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Abstract: Manual order picking is the most labour-intensive activity in warehouses. As an alternative, robot 

pickers that can work alongside manual order pickers have emerged. This paper presents such a robot 

picker and develops a method for assigning products to two warehouse zones; one for robot pickers and 

one for human pickers. A Non-dominated Sorting Genetic Algorithm II (NSGA-II) was used to develop 

the zoning method, minimizing human workload and maximizing the similarity of product categories in 

each zone. The method was verified in a case study.  
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

1. INTRODUCTION 

Manual picker-to-parts order picking is the most labour-

intensive activity in warehouses (Bartholdi and Hackman, 

2017) and when performed manually it can account for up to 

55 % of warehouse costs (De Koster et al., 2007). Up to 90 % 

of warehouses in the grocery sector apply this manual picker-

to-parts order picking (Kuhn and Sternbeck, 2013). Typically, 

grocery warehouses decompose a large store order into several 

picking orders in order to deliver multiple pallets or roll cages 

to the store simultaneously. Orders are picked from pallets and 

picking often involves repetitive lifting of large and heavy 

items, sometimes from hard-to-reach places, causing fatigue 

and injuries for pickers. 

In recent years, automation has reached new levels with large 

global actors in e-commerce, such as Amazon and Alibaba, 

investing heavily in the development of new automated 

warehouses (Boysen et al., 2019). Chui et al. (2016) categorize 

many warehouse operations as feasible to automate and predict 

that many of these jobs currently held by human operators will 

soon be done by technology and robots. Despite the advances 

in technology and automation, the barrier of entry is still high 

as automation involves large investments and high risk. This 

is particularly true for small and medium-sized warehouses 

that are not able to automate to the level of large centralized 

warehouses at this stage. As an alternative, partially automated 

warehouse solutions have emerged through the development 

and application of robot pickers for grocery warehouses 

(Azadeh et al., 2019). These can work side by side with human 

order pickers, resulting in an easily scalable solution that can 

be implemented with considerably less investments than the 

fully automated warehouse solutions.  

To ensure safe and efficient picking operations in a warehouse 

with autonomous robots and humans working side by side, 

there is a need to separate picking areas into two main zones; 

one for robots and one for humans. The purpose of this paper 

is firstly to present a robot picker for picking from pallets, and 

secondly to develop a method for assigning products to the two 

warehouse zones. The model has a bi-objective function: 1) to 

minimize the human workload (i.e. handled weight), and 2) to 

maximize the similarity of product categories picked in each 

zone. 

The paper is structured as follows. Section 2 reviews relevant 

literature on warehousing robotics, human-robot interaction, 

and ergonomics in warehousing. Section 3 presents the robot 

picker, and in section 4 the method for ergonomic zoning is 

introduced. The method is then applied to a case in Section 5, 

before Section 6 concludes the paper with discussions, 

limitations and further research.  

2. LITERATURE REVIEW 

2.1 Warehousing Robotics 

Warehouse operations in general, and order picking in 

particular, are typically labour intensive processes and 

therefore key candidates for automation and the application of 

robotics (Azadeh et al., 2019). The ability to quickly process 

orders can provide a competitive advantage (Dubey and 

Veeramani, 2017, Boysen et al., 2019). However, it also leaves 

little room for costly errors, and these can to some degree be 

eliminated by automation (Mahroof, 2019, Roodbergen and 

Vis, 2009). There are also ergonomic advantages with 

automating warehouses, especially the parts that require heavy 

and repetitive lifting (Grosse et al., 2015, Boysen et al., 2019, 

Calzavara et al., 2019). The costs related to implementing an 

automatic warehousing system vary greatly based on the 

degree of automation in the selected approach (Dubey and 

Veeramani, 2017). At one of end of the scale are the fully 

automated solutions which require the largest investments and 

lead to full redesigns of entire supply chains (Dubey and 

Veeramani, 2017). At the other end, partial warehouse 

automation using robots provide less expensive and more 

flexible solutions. 

Two main concepts of partial warehouse automation have 

emerged; parts-to-picker and picker-to-parts. Within the parts-

to-picker concept, one of the approaches for using robots and 

humans together in warehouses most commonly discussed in 

literature are automated storage and retrieval systems (AS/RS) 
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(Roodbergen and Vis, 2009, Gu et al., 2007, Dubey and 

Veeramani, 2017). This general term spans several degrees of 

automation and product types. Examples include advanced 

picking workstations where conveyor belts move items to 

manually operated picking stations (Boysen et al., 2019), 

storing consumer packages in a grid of storage bins and 

moving the bins to picking stations where operators fulfil 

orders (Swisslog, 2019), and shelf-moving robots where 

robots lift and move shelves to picking stations (Dubey and 

Veeramani, 2017). These types of parts-to-picker systems 

have a high degree of automation and eliminate the traveling 

part of the picking process, which in traditional picker-to-part 

warehouses account for 50 % of an order picker’s time (De 

Koster et al., 2007). They are also able to handle small order 

sizes which is typical for online retail (Boysen et al., 2019). 

However, they also require large investments and restructuring 

of warehouses. 

Picker-to-parts is the traditional method of order picking in 

warehouses (De Koster et al., 2007). However, robots can be 

used here as well by letting operators stay in the aisles of the 

warehouse and place items on arriving automated guided 

vehicles (AGVs). Using this method, AGVs do most of the 

traveling, but operators still do some of the heavy lifting. Idle 

times of both operators and AGVs are an issue here since 

waiting time can be considered as waste. There is, however, 

potential for even more automation in picker-to-parts systems 

where the robots do all parts of the picking operation by using 

robot arms to pick and pack the items from shelves. Although 

not as widespread as parts-to-picker systems, some variations 

exist. The TORUTM picking robot by Magazino automates the 

whole picking process, where the AGV automatically goes to 

the picking location and picks up the item without any 

interaction with the human picker (Azadeh et al., 2019). This 

is done with a vacuum gripper and boxes from a pick order are 

stored on the robot.  

2.2 Human-Robot Interaction 

The parts-to-picker and picker-to-parts concepts of automation 

described above are based on assigning robots and human 

operators separate tasks in the warehouse process. Recently, a 

new generation of more collaborative technologies has been 

introduced, including pick-support AGVs that minimize the 

picker travel time to fill orders (Azadeh et al., 2019). In these 

systems, an AGV automatically follows the operator through 

the warehouse while transporting the roll cages or pallets. The 

picker can drop off the picked items, and when the roll cage or 

pallet is full, the AGV returns to the depot and is replaced by 

a new AGV carrying an empty roll cage or pallet. Compared 

to the AGV-assisted picking in the picker-to-parts concept, the 

travel distance of operators is increased, but a lot of the issues 

surrounding idle times of pickers and AGVs are eliminated 

(Boysen et al., 2019). Human collaboration with AGVs fitted 

with a robotic picking arm is becoming an option with Industry 

4.0 (Villani et al., 2018) and could also be an option for 

assisting in lifting the heaviest items in warehouses. To ensure 

safe and efficient picking operations in a warehouse with 

autonomous robots and humans working side by side, it is 

beneficial to separate the warehouse into two main zones; one 

for robots and one for humans. This allows the robots to move 

faster in the warehouse without as much consideration for 

moving forklifts and minimizing the issue of difference in 

speed between robots and humans which could result in queues 

and delays. In addition to non-robot specific benefits of 

employing zoning in warehouses, deciding on which products 

should be placed in each zone is important to minimize picking 

costs and balance the workloads of robots and humans (Gu et 

al., 2007). A relevant concept for robot-human interaction is 

for robots to pick the first part of the picking orders, leaving 

the partially stacked roll cages or pallets for the human 

operator in a progressive zoning system similar to what was 

described by De Koster et al. (2007). 

2.3 Ergonomics in Warehousing 

Over the last decades, the literature on order picking has had a 

major focus on the development of decision support models 

for planning the picking process in practice (for reviews, see 

e.g. De Koster et al., 2007, Gu et al., 2007). An area that has 

not received enough attention is the human factors related to 

order picking (Grosse et al., 2015). Physical aspects can 

influence performance, accuracy, and risk of injury. The most 

common type of injury for warehouse workers and order 

pickers is musculoskeletal disorders (MSDs), typically a result 

of the repeated lifting of heavy items in awkward body 

postures (Calzavara et al., 2019). One contribution in this 

respect is the integrated storage assignment method of 

Calzavara et al. (2019) for low-level picker-to-parts order 

picking which considers economic and ergonomic objectives. 

Similarly, Battini et al. (2016) applied a bi-objective method 

to incorporate both total order picking time and human energy 

expenditure.  

3. GRAB™ FOR PICKING FROM PALLET 

The Grab™ featured in this paper is a robot developed by 

Currence Robotics. It is currently under implementation in a 

grocery warehouse and can work in existing warehouses using 

the existing shelf layout. The robot uses an AGV similar to the 

ones described in section 2.1, but rather than having pickers in 

the warehouse load items on the pallet carried by the AGV, a 

robot arm is mounted on the AGV. The Grab™ can then move 

through the warehouse while picking items and stacking them 

on a pallet which is subsequently sent to retail stores. To pick 

items from the shelves, the robot arm has a vacuum gripper 

which can lift items up to 30 kg. The gripper has some 

limitations in the type of products and packaging types it can 

pick because it needs a flat surface to grip the items. A vision 

system consisting of several cameras and sensors is used to 

locate pallets and individual products in the warehouse and 

find placements for the items on the pallet on the AGV. The 

output from the vision system guides the arm movements of 

the robot. This makes the robot not too dissimilar to the 

TORUTM robot by Magazino (Magazino, 2019) described in 

section 2.1. However, there are some key differences between 

the two robots. The TORUTM robot is only used in pick-from-

carton areas while the Grab™ can be implemented easily in a 

pick-from-pallet warehouse. Further, the Grab™ can pick 

much heavier items and larger picking orders – properties 

which are both critical to work efficiently in a grocery 

warehouse. The Grab™ can receive picking orders from the 
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Warehouse Management System (WMS) like manual order 

pickers in the current warehouse. On the picking tours, it fills 

a single pallet which is placed in the shipping area when 

completed. When creating picking lists, the WMS must 

consider the pickability of products and assign the unpickable 

products to the picking orders of the manual order pickers. The 

Grab™ can pick from both ground floor and second shelf (to 

about 3 m height, see Fig. 1), and can currently stack 1 m tall 

pallets (expected to increase to 2 m tall pallets within two 

years). The robot is not able to drive as quickly through the 

warehouse as order pickers on forklifts. The picking time for 

the prototype system in the case study is about 60 s/item 

(expected to be reduced to about 40 s/item in the industrialized 

version, within one year). This can lead to queues and 

congestion in the warehouse aisles, slowing down the order 

picking in the warehouse. Separating the warehouse into two 

zones with different speeds could help in solving this issue. To 

make up for the lack of speed, the Grab™ can work almost the 

entire day and at low operation costs compared to human order 

pickers. This results in a comparable number of items picked 

in one workday. 

 

Fig. 1: Grab™ by Currence Robotics 

4. ERGO-ZONING APPROACH 

In order to implement the Grab™, it is necessary to separate 

the warehouse into two zones. The Grab™ zone will contain 

products which can be picked by the robot arm and typically 

the heavier products in order to create the bottom layers of the 

pallet. The second zone is a traditional manual order picking 

from pallet area where humans will perform the picking of 

smaller products in order to fill the pallet. 

This section introduces a method for assigning products to the 

two warehouse zones, considering ergonomics and 

performance objective functions. Several important factors in 

both zoning of grocery warehouses and for the case robot have 

been identified, including storage assignment based on grocery 

store layouts and product categories, perishability of food 

products, human factors in order picking, robot arm gripping 

abilities, robot operating speed, and safety. All these factors 

must be considered when separating the warehouse into zones, 

but many are conflicting. Therefore, we use multi-objective 

optimization to create solutions to the problem, as discussed 

by Konak et al. (2006). An example of multi-objective 

optimization used for a similar problem is Battini et al. (2016), 

who optimized storage assignment based on order picking time 

and human energy expenditure. 

Grocery warehouses are divided into three main zones based 

on the temperature of food products. This cannot and should 

not be changed to meet food quality and safety requirements 

(Akkerman et al., 2010). The zoning method developed here is 

thus used to create picking zones within these three main 

warehouse zones. For the development and testing of the 

zoning method, the dry storage area is used. This is because 

the case company plans to use the case robot in the dry storage 

area first. The products here are generally forgiving in terms 

of pickability and sturdiness, which makes them the most 

suited for testing of the robot and the robot picking - unlike for 

instance fruits and vegetables which would be much more 

difficult for the case robots to handle and thus require 

additional quality checks. 

Two objective functions have been introduced to drive the 

zoning process: the total weight picked by the Grab™ (𝐹1) and 

the similarity of product categories within a zone (𝐹2). The 

decision variable 𝑥𝑖 is a binary variable that is 1 if the item 𝑖 
will be allocated in the robot zone, 0 otherwise (i.e. picked by 

the human picker). 

The first objective function is related to the ergonomics impact 

of the picking process, so that the higher the average weight 

picked by the Grab™, the better for the pickers since they will 

pick lower average weight (Calzavara et al., 2019). The 

objective function 𝐹1 is calculated using equation 1. The 

numerator of the fraction calculates the sum of the weight 𝑤𝑖  
multiplied by the demand 𝐷𝑖  of each item 𝑖 in the robot zone. 

The denominator is simply the total demand of the robot zone. 

This results in an objective function where the average item 

weight picked by robots is maximized: 

𝐹1 =
∑ 𝑤𝑖∙𝐷𝑖∙𝑥𝑖𝑖

∑ 𝐷𝑖∙𝑥𝑖𝑖
     (1) 

The second objective function 𝐹2 is related to the zone 

assignment based on product categories: products from the 

same product categories are stored together in the warehouse, 

making it a good representation of family-grouping and in-

store locations. This is useful to avoid unnecessary travel 

distances in the stores, providing pallets with products that are 

stocked in the same aisle and shelf of the store. By having 

similar product categories in each zone, travel distances 

decrease also in the warehouse because the WMS creates 

picking orders with products in the same area in stores, and 

this is represented by product category. Within the zones, the 

dedicated storage policy must be applied to utilize this fully. 

The Simpson diversity index to measure the diversity within a 

population categorized into groups was developed for the field 

of ecology (Simpson, 1949), but can also be applied to this 

problem where low diversity, or high similarity, is desired. It 

is widely used in warehousing science since it is quite simple 

and it does not require any additional information about the 

storage and retrieval system, such as layout, routing policies or 

picking policies. 

𝑆𝑧 =
∑ 𝐷𝑐𝑧(𝐷𝑐𝑧−1)
𝐶
𝑐=1

𝐷𝑧(𝐷𝑧−1)
    (2) 
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If the products placed in a zone is considered, a population and 

the product categories are used as the groupings, the Simpson 

diversity index can be used to calculate the similarity of 

product categories within a zone. Within each category, the 

products have different demands. Thus, the equation must be 

altered to include this. In equation 2, 𝐶 is the total number of 

different categories in the dry storage area, 𝐷𝑐𝑧 is the total 

demand of category 𝑐 in zone 𝑧, and 𝐷𝑧 is the total demand of 

zone 𝑧. The equation now calculates the likelihood of two 

randomly selected picks done by order pickers to be from the 

same category. Equation 2 is used to calculate the similarity 

within each of the two zones. The two are then added together 

for calculating the total similarity of the zones in equation 3. 

This is used as the second objective function and should, like 

the first, be maximized. 

𝐹2 = 𝑆𝑟𝑜𝑏𝑜𝑡−𝑧𝑜𝑛𝑒 + 𝑆𝑝𝑖𝑐𝑘𝑒𝑟−𝑧𝑜𝑛𝑒   (3) 

Evolutionary Algorithms (EAs) have been applied to solve 

warehouse zone assignment problems before. Specifically, 

Multi-Objective Evolutionary Algorithms (MOEAs) have 

been used to find the solutions to this bi-objectives problem. 

One popular MOEA variant that uses both elitism and Pareto-

optimal sets is the Non-dominated Sorting Genetic Algorithm 

II (NSGA-II). It has previously been used in a wide variety of 

problem types displaying versatility, also in warehousing and 

distribution. Since the paper introduces the new order picking 

system and the zoning required for its implementation, other 

solving algorithms are not considered. In this paper the NSGA-

II has been implemented based on the following steps. First, a 

bit string where each bit refers to a unique product number has 

been selected as the chromosome representation in the 

algorithm implementation. In the bit string, a one implies the 

product will be placed in the robot zone, while a zero implies 

it will be placed in the zone for human order pickers. The fast-

non-dominated sorting algorithm sorts the solutions in the 

population based on fitness and domination. Each solution is 

given a rank based on which front they are assigned to by the 

sorting algorithm (Deb et al., 2002). Crowding-distance sorts 

each front in a generation based on both objective functions 

and calculates the total uniqueness of the solution compared to 

the rest of the front. Two individuals are randomly selected 

from the population for tournament selection. The individual 

with the best rank from the non-dominated sorting algorithm 

is returned for genetic operations. If the two solutions have the 

same rank, the one with the highest crowding-distance is 

returned. If they still cannot be separated, they are treated as 

equal and one of the individuals is returned at random. Two 

crossover points in the chromosome are selected at random. 

The two parent chromosomes are split at these points, mixed 

and recombined into two offspring chromosomes. To mutate 

the chromosome, strings flip mutation is selected. This is a 

quick and simple form of mutation where a random element in 

the chromosome bit string is selected and changed to the 

opposite value. The main output of the algorithm is a Pareto 

frontier containing non-dominated solutions. The solutions are 

different zone configurations where products are assigned to 

the robot and human order picker zones. To evaluate the 

performance of different Pareto frontiers, a similar approach 

to the one discussed by Lu and Anderson‐Cook (2013) was 

selected. By approximating the area underneath the Pareto 

frontier, an indicator for comparing Pareto frontiers is created. 

5. CASE STUDY 

The ergo-zoning approach was applied to a regional 

warehouse which is part of a large grocery retail group. The 

warehouse has a floor space of 18.000 m2. It stores and delivers 

approx. 6 000 SKUs to grocery retail stores, in addition to 

some hotels, restaurants and canteens. The warehouse uses a 

dedicated storage policy which matches the layouts in retail 

stores. Approx. 44 000 items are picked daily through the 

picker-to-parts concept, with an average of 60 items per 

picking order and an average cycle time of approx. 30 minutes. 

Pickers mostly work on a single picking order per tour of the 

warehouse.  

The method was applied to the dry storage area where both 

ambient products and non-food products are stored, spanning 

59 different product categories, with a high number of large 

and heavy products. Picking is currently done from full-size 

pallets on the ground floor. By using product information 

provided by the warehousing company and the assumed 

gripping capabilities of the robot, a map of the warehouse’s 

dry storage area was made. Fig. 2 shows how items are 

distributed by product category, where each colour represents 

a product category, such as pasta, soda and water, seasoning, 

detergent, and personal care. Fig. 3 shows items pickable by 

the Grab™ in blue and unpickable items in red. The two 

figures show how there is no direct relation between product 

categories and pickability. For instance, the set of red dots on 

the top line of Fig. 3 consists mainly of cleaning products in 

bottles which the gripper is currently unable to grip. However, 

unpickable items appear in almost all areas of the warehouse. 

 

Fig. 2: Current storage location of product categories (each 

colour representing a product category)  

 

Fig. 3: Current storage location of items pickable and non-

pickable by Grab™  

Data from the case warehouse was used to test the algorithm, 

first on a small data set and then an extended application to the 
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entire data set. The data was one month of order picking, 

combined with product information on packaging type and 

product category. The following data was used to assign 

products to zones. Product number: the number used to 

identify the product in the data. Name: the name of the product. 

Package: the packaging type of the product. Category: the 

category to which the product belongs. Weight: the weight of 

a single distribution pack. Demand: the number of items of the 

product picked in one month.  

Table 1 shows how different zoning solutions affect the 

average weight of products lifted by robots and humans. The 

soda and water category has the highest demand and is often 

packaged in bottles which are currently not pickable by the 

robot. This category has an average item weight of 10,6 kg. It 

can be noted that for both solutions, 50 % and 70 % of demand 

picked by robot, the median solutions on the Pareto frontier 

increases the average weight of items picked by humans. The 

high F1 value solutions lead to a slight decrease in average 

weight picked by humans. However, when the robot can pick 

bottles, all solutions in the Pareto frontier reduce the average 

weight picked by humans. The only exception is the highest 

category similarity and lowest average weight picked by robot, 

where the average weight picked by humans is unchanged. 

Table 1: Objective Functions in warehouse zones 

Scenarios Robots, 

avg. 

weight 

(kg) (𝐹1) 

Humans, 

avg. 

weight 

(kg) 

Product 

Categories 

Function 

(𝐹2)  

Current   5,31  

50 % 

picked by 

robot 

High F1 5,68 4,99 0,065 

Median 5,01 5,57 0,078 

High F2 4,64 6,12 0,084 

70 % 

picked by 

robot 

High F1 5,42 5,13 0,064 

Median 4,90 5,92 0,088 

High F2 4,68 6,82 0,111 

70 % 

picked by 

robot, 

incl. 

bottles 

High F1 5,74 4,50 0,068 

Median 5,53 4,90 0,071 

High F2 5,27 5,38 0,073 

 

The Pareto frontier of the tests including bottles is shown in 

Fig. 4. The curve depends on the input data of the case study, 

so general explanation is not achievable. However, it is worth 

noting that there is a difference of about 10 % for F1 in the two 

extreme solutions (absolute value ⁓0.5, from about 5.2 to 

about 5.7). While in F2 the difference is about 5 % (absolute 

value ⁓0.004, from 0.068 to 0.072). This means that moving 

from an optimal solution in F1 to the optimal solution in F2, 

there is an increase of 10 % in the average weight picked by 

humans and a reduction of just 5 % in the product categories 

function, with the same system performance in terms of 

throughput.  

 
Fig. 4. Pareto frontier of tests where bottles are pickable  

The results verify that the zone assignment method correctly 

optimizes toward the two objectives. In the solutions with high 

F1, products from the same categories are placed in both zones 

while the average weight of items picked by robots is higher 

than in the other solutions. This is the expected outcome of the 

extreme solution of the Pareto frontier. The opposite is 

achieved in the other extreme solution where a large portion of 

the product categories is exclusively placed in the robot zone, 

however, the robot picks packages with the lowest average 

weight. Despite this, not all product categories are stored in 

only one zone. This can happen when the method does not 

explore enough of the search space and gets stuck at local 

optimums. Another reason why this might be a challenge is 

product categories with items the robot is unable to pick and 

heavy items. These products are often split between the zones 

to optimize F1. Examples of this include the categories for soda 

and water products, juice products, and cleaning products, all 

of which contain a large portion of heavy products and are 

often packaged in bottles. The median solutions are also as 

expected somewhere in between the two extreme solutions in 

both F1 and F2. Most of the same product categories where a 

large percentage of the category is stored in one zone appear 

in both the median and high F2 solutions. Table 1 presented the 

average weights picked by robots and order pickers. While the 

part of the goal of using robots is to decrease the workload on 

order pickers, the data suggests it may increase the average 

weight of items picked if a solution between the median and 

solutions with high F2 is selected. A key reason behind the high 

average weight picked by humans in the results is the soda and 

water product category. These products are among the heaviest 

and the case robot is currently unable to pick bottles, which 

often is the packaging type of these products. For testing 

purposes, bottles were added to the list of robot pickable items 

and the average weight picked by humans was decreased for 

all solutions in the Pareto frontier, achieving more of the 

desired result.  

6. DISCUSSION AND CONCLUSIONS  

This paper presented a robot picker and developed a method 

for assigning products to two warehouse zones; one for robot 

pickers and one for human pickers. The case study verified that 

the method correctly optimizes towards both objectives – 

human workload and category similarity. Since the robot 
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picker is a new solution in order picking systems, this paper is 

the first to introduce a method to support warehouse managers 

in deciding on the level of implementation of this new 

technology. Moreover, managers will be able to apply a more 

sustainable approach that considers both warehouse operations 

performance and order pickers’ wellbeing. 

The large decrease in weight lifted by human pickers in the 

case suggests it is important to focus future robot development 

on being able to pick heavy products with a large demand. 

Otherwise, as was the case here, the order pickers may end up 

with a higher workload and increased risk of injury. Robots 

should also be tested on a product by product level in order to 

accurately determine the pickability of each product.  

The algorithm was tested with data from a single month. This 

could easily be expanded by adding more data to capture the 

seasonality of demand for many grocery products, enabling 

warehouses to pick orders in advance to balance the demand 

during certain periods of the year. 

A limitation of the method is that it does not calculate the costs 

of the different solutions directly. While optimizing each of the 

objective functions leads to lowered costs, the trade-offs must 

be analyzed on a case by case basis after receiving the output 

from the zone assignment method. Future research should 

work on incorporating the costs of ergonomics and injuries 

caused by heavy lifting, such as MSDs, and the total grocery 

supply chain costs. The entire supply chain must be included 

since warehouses make sacrifices on performance to lower the 

total supply chain costs. Also, sizing of the consolidation area 

between the zones is ignored in the method. Future research 

should incorporate the different working hours of robots and 

humans when deciding this. 
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