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Abstract: To obtain precise motion control of wafer stages, an adaptive neural network and fractional-
order super-twisting control strategy is proposed. Based on sliding mode control (SMC), the proposed
controller aims to address two challenges in SMC: 1) reducing the chattering phenomenon, and 2)
attenuating the influence of model uncertainties and disturbances. For the first challenge, a fractional-
order terminal sliding mode surface and a super-twisting algorithm are integrated into the SMC design.
To attenuate uncertainties and disturbances, an add-on control structure based on the radial basis
function (RBF) neural network is introduced. Stability analysis of the closed-loop control system is
provided. Finally, experiments on a wafer stage testbed system are conducted, which proves that the
proposed controller can robustly improve the tracking performance in the presence of uncertainties and
disturbances compared to conventional and previous controllers.

Keywords: Precision Control, Sliding-mode Control, Neural Networks, Fractional-order, Linear
Motors, Stability Analysis, Uncertainty

1. INTRODUCTION

Photolithography is one of the most important processes for
semiconductor manufacturing (Mishra and Tomizuka, 2009).
An exemplar photolithography system is shown in Fig. 1. A
laser beam that goes through the integrated circuit patterns on
the reticle is projected on the wafer so that the patterns are
printed onto the wafer. During this process, the stage carrying
the wafer (the wafer stage) needs to move steadily and precisely
so that the patterns are printed accurately (Oomen et al., 2013).

With the technological development of the semiconductor in-
dustry, manufacturers demand more precise performance from
the wafer stage. To achieve the goal, researchers have developed
many control strategies and applied them on the wafer stage,
including iterative learning control (ILC) (Heertjes and Tso,
2007; Mishra and Tomizuka, 2009; Sun et al., 2014; Zheng
et al., 2017), sliding mode control (SMC) (Heertjes and Ver-
stappen, 2014; Li et al., 2016; WU et al., 2011; Ito et al., 2014),
H∞ feedback control (van de Wal et al., 2002), multi-rate con-
trol (Sun and Tomizuka, 2016) and so on. Among them, SMC
has attracted great attention for its simple implementation and
robust performance in the presence of uncertainties and external
disturbances (Fukushima et al., 2014; Kuang et al., 2019). Be-
yond the basic SMC structure (Edwards and Spurgeon, 1998),
many advanced SMC strategies such as the modified reaching
laws (Yu et al., 2005), boundary layer technique (Chen et al.,
2002), and super-twisting algorithm (STA) (Moreno and Oso-
rio, 2012) have also been proposed. The STA, focusing on im-
proving the dynamics of the sliding variables, has been consid-
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Fig. 1. A schematic diagram of a photolithography system,
where (1) is a laser generator, (2) a reflective mirror, (3) a
reticle, (4) projection lenses, (5) a wafer and (6) a wafer
stage.

ered as one of the most effective approaches for the well-known
chattering phenomenon (Sun et al., 2018). It is also robust with
respect to bounded uncertainties and disturbances (Shtessel
et al., 2012; Kuang et al., 2018c), and has been implemented
successfully in practice (Shtessel et al., 2012; Sadeghi et al.,
2018).
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To further improve the performance of SMC, fractional-order
calculus is introduced to improve the state dynamics in the
sliding surface and is combined with the STA (Kuang et al.,
2018a; Wang et al., 2019). Although there are some theo-
retical research and successful precedents for the application
of fractional-order super-twisting algorithm (FOSTA) (Wang
et al., 2019; Caponetto et al., 2015), the parametric uncertainties
are not always taken into consideration, or their bounds are
assumed to be small. When the amplitudes of the uncertainties
or disturbances are rather large, the sliding variable in STA can-
not converge to the predefined sliding surface. Instead, it only
converges to an uncertainty region around the sliding surface,
which inevitably brings positioning error to the system (Kuang
et al., 2018b). Previous researches have tried to reduce the
range of the uncertainty region to improve the precision (Sun
et al., 2018), but the negative influence from large uncertainties
remains.

Aiming to improve the control performance (i.e., high preci-
sion and robust performance) in the presence of large model
uncertainties and disturbances, a novel adaptive neural network
and fractional-order super-twisting algorithm (ANN-FSA) is
proposed in this paper. Firstly, we use the radial basis func-
tion (RBF) neural network to approximate the uncertainties
and disturbances in the system, and a corresponding fractional-
order super-twisting controller is designed to compensate for
uncertainties and disturbances. The stability of the proposed
control strategy is also analyzed. Moreover, to guarantee the
global convergence of the closed-loop system, an adaptive law
is designed. At last, we apply the proposed controller to a wafer
stage testbed. Experimental results show that the controller
performs well and is robust against disturbances.

The remainder of this paper is organized as follows: Section 2
provides the model of the wafer stage. Section 3 presents the
proposed controller, and the stability analysis of the controller.
Section 4 displays the experimental setup and the experimental
results with the proposed controller. Finally, Section 5 presents
conclusions.

2. MODEL OF WAFER STAGE

As Fig. 2 shows, the moving part of the wafer stage is driven
by a permanent magnet linear synchronous motor (PMLSM).
From Chen et al. (2019), the mathematical model of a PMLSM
is given as

Fe = Mp̈+ Ff + Fd, (1)
where Fe is the electromagnetic force generated by the linear
motor, M is the mass of the moving part, p denotes the position
of the moving part, p̈ is the second derivative of the position,
i.e., the acceleration of the moving part, Ff stands for the
friction applied to the moving part, and Fd is the external
disturbance. The friction force Ff is modelled as

Ff = Fcsgn(ṗ) +Kvṗ, (2)
where Fc denotes the Coulomb friction force and Kv is the
viscous friction coefficient. As there is no direct contact be-
tween the moving stage and the guides, Fc is very small and it
is neglected in the following analysis in this paper. In modern
linear motors, we can approximate the electromagnetic force
Fe to be proportional to the driving current with an additional
nonlinear effect. Thus, Fe is written as

Fe = Kei− Fn(i), (3)

Linear 

Motor

Guide 

Rails
Air 

Bearings

Base

Moving 

Part

Fig. 2. The experimental wafer stage testbed.

where Ke is electromagnetic coefficient and it is only related
to the physical parameters of the PMLSM, Fn(i) denotes the
nonlinear thrust force including the force ripple.

From the analysis above, the mathematical model model be-
comes

p̈ =
Ke

M
i− Kv

M
ṗ− Fd + Fn(i)

M
,Aṗ+Bu+ d, (4)

where A = −KvM , B = Ke
M , d = −Fd+Fn(i)

M is the generalized
disturbance, and u = i is the control input.

In practical applications, there are always errors between the
identified results and the actual values, i.e., the parametric
uncertainties. Here, theses uncertainties are assumed to be
bounded:

A = Ā(1 + δA), (5)
B = B̄(1 + δB), (6)

where ·̄ stands for the identified nominal parameter, and δ· is an
unknown constant.

The model (4) is rewritten as
p̈ = Āṗ+ B̄u+ ĀδAṗ+ B̄δBu+ d. (7)

3. CONTROLLER DESIGN

3.1 The Proposed Controller

For the convenience of further discussion, the definition of the
fractional-order calculus is briefly reviewed.
Definition 1. (see Podlubny (1998)) The definition of the ξth
order derivative for function f(t) in Riemann-Liouville form is
defined as

Dξf(t) =
1

γ(m− ξ)
dm

dtm

∫ t

t0

f(τ)

(t− τ)ξ−m+1
dτ, (8)
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D−ξt f(t) = t0I
ξ
t f(t) =

1

γ(ξ)

∫ t

t0

f(τ)

(t− τ)1−ξ dτ, (9)

where ξ ∈ R+ and m − 1 < ξ < m, m ∈ N, and γ(•) is the
Gamma function that γ(ξ) =

∫ +∞
0

tξ−1e−tdt.

Fig. 3 shows the proposed controller in this paper. It consists
of three parts: a nominal-model-based equivalent controller,
a super-twisting controller to reduce chattering, and a neural
network controller to compensate for the uncertainties and
disturbances. As shown in Fig. 3, the control law is given by:

u = ueq + unn + ust, (10)
where ueq , ust and unn are the control inputs from the equiv-
alent controller, the super-twisting controller and the neural
network controller, respectively.
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Fig. 3. The proposed control structure of the system.

The fractional-order sliding surface is designed as
z = ė+ α1D

η−1(siga(e)) + α2e, (11)
where e = p−r is the tracking error, r is the reference position,
ė is the derivative of e, α1 and α2 are two selected positive
constants. siga(e) , sgn(e)|e|a, and η ∈ (0, 1) is a pre-defined
constant. Therefore, the control law for the equivalent controller
can be obtained by setting ż = 0, which yields:

ueq =
1

B̄
(r̈ − α1D(Dη−1(siga(e)))− α2ė− Āv). (12)

The control law of the super-twisting controller is given by

ust = −h1

B̄
Φ1(z)−

∫ t

0

h2

B̄
Φ2(z)dt, (13)

where h1 and h2 are tunable constants, and

Φ1(z) = |z| 12 sgn(z), (14)

Φ2(z) =
1

2
sgn(z). (15)

Applying the controller (10) to the wafer stage system (7), we
obtain

ż = −h1Φ1(z)−
∫ t

0

h2Φ2(z)dt+ B̄unn + f, (16)

where f = δB
1+δB

(r̈−α1D(Dη−1(siga(e)))−α2ė−Av−d)−
1
B̄

(ĀδA + d).

In order to reduce the influence of the uncertainties on the
dynamics of sliding variable z, unn is designed as

unn = − f
B̄
. (17)

However, as unknown parameters exist in f , unn cannot be
directly obtained. Hence, in this paper, we propose to use an
RBF neural network to approximate the value of f .

The RBF neural network contains three layers: an input layer, a
hidden layer, and an output layer. The input layer is defined as

x = [x1 x2]T = [z ż]T . (18)
The hidden layer consists of Gaussian functions, and it is
presented as

h(x) = [h1, h2, · · ·hJ−1, hJ ]T , (19)

hj(x) =exp

(
−||x− cj ||

2

2b2j

)
, j = 1, 2, ..., J. (20)

where cj = [c1j , c2j ]
T and bj are, respectively, the mean vector

and the standard deviation of the j-th Gaussian basis. || • ||
denotes the Euclid norm of the vector •, and J is the number of
Gaussian basis.

The output of the neural network is

f = W ∗Th(x) + ε, (21)
whereW ∗ = (W ∗1 ,W

∗
2 , ...,W

∗
J ) represents the optimal weight

vector of the neural network, and ε stands for the approximation
error.

Traditional methods such as the gradient descent method to ob-
tain the parameters of the RBF neural network cannot guarantee
the global convergence of the closed-loop system (Cuong et al.,
2018). To guarantee the effectiveness of the approximation and
the global convergence of the closed-loop system, the mean
vector cj is designed to be in the effective mapping of the
Gaussian function, bj is selected with a proper value (Jinkun,
2013), and the weightW is updated online by the adaptive law

˙̂W = (1 + ρ)Φ2(z)h(x)− dΦ1(z)

dz
ω, (22)

where ρ is a positive tunable parameter, Ŵ is the approxima-
tion ofW , and ω = −h2

∫ t
0

Φ2(z).

Consequently, the approximation of f is obtained as

f̂ = Ŵ Th(x). (23)

The neural-network-based controller (17) is rewritten as

unn = − f̂
B̄
. (24)

3.2 Stability Analysis

Theorem 1. For the system in (7), if the controller is designed
as (10), the parameters h1 and h2 are selected as

h1 ≥ max

[
ρ2 + ρ+

1

2
,
ρ2 + 3ρ+ 1

2

]
, (25)

h2 = ρ2 + ρ(1 + h1), (26)
and the adaptive law is designed as (22) , then Φ1(z) converges
to the region

|Φ1(z)| ≤ |ε|

min
[√

2h1 − ρ− 1− ρ, ρ+ 2h1−1
2(ρ+1)

] . (27)

Proof. Substituting the designed controller (10) and the defi-
nition of the sliding surface (11) into the model of the wafer
stage (7), we have

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8415



ż =− h1Φ1(z) + ω + f̃ , (28)
ω̇ =− h2Φ2(z). (29)

where f̃ = f − f̂ .

Select a Lyapunov function candidate as
V =χTPχ+ ρW̃ T W̃ , (30)

where χ = [ Φ1(z) ω ]
T , W̃ = W ∗ − Ŵ , P is defined as

P =

[
ρ+ ρ2 −ρ
−ρ 1

]
. (31)

The derivative of V is

V̇ =

(
dχ

dt

)T

Pχ+ χTP
dχ

dt
+ 2ρW̃ T ˙̃

W , (32)

in which the derivative of χ is
dχ

dt
=
[

Φ1(z)
dz ż ω̇

]T
=

Φ1(z)

dz

[
−h1 1
−h2 0

]
[ Φ1(z) ω ]

T
+
[

Φ1(z)
dz f̃ 0

]T
=

Φ1(z)

dz

[
−h1 + ε

Φ1(z) 1

−h2 0

]
[ Φ1(z) ω ]

T

+
[

Φ1(z)
dz W̃h(x) 0

]T
. (33)

Substituting (33) into (32), we have

V̇ =
Φ1(z)

dz
χT

[
A B
B −ρ

]
χ− Φ1(z)

dz
χT

[
ρ 0
0 ρ

]
χ

+ 2
(

(ρ+ ρ2)Φ2(z)W̃ Th(x)

−ρdΦ1(z)

dz
ωW̃ Th(x)

)
− 2ρW̃ T ˙̂

W

=
Φ1(z)

dz
χT

[
A B
B −ρ

]
χT − Φ1(z)

dz
χT

[
ρ 0
0 ρ

]
χ, (34)

where A = 2(ρ + ρ2)(−h1 + ε
Φ1(z) ) + 2ρh2 + ρ, B = ρ +

ρ2 − h2 + h1ρ − ε
Φ1(z)ρ. Further, taking (25) and (26) into

consideration, we have A = 2ρ(1 +ρ) ε
Φ1(z) + 2ρ3 + 2ρ2 +ρ−

2h1ρ, and B = − ε
Φ1(z)ρ.

When |Φ1(z)| > |ε|
min
[√

2h1−ρ−1−ρ,−ρ+ 2h1−1

2(ρ+1)

] , two inequa-

tions can be obtained
|ε|
|Φ1(z)|

< −ρ+
2h1 − 1

2(ρ+ 1)
, (35)

|ε|
|Φ1(z)|

<
√

2h1 − ρ− 1− ρ. (36)

Based on the definition of A and (35), we have A < 0.

For the condition that 1+ρ−
√

2h1 − ρ < ε
Φ1(z) <

√
2h1 − ρ−

1− ρ, ∣∣∣∣ A B
B −ρ

∣∣∣∣ =− ρ2 ε2

Φ2
1(z)

− 2ρ2(1 + ρ)
ε

Φ1(z)

− 2ρ2(ρ2 + ρ+
1

2
− h1) > 0. (37)

Then we can claim that the matrix
[
A B
B −ρ

]
is negative defi-

nite. Therefore, from (34), we have

V̇ <− Φ1(z)

dz
χT

[
ρ 0
0 ρ

]
χT < 0. (38)

Here completes the proof of Theorem 1.

4. EXPERIMENTS

4.1 Experimental Setup

Remote Controller Amplifier Wafer Stage

Laser Measurement 

System

Host PC

Ethernet Hub

Fig. 4. The block diagram of the experimental system.

The overall structure of our experimental system is depicted in
Fig. 4. The control algorithm is programmed in the LabView
environment on the host computer. The host computer is con-
nected with the remote controller (PXI 7831, from National
Instruments) via Ethernet, so that the control algorithm can
be deployed in the LabView Real-Time system in the remote
controller. The output of the controller is amplified by an ampli-
fier (TA330, from Trust Automation) and applied to the wafer
stage testbed. The position of the moving part of the wafer stage
is measured by a laser ranging system (from Keysight), and the
measuring results are fed back to the remote controller. The
nominal parameters of the wafer stage have been identified as
Ā = −1.092 s−1 and B̄ = 3.9124 m/(s2 ·A).

4.2 Experimental Results

We implement the traditional PID controller, the SMC, the
advanced FOSTA, and the proposed ANN-FSA to the wafer
stage testbed to investigate the effectiveness of the proposed
controller. The reference trajectory is shown in Fig. 5. The
scan length is set as 0.04 m, and the scan velocity is set as
0.032 m/s. The parameters in each controller are tuned so
that the best performance of each controller is achieved. The
sampling interval of the experiments are set as 1 ms. For the
RBF neural network, the number of the hidden nodes is set
as 5, other parameters are selected as c1 = [−3 − 1 0 1 3],
c2 = [−7 − 3 0 3 7], b = [50 50 50 50 50], ρ = 0.2
and the initial value of W is set as 0. In the fractional-order
super-twisting algorithm, η and a are selected as 1

2 , and other
parameters are tuned as h1 = 500, h2 = 30, α1 = 0.001 and
α2 = 175.

Moreover, to study the robustness of these controllers, with all
the parameters maintained the same, an extra external sinu-
soidal disturbance is generated and applied to the system. The
amplitude and frequency of the disturbance signal are set as
0.03 m (rather large compared with referce signal) and 1 Hz,
respectively. We denote the situation without extra disturbance
as Case 1 and the situation with the additional disturbance as
Case 2. The tracking performance in these two cases is shown
in Fig. 6 and Fig. 7, respectively.
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Fig. 5. The reference signal in the experiments.

Fig. 6. The tracking errors of the controllers in Case 1: without
extra disturbance.

Table 1. RMS errors and the difference values
between the two cases (Units: µm).

Case 1 Case 2 Difference Values
PID 7.43 7.51 0.08

SMC 9.12 9.15 0.03
FOSTA 6.71 6.76 0.05

ANN-FSA 4.95 4.94 -0.01

Fig. 7. The tracking errors of the controllers in Case 2: with
extra disturbance.

In Fig. 6, we note that all the four controllers have large tracking
errors when the scanning velocity changes. The peak error of
SMC is the largest among the four controllers, which is at
around 50 µm. Tracking error via the proposed ANN-FSA is
the smallest, about 35 µm. We also note that the errors of SMC
and ANN-FSA decay faster than the PID controller, but that the
error via the PID controller is smoother than the other two con-
trollers when the tracking errors are small, i.e., closer to zero.
Figure 7 shows that even in the presence of disturbances, the
ANN-FSA can achieve the smallest tracking error. Moreover,
from Fig. 6 and Fig. 7, we note that the tracking error increases
when disturbances exist. This means that the PID controller is
not as robust enough as SMC and ANN-FSA. To quantitatively
describe the robustness, we calculate the root mean square
(RMS) errors of each controller in both cases and the results are
displayed in Table. 1. We can see that compared with traditional
SMC, the precision of FOSTA is significantly improved. This
is due to the introduction of the fractional-order sliding surface
and the super-twisting algorithm. Further, the proposed ANN-
FSA has the smallest RMS error in both Case 1 and Case 2.
According to the difference values between the RMS errors in
Case 1 and Case 2, we can conclude that SMC and FOSTA
strategy is more robust than the PID controller. ANN-FSA re-
mains precise in the presence of the large external disturbances.
The results and comparison prove that the proposed control
scheme achieves the best performance in terms of precision and
robustness.
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5. CONCLUSION

In this paper, an adaptive neural-network and fractional-order
super-twisting algorithm was proposed and applied to a pre-
cision motion system. In this way, not only the dynamics of
the states on the sliding surface was improved via the super-
twisting algorithm, but also unknown model uncertainties and
disturbances of the system were well compensated. Moreover,
an adaptive law was derived for the neural-network-based con-
troller so that the closed-loop system is globally convergent.
Both stability analysis and experimental verification were pro-
vided. The comparison results among a PID controller, a con-
ventional SMC, an advanced FOSTA and the proposed ANN-
FSA showed that the proposed controller could achieve higher
precision and better robustness than conventional controllers.
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