝑚𝑝 = L(𝜉𝑝) = ∫ 𝜉𝑝𝑤(𝜉)𝑑𝜉
𝜉∈D

.   (11) 

In actual engineering, PDFs are defined as step functions for 𝜉. 

Therefore, the discrete version of (10) is obtained as follows. 

𝑚𝑝 = ∑ 𝜉𝑖
𝑝

𝑚

𝑖=1

𝑤(𝜉𝑖)(𝜉𝑖 − 𝜉𝑖−1).   (12) 
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Using these moments, (10) are written as 

[

𝑚0 𝑚1 ⋯ 𝑚𝑘

⋮
𝑚𝑘−1 

⋮
𝑚𝑘

⋱ ⋮
⋯ 𝑚2𝑘−1

0 0 0 1

]

[
 
 
 
 ℎ0

(𝑘)

⋮

ℎ𝑘−1
(𝑘)

ℎ𝑘
(𝑘)

]
 
 
 
 

= 𝑀

[
 
 
 
 ℎ0

(𝑘)

⋮

ℎ𝑘−1
(𝑘)

ℎ𝑘
(𝑘)

]
 
 
 
 

= [

0
⋮
0
1

]  (13) 

where M is a Hankel matrix. Because a Hankel matrix is 

always non-singular, the inverse matrix of M always exists and 

the coefficients {ℎ0
(𝑘)

, …, ℎ𝑘−1
(𝑘)

, ℎ𝑘
(𝑘)

} are sure to obtained. 

2.3 Structure of Probabilistic Response Equations 

The probabilistic PF is obtained as a linear combination of 

orthogonal polynomials that represent renewable powers. This 

is a probabilistic response and is represented by (1) and (3). 

For 𝜁𝑚 = {𝜉
1
𝑚, 𝜉

2
𝑚, … , 𝜉

𝑁
𝑚}, 

[

Φ0(𝜁
1) Φ1(𝜁

1) ⋯ Φ𝑘(𝜁
1)

⋮
Φ0(𝜁

𝑚−1)
⋮

Φ1(𝜁
𝑚−1)

⋱ ⋮
⋯ Φ𝑘(𝜁

𝑚−1)

Φ0(𝜁
𝑚) Φ1(𝜁

𝑚) ⋯ Φ𝑘(𝜁
𝑚)

] [

𝐶0

𝐶1

⋮
𝐶𝑘

] = [

𝑅(𝜁1)

𝑅(𝜁2)
⋮

𝑅(𝜁𝑚)

]

  (14)

 

The matrix (14) is of order k + 1 × m (k + 1 ≤ m), therefore 

the coefficient vector {C0, C1, …, Ck} is not obtained. From the 

group of multiple vectors {Φ0(𝜁𝑖),Φ1(𝜁i), …, Φ𝑘(𝜁i)} in the 

matrix, a non-singular matrix of order k + 1 × k + 1 is selected 

by Gauss elimination. Then, the inverse matrix is calculated 

and, consequently, a new coefficient vector {C0, C1,…, Ck} is 

obtained. After {C0, C1,…, Ck} is obtained, the active and 

reactive powers Q of the target branches in the transmission 

network are calculated without using alternative current (AC) 

PF equations. When the popular MC method is used, 𝜉  is 

selected iteratively according to the PDF, and the AC PF is 

calculated by a convergent process using the Newton–

Raphson method based on iterative calculations; in that case, 

the iterative calculation must be performed twice. By contrast, 

APC uses iteration only in the selection of the probabilistic 

variables 𝜉 = {𝜉1, 𝜉2, … , 𝜉𝑁}. 

2.4 Collocation-Point Method 

When Ci in (14) is obtained, the PFs can be calculated and 

adequate probabilistic variables｛𝜉1
𝑚, 𝜉2

𝑚, … , 𝜉𝑁
𝑚｝are selected. 

For this purpose, the collocation-point method (Judd, 2014) is 

applied. The collocation-point method designates the 

calculation points of (13) for the zeros of polynomials (5). For 

example, if the order of (5) is two and the number of 

probabilistic variables 𝜉 is three, then 

𝜑1,0＝𝑎1,0, 𝜑1,1＝𝜉1+𝑏1,,0, 𝜑1,2＝𝜉1
2+𝑐1,1𝜉1+𝑐1,0 

 𝜑2,0＝𝑎2,0, 𝜑1,1＝𝜉2+𝑏2,0, 𝜑1,2＝𝜉2
2+𝑐2,1𝜉2+𝑐2,0    (15) 

 𝜑3,0＝𝑎3,0, 𝜑3,1＝𝜉3+𝑏3,0, 𝜑3,2＝𝜉3
2+𝑐3,1𝜉3+𝑐3,0 

Because N = 3 and d = 2, K = (3 + 2)!/3!2! = 10 in (2), therefore, 

the generated polynomials are 

𝑎1,0𝑎2,0𝑎3,0 

𝑎1,0𝑎2,0(𝜉1+𝑏3,0) 

𝑎1,0𝑎2,0(𝜉3
2+𝑐3,1𝜉3+𝑐3,0) 

𝑎1,0(𝜉2+𝑏2,0)𝑎3,0 

𝑎1,0(𝜉2+𝑏2,0)(𝜉3+𝑏3,0) 

𝑎1,0(𝜉2
2+𝑐2,1𝜉2+𝑐2,0)𝑎3,0     (16) 

(𝜉1+𝑏1,,0)𝑎2,0𝑎3,0 

(𝜉1+𝑏1,,0)𝑎2,0(𝜉3+𝑏3,0) 

(𝜉1+𝑏1,,0)(𝜉2+𝑏2,0)𝑎3,0 

(𝜉1
2+𝑐1,1𝜉1+𝑐1,0)𝑎2,0𝑎3,0 

Because d + 1 = 3, zeros of order-3 polynomials are selected, 

the zeros of the polynomials 

𝜉1
3+ 𝑑1,2𝜉2

2
+ 𝑑1,1𝜉2 + 𝑑1,0 = 0 

𝜉2
3+ 𝑑2,2𝜉2

2
+ 𝑑2,1𝜉2+ 𝑑2,0 = 0   (17) 

 𝜉3
3+ 𝑑3,2𝜉3

2
+ 𝑑3,1𝜉3+ 𝑑3,0 = 0, 

are 𝜉10 = {𝜉110, 𝜉120, 𝜉130 } , 𝜉20 = {𝜉210, 𝜉220, 𝜉230 } , 𝜉30 =
{𝜉310, 𝜉320, 𝜉330 } . All these variables are always real roots 

(Chihara, 1978; p.27), and variables in equations whose order 

is more than two include no equal roots. The total number of 

combinations is (d + 1)N = 33(=27), and the combinations are 

(𝜉110, 𝜉210, 𝜉310 ), (𝜉110, 𝜉210, 𝜉320 ), … . (𝜉130, 𝜉230, 𝜉330 ). 

3. ALGORITHM OF PROBABILISTIC POWER FLOW 

3.1 Algorithm for Probabilistic Power Flow Calculation 

The algorithm for calculating probabilistic PFs is shown in 

Fig.1. 

Each steps is explained below. 

Step 1: Calculation of moments. According to (11), the 

moments 𝑚𝑝 (p = 0,…, 2k − 1) are calculated. 

 

Fig. 1. Flow chart of output PDF calculation algorithm of 

probabilistic power flow 

Start

Calculation of moments

Calculation of the mean and the 

standard deviation of each 

probabilistic variable

Calculation of coefficients of PDF 

polynomials of each renewable 

power generation

Calculation of zeros of polynomials

Selection of non-singular matrix 

and calculation of the AC power 

flow equation

Calculation of coefficients of the 

probabilistic response equation

Calculation of R(ξ)

MC iteration

Creation of PDF of R(ξ）

End
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Step 2: Calculation of mean and standard deviation of each 

probabilistic variable. The mean and standard deviation are 

calculated for normalization of each probabilistic variable. 

Step 3: Calculation of coefficients of polynomials for each 

renewable power generation. For each probability variable, the 

coefficients ℎ𝑗,𝑖
(𝑝)

 of the orthogonal polynomials are calculated 

by inverting the Hankel matrix. Thus, any polynomials can be 

represented by linear combinations of the basis orthogonal 

polynomials. (Chihara, 1972; p.9). 

Step 4: Calculation of zeros of polynomials. For orthogonal 

polynomials for wind power generation PDFs, the zeros of the 

polynomials are calculated using Durand–Kerner–Aberth 

method. These zeros are collocation points and are all real 

values. 

Step 5: Selection of a non-singular matrix and calculation of 

AC PF. At the obtained zeros. The specifications of the 

transmission network topology and attributes such as the nodes 

at which wind power is injected are shown in Section 4. Then, 

because the matrix (13) is of order k + 1 × m (k + 1 ≤ m), a 

non-singular k + 1 × k + 1 matrix is selected by Gauss 

elimination. Successively, AC PFs are calculated. 

Step 6: Calculation of coefficients of the probabilistic response 

equation. The coefficients Ci of the probabilistic response 

equation are calculated by inverting the matrix M in (13). 

Step 7: Execution of MC iteration process. Up to Step 6, the 

probabilistic response equations are obtained, Then, MC 

iteration processing is executed by selecting the probabilistic 

variables. 

Step 8: Creation of PDF of R(ξ). By generating combinations 

of probabilistic variables, the PDF of R(ξ) is created. 

3.2 Normalization of Probabilistic Variables 

The ranges of the effective probabilistic variables are different 

from each other. To use these variables equally, all the 

variables are normalized. When 𝑎𝑖 the appearance frequency 

and N is the total number of range sets of the probabilistic 

variables, then the new normalized probabilistic value 𝜉 is 

𝜉 ← 𝜉 − 𝐸[𝜉]/ 𝜎 

𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒;  𝐸[𝜉] = (∑𝜉𝑖𝑎𝑖

𝑁

𝑖=0

) /𝑁    (18) 

Standard deviation value;  σ = √E[𝜉2] − E[𝜉]2 

3.3 Modeling of Power Flow Equations 

The PF is represented as 

𝑃𝑖𝑗  =  𝑌𝑖𝑗𝑉𝑖𝑉𝑗 cos(𝛿𝑖 −  𝛿𝑗 +  𝜃𝑖𝑗 ) ,   (19) 

𝑄𝑖𝑗  = 𝑌𝑖𝑗𝑉𝑖𝑉𝑗 sin(𝛿𝑖 −  𝛿𝑗 +  𝜃𝑖𝑗 ), 

where 𝑃𝑖𝑗  is the active power and 𝑄𝑖𝑗  is the reactive power. 

This equation is based on the PQ parameter, which means that 

at the power generation buses, parameters 𝑃𝑖𝑗  and 𝑄𝑖𝑗  are 

specified. Above, i and j are node numbers. Therefore, Vi is 

the voltage of node i. Here Xij is the reactance of transmission 

line (i, j), Yij is the admittance of transmission line (i, j), 𝛿𝑖 is 

the voltage phase angle of node i, and 𝜃𝑖𝑗 is as follows: 

𝜃𝑖𝑗 = tan−1 𝑋𝑖𝑗/𝑅𝑖𝑗   (20) 

4. APPLICATION TO TRANSMISSION NETWORK 

WITH WIND POWER SITES 

The proposed method is applied to an actual transmission 

network topology as shown in Fig. 2. 

The voltage level is 500 kV and 275 kV. This network was 

available in 2018. The impedances of the transmission 

branches are calculated using a geographic information system 

called EARDAS, which is a platform for environment 

assessment. All branches are double lines. The impedance 

calculation is executed based on the p.u. unit system whose 

reference capacity is 1,000 MVA. 

In Fig. 2, for renewable power generations, wind powers with 

uncertainty properties are injected at nodes, 22, 27, and 29. 

Nodes, 1, 10, 12, 17, 18, 24, and 26 are generation sites. Other 

nodes are demand sites (Fig. 2). The power factor is 0.9. The 

PDFs of the wind power generations are shown in Section 5. 

5. RESULTS AND DISCUSSION 

5.1 Orthogonal Polynomials of Wind Power PDF 

The three PDFs of wind power generation at nodes 22, 27, and 

29, wind farm (WF), are shown in Fig. 3. The orthogonal 

 

Fig. 2. Structure of transmission network topology 
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polynomial representations with orders from zero to four of the 

wind power generation PDF are given in Table 1. 

Table 1. Orthogonal Polynomial Representation of Wind 

Power Generation PDF 

WF Order Orthogonal Polynomial 

WF 

at 

Node 

22 

0 1 

1 ξ− 0.065 

2 ξ2 − 0.13ξ− 0.002729 

3 ξ3 − 0.195ξ2 + 0.009983ξ− 0.0001 

4 ξ4 − 0.026ξ3 + 0.021506ξ2 

− 0.000599ξ+ 0.000003 

WF 

at 

Node 

27 

0 1 

1 ξ− 0.0424 

2 ξ2 − 0.0848ξ + 0.001153 

3 ξ3 − 0.1272ξ2 + 0.004233ξ 

− 0.000027 

4 ξ4 − 0.1696ξ3 + 0.009131ξ2 

− 0.000164ξ + 0.000001 

WF 

at 

Node 

29 

0 1 

1 ξ− 0.0322 

2 ξ2 − 0.0644ξ+ 0.000652 

3 ξ3 − 0.0966ξ2 + 0.002418ξ 

− 0.000011 

4 ξ4 − 0.1288ξ3 + 0.005234ξ2 

− 0.00007ξ+0.0000001 

5.2 Results of Output Branch Powers 

The power PDFs of T8 and T14 in Fig. 2 by the MC method 

and APC are shown in Fig. 4. The reasons two lines are 

selected, are that these lines are close to buses where WF are 

connected, and are affected by uncertainty of power output of 

WF. The iteration number is 105,120. The results are graph 

representations that are obtained by connecting among tops of 

histograms. 

The results by MC and APC PDFs seem to be almost the same. 

Then, the calculation time and accuracy of the results are 

compared. For the calculation time, the calculation time ratio, 

namely rate = (calculation time of MC)/(calculation time APC) 

= t-MC/t - APC, is compared. The calculation time of MC is 

584.6 s. The two ratios are compared. One is that t-APC is for 

Steps 5–8 in Fig. 1 and the other is that t-APC is for whole 

steps (Step 1–8) in Fig.1 according to the order 1 to 4 of 

orthogonal polynomials. Both rates are shown in Table 2. 

For accuracy, the next formula, namely the mean square error 

is used. APCval[i] is the power value by APC in the ith 

combination of 𝜉. MCval[i] is the power value by MC. Then, 

the RMSE is 

RMSE = (
1

𝑛
∑(APC𝑣𝑎𝑙[𝑖] − MC𝑣𝑎𝑙[𝑖])

2

𝑛

𝑖=1

)

1
2⁄

  (21) 

Table 2. Comparison of Calculation Time 

Order 

Calculation time 

t-APC is for Steps 5–8 t-APC is for Steps 1–8 

t-APC[s] rate t-APC[s] rate 

1 0.78 756.6 0.86 680.6 

2 1.16 507.0 1.28 460.0 

3 1.60 366.7 1.77 331.0 

4 2.13 275.3 2.38 246.3 

In Table 3, the accuracy comparison is shown according to the 

order of the polynomials for T8, T14 and T16 (T16 is also 

close to a WF bus). 

Table 3. Accuracy Comparison 

Order T8 T14 T16 

1 4.88E-05 5.25E-05 1.98E-06 

2 7.00E-07 7.68E-07 2.61E-07 

3 7.79E-08 7.87E-08 4.77E-08 

4 3.49E-08 3.41E-08 4.35E-08 

When the order of the polynomials increases, the errors 

between APC and MCS become very small. 

6. APPLICATIN TO SENCITIVITY ANALYSIS 

The proposed APC method can be applied to a lot of 

applications such as voltage control facility planning and 

power transfer change estimation by outage accidents. In this 

paper, power change by an outage accident in facility planning 

is introduced. When more than one lines are disconnected by 

serious disasters, power transport on each transmission line 

will change. Thus, in order to introduce a lot of wind powers, 

line outage affections to all transmission network are to be 

estimated rapidly to detect serious power changes. 

 
Fig. 3. PDFs of real wind power generation 
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Fig. 4. Power PDFs by MC and APC 
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(b) Power PDF based on APC (order four)

T14

T8

0

0.01

0.02

0.03

0.04

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

p
ro

b
a

b
il

it
y
 d

is
tr

ib
u

ti
o

n

p.u.

T14

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12324



 

The grid condition is same as the real grid shown in Fig. 2. 

Then, it is supposed that transmission line T34 of near the WF 

bus 27 is outage. The result of power distribution change on 

T8 which is the composition element of a main transmission 

network, is show in Fig. 5. 

The result suggests that power distribution changes by serious 

accidents are obtained by fast calculations. In fact, all power 

changes in T1 to T36 are calculated within only 83.3 [sec]. 

7. DISCUSSION 

The characteristics of the APC are as follows: 

- Data-oriented orthogonal polynomial sets based on APC 

represent real PDFs. 

- Actual distribution of wind power generation includes few 

bumps. Orthogonal polynomial representation is able to 

approximate these phenomena with high accuracy. 

The calculation time and accuracy of the results are key issues 

for the comparison between APC and MC. 

- The calculations are 246–680 times faster than MC. Even 

though MC and APC use the same number of iteration 

calculations, there are big differences between them. This 

fast processing is caused by the content of the processing. 

The MC includes other iteration steps using the Newton–

Raphson method. On the other hand, for APC, these other 

iterations are substituted by algebraic calculations. 

- The preparation Steps 1–4 in Fig.2 do not dominate a large 

part of the calculation time. When a number of renewable 

power generations increase, because the combination of 

probabilistic values increases, APC is more effective than 

MC. 

- For accuracy, the APC method approximates with higher 

accuracy as shown in Table 3. When the polynomial order 

increases, the accuracy increases. In actual use of APC, 

order three would be adequate. 

8. CONCLUSIONS 

In this paper, fast probabilistic PF calculation based on APC is 

introduced. APC is a data-oriented method for which a 

probabilistic distribution is represented by orthogonal 

polynomials. This method is applied to probabilistic PFs that 

include multiple wind power generations. The algorithm for 

probabilistic PF calculation is shown and is confirmed as 

effective using actual transmission networks. The 

characteristics of the proposed method are as follows. 

- Real distribution is more complicated. Data-oriented 

method approximates this complexity well. 

- Fast and high accuracy simulations are available. 

Comparing MC and APC, APC is 246–680 times faster 

than direct MC. 

- MC is the standard to compare accuracy. The accuracy of 

APC is almost the same as that of MC. 

For future work, not only wind power generation but also other 

types of renewable energy such as solar power generations and 

demand should be included. 
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Fig.5. Power distribution change in T8 by an outage of T34 
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