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Abstract: In this paper, threshold setting issues for data-driven fault detection are addressed. It
is state of the art that multivariate analysis based threshold setting schemes are widely applied,
which generally require detailed knowledge about the distribution of the process data. The often
used Hotelling’s T2, SPE threshold setting is based on the assumption of Gaussian distributed
process data. In industrial applications, the distribution of data sets is often unknown or non-
Gaussian. Alternatively, the fault detection is formulated as classification or outlier detection
(one-class) problem which can be solved e.g. by means of machine learning algorithms. The
classifier parameter choice is normally done by expert knowledge or using iterative approaches
like cross validation. Such a procedure has considerable influence on the fault detection
performance. The availability of training and evaluation data collected under faulty conditions
is mostly very limited or time and cost consuming and thus often problematic. This paper
presents an iterative threshold setting algorithm, which only uses fault-free data for parameter
optimization. For this purpose, a one-class support vector machine which is restricted to convex
data sets (including non-Gaussian) is used. The effectiveness of the proposed threshold setting
scheme is assessed based on false alarm rate, fault detection rate and randomized algorithm
evaluation. Additionally, random uniform distributed uncertainties (scaling and rotation) and
offset faults (inside an ellipse) are taken into account. Finally, a comparison study with principal
component analysis and Hotelling’s T2, SPE threshold setting schemes is demonstrated.

Keywords: fault detection, one-class, support vector machine, convexity, parameter
optimization, randomized evaluation, uncertainties, distribution independent, threshold setting

1. INTRODUCTION

Data-driven fault detection (FD) is an important field
in all application areas, where an analytical model is
too time and cost consuming e.g. large scale systems
(Yin et al., 2012). In the beginning of data-driven FD,
multivariate analysis like principal component analysis
(PCA) using Hotelling’s T2 and SPE (squared prediction
error) threshold setting attracted the main attention in
practice (Yin et al., 2012; Ding, 2014). On the other hand,
these methods deliver the optimal FD performance only
on strict underlying assumptions. In case of PCA with T2,
SPE threshold a Gaussian distribution of the process data
is assumed, which does not hold in many applications.

The recent trend of digitalization results in wide applica-
tion of machine learning algorithms in many engineering
areas. FD can be interpreted as a classification problem
between a fault-free (c = 1) and a faulty (c = −1)
class, which can be solved by a classifier, e.g. machine
learning. The application of a two-class problem requires
the availability of training data influenced by faults. In
many applications the availability of such data is very
limited. Outlier detection (one-class problem) can be ap-
plied for FD without training data influenced by faults.
However, most classifiers have several parameters which
the user have to choose. And the parameter decision has

considerable influence on the FD performance. In many
cases an iterative approach like cross validation, genetic
algorithm and other algorithms are suggested, e.g. for sup-
port vector machine (SVM) in Widodo and Yang (2007).
They use false alarm rate (FAR) and fault detection rate
(FDR) as performance indices. Therefore, a training set
with fault-free and faulty data is necessary. As mentioned
before, faulty data is not always available. If only fault-
free data is available, the parameter optimization criteria
is often not clear. Only using FAR can result in a low FDR
performance. Alternatively, the parameter choice is based
on expert knowledge.

FD based on SVM and one-class SVM (OC-SVM) has been
frequently studied in the recent years (Louen et al., 2013;
Louen, 2016). OC-SVM trained with normal operation
data allows to choose the maximum allowed FAR which
is needed in many applications. As mentioned before, the
SVM parameters (kernel type and kernel parameters) are
normally chosen based on expert knowledge or iterative
searching algorithms. If the number of available faulty data
for parameter optimization is too low, it is hard to define
the optimization criteria.

Nowadays, an increasing attention to design and evalu-
ation of controller (Koenings et al., 2013) and FD (Ding
et al., 2019) taking influences of uncertainties into account
can be observed. Randomized algorithm (RA) can be used
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to describe the uncertainties (Tempo et al., 2012). On the
one hand, threshold setting (design) taking uncertainties
into account can increase the FD performance (Chen et al.,
2018). On the other hand, knowledge about the uncertain-
ties or influences on the data set is necessary. Additionally,
the threshold setting can result in a conservative threshold.
To evaluate the FD performance for systems with uncer-
tainties, evaluation based on RA can be used (Ding et al.,
2019). If the model is unknown, data-driven methods like
PCA are available for FD. The uncertainties can be taken
into account via the effects on the data set. For PCA like
methods random uniform distributed scaling and rotation
(360◦) of a Gaussian set is suggested in the project DFG
DI733-15, which is a worst case approximation. In real
applications a rotation uncertainty angle θRange ≪ 360◦ is
realistic.

Based on these observations, a novel distribution inde-
pendent FD threshold setting method is proposed in this
work. The main idea is the geometric interpretation, that
the smallest sphere which ensures the chosen FAR results
in the best possible FDR. OC-SVM is used to learn the
optimal separating hypersurface. To achieve an iterative
parameter optimization without faulty data, the training
data set is assumed to be convex. A suitable mapping
method can map non-convex into convex sets. In this paper
PCA is used as an example. Based on RA a meaningful
performance evaluation taking uncertainties into account
is demonstrated. As uncertainties scaling and rotation
with limited factor and angle is considered. For random
rotation with limited angle range θmin ≤ θ ≤ θmax a
solution based on Givens rotation is presented. Since no
prior knowledge about the fault is assumed, an offset fault
uniformly distributed in an ellipse is applied for evaluation.

The remainder of this paper is organized as follows.
In Section II the preliminaries and problem formulation
are described. Here, FD is formulated as a classification
problem, PCA, OC-SVM, RA and check of convexity
are shortly summarized. The novel threshold learning
framework based on convex set assumption and OC-SVM
is addressed in Section III, including the basic idea, the
training algorithm, and usage. Modification of the RA
based evaluation is described in Section IV. Section V
presents the effectiveness of the proposed threshold setting
by using RA based evaluation. Finally, in Section VI the
results of this paper are concluded and future work is
presented.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Let T be the training set of feature vectors xi ∈ R
m

(i = 1, . . . , N), which can be written as training data
matrix

X =






xT
1
...

xT
N




 ∈ R

N×m. (1)

Let J be an evaluation function like

J (x) = xTΣ−1x ∼ χ2 (m) (2)

where Σ and χ are the covariance matrix and chi distri-
bution. With a predefined threshold Jth a fault can be

detected by the decision logic presented in Ding (2014)
which can formulated as predicted class ĉ by

ĉ =

{
−1 if J > Jth ⇒ faulty

1 if J ≤ Jth ⇒ fault-free
. (3)

An evaluation of FD methods based on FAR and FDR is
widely used. FAR and FDR are the probabilities, that a
fault is detected if there is no fault (pFAR) and there is a
fault (pFDR) in the system. They can be formulated based
on a classification problem as

pFAR = P (c = −1|f = 0) (4)

pFDR = P (c = −1|f 6= 0) (5)

where P (·) and f are the probability and fault vector
which is f = 0 in fault-free case. In many applications
a maximum allowed FAR could be accepted and the FDR
should be maximized.

2.1 Principal Component Analysis

PCA is a basic multivariate method in FD which can be
calculated with the following procedure (Ding et al., 2010).
In training, first the covariance matrix is computed

Σ ≈
XTX

N − 1
. (6)

Then principal components and associated singular vectors
are calculated using e.g. SVD (singular value decomposi-
tion)

XTX

N − 1
=
[

P P̃
]
[
Σ 0

0 Σ̃

] [
PT

P̃T

]

∈ R
m×m

Σ = diag (σ1, . . . , σl)

Σ̃ = diag (σl+1, . . . , σm)

σ1 ≥ . . . ≥ σl, σl ≫ σl+1 ≥ . . . ≥ σm.

(7)

For fault detection the Hotelling’s T2 and SPE are calcu-
lated. The evaluation functions can be computed as

JT2 (x) = xTPΣ−1PTx (8)

JSPE (x) = xTP̃ P̃Tx. (9)

The thresholds for a significance level α are set by

Jth,T2 =
l
(
N2 − 1

)

N (N − l)
Fα (l, N − l) (10)

Jth,SPE = θ1

(

cα
√

2θ2h2
0

θ1
+ 1 +

θ2h0 (h0 − 1)

θ21

) 1

h0

(11)

where Fα (l, N) and cα are the F-distribution with l, N
degrees of freedom and the normal deviate of the upper
1− α percentile and

θi =

m∑

j=l+1

(
σ2
j

)i
, i = 1, 2, 3, h0 = 1−

2θ1θ3
3θ22

. (12)

2.2 One-class Support Vector Machine

The basic idea of SVM is to separate two classes with the
decision hyperplane which has the biggest margin to both
classes (Boser et al., 1992). The OC-SVM is a modification
of it, where all data belongs to one-class and only the origin
represent the other class. The aim is to find the hyperplane
which separates the class with the biggest distance ρ to
the origin (Schölkopf et al., 2001). Introducing an allowed
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miss classification rate ν the hyperplane separates at least
(1− ν) · 100% of xi ∈ T from the origin. For this purpose,
a slack variable ξ is added.

For a training set T the optimization problem is given by

argmin
w,ξ,ρ

1

2
‖w‖2 +

1

νN

∑

i|xi∈T

ξi − ρ (13)

s.th. wTφ (xi) ≥ ρ− ξi, ∀i ∈ {i|xi ∈ T } (14)

ξi ≥ 0 (15)

Here, w is the weighting vector and φ (·) a transforma-
tion. The optimization problem eq. (13),(14),(15) can be
formulated as dual problem by

argmin
α

1

2

∑

i,j|xi∈T

αiαjK (xi,xj) (16)

s.th.
∑

i|xi∈T

αi = 1, ∀i ∈ {i|xi ∈ T } (17)

0 ≤ αi ≤
1

νN
(18)

where α and K (xi,xj) are the Lagrangian multiplier
and kernel function. In this paper the Gaussian kernel is
used, which it is an indirect transformation in an infinite
dimension space and can describe different surface shapes
with the kernel parameter γ. The kernel is given by

K (xi,xj) = exp

(

−
‖xi − xj‖

2γ2

)

. (19)

The class of new measurement xi is computed as

di =
∑

j|xj∈SV

αjK (xi,xj)− ρ (20)

ĉi = sgn (di) =

{
−1 , if di < 0

1 , if di ≥ 0
(21)

where SV is the set of all support vectors and d is the
distance to the separating hypersurface.

2.3 Probabilistic performance evaluation of FD systems

Theorem 1. (Tempo et al., 2012) Given is the significance
level ǫ ∈ (0, 1) and accuracy δ ∈ (0, 1), then

N ≥
1

2ǫ2
log

2

δ
(22)

independent and identically distributed (i.i.d.) samples
ensure

P (|pFDR (f)− p̂FDR (f)| < ǫ) > 1− δ. (23)

Random generation of Gaussian distributed fault-free data
is given by

X ∼ N (0,Σ0) ∈ R
N×m. (24)

A random uniform distributed rotation can be generated,
using the QR decomposition given by

Q ·R = A (25)

where A ∼ N (0, I) ∈ R
m×m is a random normal

distributed squared matrix of size m. The rotation matrix
U is then given by

U = Q · diag (diag (sgn (R))) . (26)

According to Calafiore et al. (2007), a random generated
uniform distributed ball with radius rmax is given by

xT
i =

[

rmax · r
1

m

i,0 0

]

U (27)

where ri,0 ∼ U (0, 1) is uniformly distributed.

By adding random generated uncertainties to each test
data set, a meaningful result is achieved. A random change
in covariance matrix ∆Σ is considered by

∆Σ = diag (β1σ1,0, · · · , βmσm,0) (28)

βi ∼ U (βmin, βmax) . (29)

The random data set with scaling uncertainties is then
given by

Xs ∼ N (0,Σ0 +∆Σ) . (30)

Additionally a rotation of the data set is considered. with
both disturbances it is finally constructed as

Xd = Xs ·U (31)

2.4 Convexity

In this work convex set and convex function properties are
used for parameter optimization. According to Boyd and
Vandenberghe (2004), a convex set and function can be
defined as follows.

Definition 1. Given is the set S ⊂ R
n. The set S is convex

if for each point pair x,y ∈ S and variable λ ∈ [0, 1] holds

λx+ (1− λ)y ∈ S. (32)

Definition 2. Given is the set S ⊂ R
n. A function f : S →

R is convex if for each point pair x,y ∈ S and variable
λ ∈ [0, 1] holds

f (λx+ (1− λ)y) ≤ λf (x) + (1− λ) f (y) (33)

3. FRAMEWORK

OC-SVM with Gaussian kernel is used to learn the thresh-
old. The maximum FAR pFAR is equal to the parameter
ν. An iterative parameter optimization is used to find
the kernel parameter γ. The optimal parameter belongs
to the smallest sphere which is convex. The user has to
choose the initial step size δ0, initial kernel parameter γ0,
number of outer loops nout, reduction factor for step size
rδ and number of steps to prove convexity ncon. These
parameters influence the accuracy in a similar way as the
step size influences the gradient descent methods. Such
that a conservative choice ensures a high accuracy, but
also can result in an increased training time.

As part of the initializations an SVM with the starting
parameter γ0 is trained. Afterwards convexity is proven.
If the separating surface is the border of a convex set,
there could be a smaller convex set. To evaluate this, the
kernel parameter γj is reduced. Else, the kernel parameter
γj should be increased until the separating surface is the
border of a convex set. For this purpose, the convexity of
outer loop i and search direction are calculated as

bconi,j =

{
−1 no convex set

1 convex set
(34)

bdiri = bconi,0 . (35)

The new kernel parameter γj+1 is then given by

γj+1 = γj + bdiri · δi (36)

where δi is the step size.

In each inner loop j eq. (34) and (36) are calculated until
the stopping criteria bconi · bdiri,j > 0 is reached, which is the
change from convex to non-convex or vice versa.
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To reduce the computation time, the step size δi is large
at the beginning. To ensure high accuracy an outer loop
reduces the step size and changes the search direction nout

times as

bdiri+1 = −bdiri (37)

δi+1 = rδ · δi. (38)

The scheme is illustrated in fig. 1.

gend

i n= out-1

Normalization & Rotation

Train OC-SVM

b bdir con· 0>
yes

Training set , Parameter , ,T d0 0,g ,n n rcon out d

Change step size
and direction

· , =d di i i i+1 +1
dir dir= -r b bd

i,j=0

no
bi,j

con= 1- convex set

no

yes

Update�g gj j i i+1
dir= +b ·d

yes

yes

no

no

bi,j
con=1

b bi i,j
dir con

Fig. 1. Threshold setting scheme

To proof the convexity, eq. (32) is approximated with a
finite number of λ and only calculated for all possible pairs
xi,xj ∈ T0, where T0 ∈

{
xi|xi ∈ T ∧ αi <

1
νN

}
is the set

of all training points except outliers. Eq. (32) is formulated
as

xi + k
∆s

ncon
(xi − xj)
︸ ︷︷ ︸

∆s

∈ C1, k = 1, . . . , ncon − 1 (39)

with C1 the set of all points belonging to class 1. A further
computation time reduction can be achieved by only using
non-outliers SVs given by

SV0 =

{

xi|xi ∈ T ∧ 0 < αi <
1

νN

}

, SV0 ⊂ T0 (40)

This approximation is only focused on the border of the
set.

Alternatively, the distance of OC-SVM can be used. If
the separating surface is the border of a convex set,
the distance between two SVs is a concave function.
Based on eq. (20) and (33) the proof of convexity can be
approximated by

d (xi + λ∆s) ≤ d (xi) + λ (d (xj)− d (xi))

λ = k
∆s

ncon
, k = 1, . . . , ncon.

(41)

4. MODIFICATIONS OF EVALUATION WITH
RANDOMIZED ALGORITHM

It is known that correlations among the variables may
affect the detection performance of FD methods. To ad-
dress this point, a rotation eq. (25), (26) is added such

that random Gaussian distributed and disturbed data is
generated as

Xd ∼ N (0,Σ0 +∆Σ) ·U0 ·U . (42)

Uniformly distributed data sets with different shapes are
generated, to evaluate the capabilities to non-Gaussian,
convex data sets. According to Muller (1959) and Tempo
et al. (2012) this can be done by

xT
i =

[

rmax · r
1

m

i,0 0

] z

‖z‖p
, z ∼ N (0,Σ0) (43)

where ‖·‖p is the pth norm.

‖z‖p =

(
N∑

i=1

|zi|
p

) 1

p

. (44)

The generation of a random rotation matrix with limited
angles using QR decomposition is problematic, but needed
for rotation disturbances. In this paper, Givens rotation
is suggested for this purpose. For each feature pair i, k a

random uniformly distributed angle θi,k ∼ U
(

θmin
i,k , θmax

i,k

)

is generated and the related rotation matrix is given as

Gi,k,θi,k =















1 · · · 0 · · · 0 · · · 0
...
. . .

...
...

...
0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...
. . .

...
...
. . .

...
0 · · · 0 · · · 0 · · · 1















(45)

where c = cos (θi,k) and s = sin (θi,k). The whole rotation
matrix is the matrix multiplication of all sub rotations

Ud =

m∏

i=1

m∏

k=i+1

Gi,k,θi,k . (46)

In this work, no prior knowledge about the fault is as-
sumed. For evaluation a uniform distributed offset fault is
generated as ball scaled by the nominal covariance Σ0 and
rotated like the disturbed data set Ud. Using eq. (27) the
additive fault is given by

fT
Offset,i = xT

i Σ0U0Ud. (47)

5. RESULTS

PCA is used to compare the standard T2, SPE and the
new OC-SVM threshold. Both thresholds are designed for
a FAR of 1% (α = ν = 0.01). In case of a Gaussian
distributed data set, principal components build a hyper-
dimensional ellipse. The optimal data set shape for the
OC-SVM threshold is a hyperdimensional ball, which is
achieved by a normalization of the principal components.
The evaluation is done based on RA algorithm which is
used to generate random data sets and uncertainties (Ding
et al., 2019). Threshold training is based on a random
data set without uncertainties and evaluated with N data
sets with random uncertainties. The significance level and
accuracy ǫ = δ = 0.01 are chosen. Based on eq. (22) a
sample size of N = 26, 492 is necessary. Eigenvalues of
the covariance matrix Σ0 = diag (σ1,0, · · · , σm,0) , σi,0 ∼
U (0, 2) are generated randomly. For scale and rotation
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disturbance βmin/max = ∓0.5 and θ
min/max
i,k = ∓2.5◦ are

chosen. The initialization parameters in all simulations are
kernel parameter γ0 = 10, step size δ0 = 1, update factor
rδ = 0.5, number of outer loops nout = 3 and checks per
pair nλ = 200. For the fault generation rmax = 2 is chosen.

First, Gaussian distributed data with dimension 2 and 5
are evaluated. The FAR and FDR are shown in tab. 1.
Here Q (·) is the quantile. Both threshold setting methods

Table 1. FAR/FDR evaluation statistics for
Gaussian distributed data sets with uncertain-

ties

FAR

mean min Q (25) med Q (75) max

T2, SPE (2) 1.42 0.00 0.25 0.96 2.52 4.69

OC-SVM (2) 1.42 0.00 0.25 0.97 2.53 4.69

T2, SPE (5) 3.05 0.04 0.57 2.03 5.45 9.30

OC-SVM (5) 2.29 0.00 0.24 1.34 4.27 7.92

FDR

T2, SPE (2) 13.50 5.99 10.01 13.62 17.02 20.62

OC-SVM (2) 13.63 6.14 10.16 13.73 17.14 20.72

T2, SPE (5) 10.07 1.51 4.68 9.30 15.40 21.05

OC-SVM (5) 9.39 1.22 4.14 8.53 14.55 20.21

find a comparable compromise between FAR and FDR. In
both cases the median FAR pFAR,med = 0.96% − 2.03%
is not exact the chosen one, because the training based
on the nominal data set and worst case evaluation with
uncertainties is carried out. That is why the worst case
FAR pmax

FAR = 9.30% is much higher than the chosen one.
Depending on the uncertainties taken into account, these
values become even greater or smaller.

Beside the accuracy, resource demand like training time
and amount of training data is an important factor for the
usage. To evaluate this, Gaussian distributed data with dif-
ferent training set size is simulated 100 times. The training
PC is equipped with an Intel i5-8600 (3.16GHz), 16 GB
RAM, MATLAB 2018a and Windows 7.The training time
results are presented in tab. 2. T2, SPE threshold setting

Table 2. Average training time [mm:ss] for
different training set size

Size 250 1500 3000 7500 15, 000 26, 492

T̄ 00:00.1 00:01.2 00:04.3 00:32.5 02:40.4 11:19.2

has a simple calculation and the training time is negligible.
Especially for large training sets the computation time of
the new method is much higher. Because the training is
normally done offline an average training time of ≈ 12min
for the biggest training set (N = 26492) is acceptable
for most application. In this paper, a standard SVM
implementation is used. Optimized implementation e.g.
parallelization can reduce the training time. For the online
computation, which is often time critical, the difference is
much smaller but depending on the number of SVs. The
computation time can be reduced by hardware friendly
version of SVM like suggested in Anguita et al. (2007). If
the training data is generated by experiments, the data set
can be reduced for some applications, because OC-SVM
only needs the data points in the near of border to get
the optimal threshold. However, an additional step is then
required to set the maximum allowed FAR.

The results of needed training size is shown in tab 3. It

Table 3. Average FAR/FDR evaluation statis-
tics for Gaussian distributed data sets with

uncertainties for different N

FAR

Size 250 500 1500 3000 7500 15, 000 26, 492

T2, SPE 1.62 1.62 1.54 1.50 1.53 1.52 1.53

OC-SVM 3.28 2.04 1.71 1.56 1.59 1.56 1.47

FDR

T2, SPE 10.97 9.86 10.53 9.63 9.53 10.15 9.96

OC-SVM 15.82 10.62 10.98 9.80 9.65 10.01 9.77

is observable, that the OC-SVM needs a larger training
set to find a good separating surface. This was expected
beforehand, because no assumption about the distribution
was included.

The threshold setting for a random generated uniformly
distributed data sets with different shapes show the ca-
pability to non-Gaussian, convex data sets. The shape
is an ellipse for p = 2 and becomes a rectangle for
p = ∞. The same parameters as in the Gaussian case
are used except scale βmin/max = ∓0.02 and rotation

disturbance θ
min/max
i,k = ∓3.6◦. In tab. 4 the FAR and

FDR for uniformly distributed data sets of dimension 2
are evaluated. Obviously T2, SPE threshold show a much

Table 4. FAR/FDR evaluation statistics for
uniform distributed data sets with uncertain-

ties

FAR

method mean min Q (25) med Q (75) max

T2, SPE (p = 2) 0.00 0.00 0.00 0.00 0.00 0.00

OC-SVM (p = 2) 2.25 0.00 1.40 2.25 3.11 5.57

T2, SPE (p = 3) 0.00 0.00 0.00 0.00 0.00 0.00

OC-SVM (p = 3) 2.82 0.00 1.83 2.83 3.82 6.77

T2, SPE (p = 5) 0.00 0.00 0.00 0.00 0.00 0.00

OC-SVM (p = 5) 1.40 0.17 1.02 1.36 1.75 3.35

FDR

T2, SPE (p = 2) 8.73 7.63 8.52 8.73 8.95 9.85

OC-SVM (p = 2) 41.68 40.02 41.38 41.68 41.98 43.21

T2, SPE (p = 3) 7.21 6.13 6.98 7.20 7.42 8.36

OC-SVM (p = 3) 39.67 38.07 39.36 39.67 39.38 41.24

T2, SPE (p = 5) 6.15 5.27 5.95 6.15 6.34 7.14

OC-SVM (p = 5) 36.85 35.31 36.53 36.84 37.17 38.56

lower FAR. But because the Gaussian assumption is not
fulfilled the FDR is much lower compared to the OC-SVM.
The threshold setting cannot find a good compromise
between FAR and FDR. The median FAR of OC-SVM
pFAR,med = 1.36 to 2.83 is near to the chosen FAR and

FDR is much higher than T2, SPE. In fig. 2 the training
result of p = 5 is shown. It is visible, that most of the
SVs are in the corners. In extreme cases (rectangle), the
corners are rounded off incorrectly and a small distance
between the threshold and real limit is created in the
area between them. The geometric threshold reacts less
sensitive to different shapes and distributions. But it is
not optimal for the case of a rectangle with sharp corner.
As mentioned the rectangle shape is an extreme case of
convex data set and in real applications the border is often
more smooth.
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Fig. 2. Training result of p = 5

6. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have presented a novel distribution inde-
pendent threshold setting method for convex data sets. For
this purpose, OC-SVM is used which gives the possibility
to choose a maximum FAR. As shown, the FD perfor-
mance of both threshold setting methods for Gaussian
distributed data sets is comparable. Because the Gaussian
distribution is not assumed in case of OC-SVM, training
time is higher. For this reason, traditional threshold set-
ting are preferred for Gaussian distributed data sets. For
non-Gaussian distributed but convex data sets (like the
uniformly distributed data sets) the performance of the
new approach is better. It can be concluded that the OC-
SVM threshold setting can be used for all convex data
sets independent from the distribution. If the distribution
is non-Gaussian or unknown, the proposed method is the
better choice.

In addition, an RA based evaluation for data-driven algo-
rithms is presented, which was mainly developed in the
DFG project DI733-15 and is further improved in this
work. For the simulation of rotation uncertainties with lim-
ited angle a solution with Givens rotation was introduced
which results in a higher adaptability to real problems.

In this work, PCA and normalization is used as prepro-
cessing which is not always the optimal choice. This was
done to get a clear comparison between two threshold
setting methods with low influences from preprocessing. In
combination with the new threshold setting other mapping
methods should be suitable and extend the usage to more
problems (e.g. non-convex).

Especially in industrial applications the interpretability is
an important factor, such that a nonlinear mapping is not
always wanted. For this purpose, a multi-mode method
can be used which will be proved in the future.

The most critical disadvantage is the training time for big
data sets. It is expected that an adaptive iteration step
size and predicted initialization parameter can reduce the
computation time significantly. This can further increase
the usability.
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