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Abstract: This paper studies the event-triggered model predictive control (MPC) problem for
networked control systems with input constraints, where the control is of the sampled-data form.
A novel self-triggered MPC (STMPC) method which enables the optimal design of sampling
pattern and control law is proposed to reduce the conservatism of separate design of trigger
and control law in existing approaches. The conditions on ensuring the algorithm feasibility and
the closed-loop system stability are developed. In addition, an upper bound of the closed-loop
system performance is derived which provides performance guarantee for the designed STMPC.
Finally, simulation results are presented to verify the effectiveness of the proposed STMPC
method.

Keywords: Event-triggered control, networked control, sampled-data systems, model predictive
control.

1. INTRODUCTION

Recently, the development of network and computation
technologies make it possible to build and implement
networked control systems, in which the plant and the
controller are connected via a shared communication net-
work. Such a control framework enables the remote control
and enhances the extendibility of control systems, see Asif
and Webb (2015). Therefore, it is of great importance
to develop an optimal control algorithm to improve the
control performance of the networked control. Considering
the optimization-based nature and the extraordinary abil-
ity in handling systems with constraints, model predictive
control (MPC) is an inspiring choice. However, traditional
manner to transmit the control input periodically may
cause excessive communication burden, which renders net-
worked systems infeasible, as the communication resource
is quite scar in networked systems. To address this is-
sue, event-triggered MPC provides a promising scheme to
transmit the control input aperiodically and efficiently.

According to different triggering mechanisms, existing re-
sults on the event-triggerd MPC mainly fall into two types,
the event-based MPC (EMPC) and the self-triggered MPC
(STMPC). The quintessence of the EMPC lies in that the
strategy will not update the control law, unless the error
between the real and the optimal predicted system states
violates a designed threshold. In the framework of the
EMPC, Yoo et al. (2017) studied discrete-time systems
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with large disturbances, in which the machine learning
is introduced to attenuate the model uncertainty. Li and
Shi (2014a) proposed a continuous-time EMPC algorithm
to control nonlinear systems with bounded external dis-
turbances, where a shrunken constraint is added to the
predicted state trajectory of the nominal system. Liu et
al. (2018) extended this work to a more general one, which
provides a larger feasible state space and a more relaxed
requirement on disturbances. Note that implementing the
EMPC strategy demands an additional monitoring to con-
tinuously measure the real system state, which is imprac-
tical.

The STMPC gets rid of the persistent monitoring by
specifying the next triggering instant in advance. For
discrete-time systems, Gommans and Heemels (2015) first
constituted the predicted control input trajectory with
different triggering intervals, then the proposed STMPC
strategy jointly designed the control law and the maximum
triggering interval with the desired performance guarantee.
Henriksson et al. (2015) proposed a STMPC algorithm
to schedule multiple linear systems linked by a common
communication network. Li et al. (2018) developed a new
performance index considering the communication cost,
then the co-design of the control law and the triggering
interval was realized in the receding optimization. For
continuous-time systems, in order to release the communi-
cation load of transmitting a continuous-time control input
trajectory, Hashimoto et al. (2017) developed a STMPC
algorithm to transport the control input with a sample-
and-hold fashion, and they employed the Lyapunov stabil-
ity conditions to determine triggering interval. In the same
framework, He et al. (2018) approximated the continuous-
time control input with a first-order-holder, which further
prolonged the triggering interval.
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Note that practical networked control systems are realized
in the digital or the computer control architecture, where
continuous-time systems are usually controlled by the
piecewise-constant control inputs. Thus, it is necessary to
study the event-triggered MPC for sampled-data systems.
In this framework, a continuous-time performance index
is minimized with respect to a control sequence whose
elements are predicted control input values holding during
each sampling interval. Then, the triggering mechanism
specifies the closed-loop control input by choosing suitable
amount of the predicted control input values, and the
triggering interval is set as the summation of the corre-
sponding inter-sampling intervals. In the existing results
on event-based sampled-data MPC, He and Shi (2015)
developed an EMPC method to determine the number
of control elements to be transmitted at each triggering
instant, where all inter-sampling intervals equal to a fixed
time span. It should be noted that the triggering interval
is prolonged, while the amount of control elements to be
transmitted is increased. Therefore, the communication
burden might not be reduced. The STMPC strategy pro-
posed by Hashimoto et al. (2016) implemented one control
element at each triggering instant, but each inter-sampling
interval can only be chosen from an integer multiple of
some fixed time span, which is quite conservative.Yang and
Wang (2018) presented a STMPC strategy transmitting
the first element of the control sequence, in which the
triggering condition is designed from the decrease of the
optimal performance index, but the triggering condition is
related with the Lipschitz constant of the stage cost, which
made the strategy rather conservative, since the Lipschitz
constant is over-estimated.

In this paper we propose a novel STMPC approach to
design the triggering interval via optimization from an
arbitrary sampling pattern to reduce the conservatism,
and the controller only transmits one control element
to the actuator at each triggering instant. The main
contributions of this study are two-fold:

• A novel STMPC strategy is proposed for constrained
sampled-data systems. In the proposed strategy, the
sampling pattern and the system control input are
jointly regarded as the optimization variables of the
performance index in the receding-horizon optimiza-
tion. In this way, the proposed scheme enables the co-
design of the sampling instants and the MPC control
input without utilizing the Lipschitz constant, which
is different from Yang and Wang (2018). In addition,
the inter-sampling intervals are designed online and
can be any positive number, so the conservativeness
in He and Shi (2015) and Hashimoto et al. (2016) is
reduced. Besides, this work captures the work in Li et
al. (2018) as a special case, where all inter-sampling
intervals in the prediction horizon are set the same.
• The theoretical conditions of ensuring the algorithm

feasibility and the closed-loop system stability are
developed. In addition, we show the proposed strat-
egy is free of the Zeno behavior and provides the
performance guarantee.

The rest of this paper is organized as follows. Section
2 presents the description of the problem formulation,
and Section 3 designs the detailed STMPC algorithm. In
Section 4, the main theoretical results by implementing

the proposed algorithm are provided. Then, a simulation
example is introduced in Section 5. Finally, Section 6 gives
the conclusion.

Notations: Let Rn denote the Euclidian space of all real
n-dimensional column vectors. Iba represents the set of all
integers from a to b, and R+ denotes the set of all positive
real numbers. For a given matrix A, its transpose is
denoted by AT . We use the P -weighted norm of the column

vector x ∈ Rn to indicate the operation ‖x‖P ,
√
xTPx,

where P ∈ Rn×n.

2. PROBLEM FORMULATION

Consider a networked continuous-time linear system

ẋ(t) = Ax(t) +Bu(t) (1)

with x(0) = x0, where x(t) ∈ Rn is the system state and
u(t) ∈ Rm denotes the control input. The pair (A,B) is
controllable and u(t) is constrained by a compact set U
with the origin in its interior, i.e., u(t) ∈ U .

The structure of the networked control system is shown
in Fig. 1. From the perspective of the networked control
with the control law u(t) designed by the MPC algorithm,
the system in (1) controlled by a continuous-time control
input trajectory suffers from two disadvantages:

i) Transmitting such a control input via the communi-
cation network requires infinite bandwidth.

ii) The computer has to solve an optimal control problem
(OCP) with infinite-dimensional optimization vari-
ables, which is computationally intractable.

To this end, in this paper, we study the event-based MPC
for sampled-data systems.

For the system in (1), by applying a constant control
input u(tk) from the time instant tk to t, the system state
emanating from x(tk) can be formulated as

x(t) = A(ht)x(tk) +B(ht)u(tk), (2)

where ht = t− tk, and

A(ht) = eAht B(ht) =

∫ ht

0

eA(τ)dτB.

In the framework of the standard MPC algorithm for
sampled-data systems, at each time instant tk, an OCP
is solved to obtain an optimal piecewise-constant control
input trajectory u∗(τ ; tk). To be more specific, a perfor-
mance index J(ūtk ;x(tk)) with respect to a feasible control

sequence ūtk , {ū(t0k), · · · , ū(tN−1
k )} is first defined as

Actuator Plant Sensor

Communication networks

MPC
( )kx t

Computer Controller

( ) ( ; )ku t u t t=

1[ , ]k kt t t +

Fig. 1. Networked control with digital controller.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1822



J(ūtk ;x(tk))

,
N−1∑
i=0

∫ ti+1
k

ti
k

∥∥x̄(τ ; tik)
∥∥2

Q
+
∥∥ū(tik)

∥∥2

R
dτ

+
∥∥x̄(tNk )

∥∥2

P
,

(3)

where the weighting matrixes Q, R and P are positive
definite; tik with i ∈ IN0 is the sampling instant, and t0k =

tk; each inter-sampling interval h(tik) , ti+1
k − tik, i ∈ IN−1

0

equals to a predefined positive constant h; x̄(τ ; tik) denotes
the feasible state trajectory, which is formulated as

x̄(τ ; tik) = A(τ − tik)x(tik) +B(τ − tik)ū(tik),

for all i ∈ IN−1
0 , and x(ti+1

k ) = A(h(tik))x(tik) +
B(h(tik))ū(tik). Next, by minimizing the performance index
in (3) with the satisfaction of constraints, an optimal
control sequence u∗tk is calculated. Finally, the optimal
piecewise-constant control input trajectory is

u∗(τ ; tk) = u∗(tik), (4)

for all τ ∈ [tik, t
i+1
k ) with i ∈ IN−1

0 . The closed-loop system
control input is then set as u(t) = u∗(t; tk), t ∈ [t0k, t

1
k) and

is updated at the next optimization instant or triggering
instant

tk+1 = tk + h(t0k). (5)

However, in the standard MPC algorithm, it should be
noticed that the sampling pattern determined by the inter-
sampling interval sequence htk , {h(t0k), · · · , h(tN−1

k )} is
pre-specified, which makes the obtained optimal solution
be conservative. In addition, in order to reduce the com-
munication load of networked systems, a longer triggering
interval h(t0k) is of great importance. To that end, we aim
at designing a STMPC strategy with the following two
remarkable features:

i) Co-design the inter-sampling interval sequence htk
and the control sequence ūtk to prolong h(t0k).

ii) Design the performance index to incorporate the
sampling interval (i.e., communication cost) and the
control performance, simutaneously.

3. STMPC ALGORITHM

In this subsection, we first present a new performance
index to be minimized as follows:

J(ūtk , h̄tk ;x(tk))

,
N−1∑
i=0

1

eγh̄(ti
k
) − 1

∫ ti+1
k

ti
k

∥∥x̄(τ ; tik)
∥∥2

Q
+
∥∥ū(tik)

∥∥2

R
dτ

+
∥∥x̄(tNk )

∥∥2

P
,

(6)

where 1/(eγh̄(tik) − 1) is used to address the effect of the
communication cost in the corresponding inter-sampling
interval h̄(tik); γ is the factor determined by a specific
communication network.

Remark 1. For a given γ, it can be seen that: (i) The

communication cost 1/(eγh̄(tik) − 1) → ∞ as h̄(tik) → 0,
which is consistent with the fact that transmitting a
continuous signal requires infinite bandwidth. (ii) There is
a tradeoff between the stage cost and the communication
cost in each inter-sampling interval. More specifically, a
longer inter-sampling interval h̄(tik) will result in a larger

stage cost, while the communication cost will decrease.
(iii) The designed performance falls into the one defined

in the standard MPC if h̄(tik) = h for all i ∈ IN−1
0 .

At each triggering instant tk, we solve the following OCP
to co-calculate the optimal control sequence u∗tk and the
optimal inter-sampling interval sequence h∗tk .

Problem P :

min
ūtk

,h̄tk

J(ūtk , h̄tk ;x(tk)), subject to

ū(tik) ∈ U
δ 6 h̄(tik) 6 hmax∥∥x̄(tNk )

∥∥2

P
∈ Ω(ε)

(7)

where δ ∈ R+ and hmax ∈ R+ are the lower bound and the
upper bound of the inter-sampling intervals, respectively,
and Ω(ε) , {x ∈ Rn : ‖x‖2P 6 ε} denotes the terminal
region, which satisfies the following assumption.

Assumption 1. For the sampled-data system in (2),
there exists a local linear control law u(t) = Kx(t) ∈ U
such that

‖x(t+ δ)‖2P − ‖x(t)‖2P

6− 1

eγδ − 1

∫ t+δ

t

‖x(τ ; t)‖2Q + ‖u(t)‖2Rdτ,
(8)

for all x(t) ∈ Ω(ε).

Remark 2. In practical applications, communication net-
works usually suffer from the bandwidth limitation, which
makes the requirement on a minimum inter-sampling in-
terval δ for sampled-data systems. Besides, from the point
view of the computational feasibility and the practical
implementation, the existence of hmax is also reasonable.

Remark 3. Considering that the pair (A,B) is control-
lable, an optional choice of K is to employ the linear
quadratic regulator (LQR) of the continuous-time system
in (1). Next, we set the terminal weighting matrix P as
the solution to the following Lyapunov function.

Aδcl
T
PAδcl−P = − 1

eγδ − 1

∫ δ

0

(Aτcl
TQAτcl+K

TRK)dτ−εI,

(9)
where Aδcl = A(δ) + B(δ)K and Aτcl = A(τ) + B(τ)K,
respectively, and ε is a positive constant, which is small
enough. Then, Assumption 1 holds by choosing suitable
value of ε such that Kx ∈ U for all x ∈ Ω(ε).

Now, the detailed description of the proposed STMPC
algorithm is shown in Algorithm 1.

Algorithm 1 STMPC Algorithm

Require: Initial the triggering instant t0 and set k = 0.
1 : Sample the system state to obtain x(tk).
2 : Solve Problem P to obtain {u∗tk ,h

∗
tk
}.

3 : Apply u∗(t1k) to the sampled-data system in (2) for
t ∈ [tk, tk + h∗(t0k)).

4 : Set the next triggering instant tk+1 = tk+h∗(t0k) and
make tk ← tk+1

5 : Return to step 1.
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4. MAIN THEORETICAL RESULTS

4.1 Feasibility Analysis

The theoretical results of the algorithm feasibility is sum-
marized as follows.

Theorem 1. For the sampled-data system in (2), suppose
that Assumption 1 holds, and Problem P has a solution for
the initial system state x(0). Then the proposed STMPC
algorithm is always feasible.

Proof. We prove the results by using the mathematical
induction.

At a triggering instant tk, assume that Problem P admits
an optimal control sequence u∗tk and an optimal inter-
sampling interval sequence h∗tk . Then, according to Algo-

rithm 1, the next triggering instant tk+1 = tk + h∗(t0k).

At tk+1, by choosing the inter-sampling interval sequence

h̄tk+1
, {h̄(t0k+1), · · · , h̄(tN−1

k+1 )}
as

h̄tk+1
= {h∗(t1k), · · · , h∗(tN−1

k ), δ}, (10)

we have that the corresponding sampling instants are

tik+1 =

{
ti+1
k i ∈ IN−1

0 ,

tNk + δ i = N.
(11)

If we design the control sequence

ūtk+1
, {ū(t0k+1), · · · , ū(tN−1

k+1 )}
as

ūtk+1
= {u∗(t1k), · · · , u∗(tN−1

k ),Kx∗(tNk )}, (12)

it is straightforward to get that the feasible state trajectory

x̄(τ ; tik+1) = x∗(τ ; ti+1
k ),

for all τ ∈ [tik+1, t
i+1
k+1) with i ∈ IN−2

0 , and one can obtain

x̄(τ ; tN−1
k+1 ) = (A(τ − tNk ) +BK)x∗(tNk ), (13)

for all τ ∈ [tN−1
k+1 , t

N
k+1). In particular, x̄(tNk+1) = (A(δ) +

BK)x∗(tNk ). By using the similar argument in Chen and
Allgöwer (1998), we show that ūtk+1

and h̄tk+1
make all

the constraints in Problem P be satisfied, i.e., the two
sequences ūtk+1

and h̄tk+1
constitute a feasible solution to

Problem P at tk+1.

The proof is completed.

2

4.2 Stability Analysis

Considering that the system to be controlled is executed
in a continuous-time manner, in this subsection, we de-
velop the closed-loop system stability results by showing
the monotonic decrease of a continuous-time Lyapunov
function.

Before proceeding on the stability results, we first claim
that the proposed algorithm will not result in the Zeno
behavior, i.e, triggering Problem P infinite times in finite
timespan. In Algorithm 1, noticing that the triggering
interval tk+1 − tk uniquely depends on the first element
of the inter-sampling interval sequence h̄tk+1

, we can

conclude that the inter-triggering time interval is lower
bounded by δ.

Then the detailed results on the closed-loop stability are
summarized in the following theorem.

Theorem 2. For the sampled-data system in (2), suppose
that Assumption 1 holds. Then the closed-loop system is
asymptotically stable.

Proof. At each triggering time instant tk, we define the
Lyapunov function V (x(tk)) as the optimal performance
index of Problem P, that is

V (x(tk)) , J(u∗tk ,h
∗
tk

;x(tk)). (14)

For all t ∈ (tk, tk+1), the V (x(t)) employed is

V (x(t)) ,J(u∗tk ,h
∗
tk

;x(tk))− 1

eγh
∗(t0

k
) − 1∫ t

t0
k

(
∥∥x∗(τ ; t0k)

∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
)dτ.

(15)

Next we prove the results from the following two facts:

i) V (x(tk)) is monotonically decreasing at each trigger-
ing instant tk.

ii) V (x(t)) is monotonically decreasing within two suc-
cessive triggering instants.

We denote the difference of the designed Lyapunov func-
tions between the triggering instants tk+1 and tk as

4Vtk , V (x(tk+1))− V (x(tk)). (16)

Considering the optimality of the performance index at
tk+1, an upper bound of 4Vtk is given as follows.

4Vtk
6J(ūtk+1

, h̄tk+1
;x(tk+1))− J(u∗tk ,h

∗
tk

;x(tk))

=

N−2∑
i=0

1

eγh̄(ti
k+1

) − 1

∫ ti+1
k+1

ti
k+1

∥∥x∗(τ ; tik+1)
∥∥2

Q
+
∥∥u∗(tik+1)

∥∥2

R
dτ

−
N−1∑
i=1

1

eγh̄(ti
k
) − 1

∫ ti+1
k

ti
k

∥∥x∗(τ ; tik)
∥∥2

Q
+
∥∥u∗(tik)

∥∥2

R
dτ

− 1

eγh
∗(t0

k
) − 1

∫ t1k

t0
k

∥∥x∗(τ ; t0k)
∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
dτ

+
1

eγδ − 1

∫ tNk+1

tN−1
k+1

∥∥x̄(τ ; tN−1
k+1 )

∥∥2

Q
+
∥∥ū(tN−1

k+1 )
∥∥2

R
dτ

+
∥∥x̄(tNk+1)

∥∥2

P
−
∥∥x∗(tNk )

∥∥2

P
.

(17)
Substituting the feasible sampling interval sequence h̄tk+1

in (10) and the feasible control sequence ūtk+1
in (12) into

(17), it yields

4Vtk 6− 1

eγh
∗(t0

k
) − 1

∫ t1k

t0
k

∥∥x∗(τ ; t0k)
∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
dτ

+
1

eγδ − 1

∫ tNk +δ

tN
k

∥∥x̄(τ ; tN−1
k+1 )

∥∥2

Q
+
∥∥Kx∗(tNk )

∥∥2

R
dτ

+
∥∥x̄(tNk+1)

∥∥2

P
−
∥∥x∗(tNk )

∥∥2

P
.

(18)
Following from the state trajectory defined in (13) and
using Assumption 1, we acquire
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4Vtk 6 − 1

eγh
∗(t0

k
) − 1

∫ t1k

t0
k

∥∥x∗(τ ; t0k)
∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
dτ

(19)

When t ∈ (tk, tk+1), taking the designed Lyapunov func-
tion in (15) into consideration, it can be shown that

4Vt , V (x(t))− V (x(tk)) satisfies

4Vt = − 1

eγh
∗(t0

k
) − 1

∫ t

t0
k

(
∥∥x∗(τ ; t0k)

∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
)dτ.

(20)
Because h∗(t0k) > δ holds at any triggering instant, it
follows that 4Vt is monotonically decreasing with respect
to the inter-triggering instant t. In addition, 4Vtk is also
guaranteed to monotonically decreasing with respect to
the triggering instant tk.

Finally, taking the limit of 4Vt as t approaches tk+1, we
have

4V −tk+1
= − 1

eγh
∗(t0

k
) − 1

∫ t1k
−

t0
k

∥∥x∗(τ ; t0k)
∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
dτ,

(21)
which indicates that 4Vtk 6 4V −tk+1

. Then a simple
induction gives the conclusion that the Lyapunov function
V (x(t)) is monotonically decreasing for all t > t0.

Following the theorem 1 in Chen and Allgöwer (1998), the
asymptotic stability results of the closed-loop system is
proved.

2

4.3 Performance Guarantee

In this subsection, we provide the performance guarantee
of the closed-loop system.

We first show that V (x(t)) → 0 as t → ∞. Using the
inequality in (19) and the inequality in (20), we get

V (x(t))− V (x(t0))

6−
k∑
i=0

1

eγh
∗(t0

i
) − 1

∫ t1i

t0
i

∥∥x∗(τ ; t0k)
∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
dτ

− 1

eγh
∗(t0

k
) − 1

∫ t

t0
k

∥∥x∗(τ ; t0k)
∥∥2

Q
+
∥∥u∗(t0k)

∥∥2

R
dτ,

(22)
where t0k is the closest triggering instant before t. Not-
ing that both V (x(t0)) and the right hand side of the
inequality (22) are bounded, and by using the nonnegative
property of the V (x(∞)), we can obtain that

V (x(∞)) = 0. (23)

Then, if we plug (23) back into (22), it follows
∞∑
i=0

1

eγh
∗(t0

i
) − 1

∫ t1i

t0
i

∥∥x∗(τ ; t0k)
∥∥2

Q
dτ

+
1

eγh
∗(t0

k
) − 1

∫ t

t0
k

∥∥x∗(τ ; t0k)
∥∥2

Q
dτ 6 V (x(t0)).

(24)

In particular, when t = tk and k =∞, one has
∞∑
i=0

1

eγh
∗(t0

i
) − 1

∫ t1i

t0
i

∥∥x∗(τ ; t0k)
∥∥2

Q
dτ 6 V (x(t0)). (25)

5. SIMULATION

This section implements the proposed STMPC algorithm
on a cart-spring-damper system. By linearizing the cart-
spring-damper system in Li and Shi (2014b) at the equi-
librium point, we obtain the following system dynamics:[

ẋ1

ẋ2

]
=

[
0 1

−k/m −h/m

] [
x1

x2

]
+

[
0

1/m

]
u, (26)

where the position x1 and the velocity x2 compose the

system state variable x = [x1, x2]
T

; k = 0.25N/s is the
spring factor, and h = 1.2N/s represents the damping
coefficient; m = 1.5kg denotes the mass. The control input
is constrained by ‖u‖ 6 1.

The state weighting matrix Q = 0.5I2, and the input
weighting matrix is designed as R = 0.1; the number of the
control elements in the prediction horizon is N = 5. Here,
we choose the minimal and the maximal inter-sampling
intervals as δ = 0.1s and hmax = 1s, respectively, and
the parameter γ in the communication cost is set to be
0.1. In order to make Assumption 1 hold, we calculate

the terminal weighting matrix P =

[
12.4745 −4.0757
−4.0757 5.1220

]
according to remark 3, and we set the terminal region
parameter ε as 0.32.

In experiment, we operate the simulation on the MATLAB
package, and the fmincon function is employed to solve
the optimization problem. By selecting the initial system
state x = [−2.5, 2]T , the results are shown in Figs. 2-5.
Fig. 2 and Fig. 3 are the evolution of the system state
and the control input trajectories, respectively. These two
figures show that the system state eventually converge to
the origin and the control input satisfies the constraints.
Fig. 4 verifies that the proposed algorithm results in an
aperiodic update of the OCP, which is the so-called event-
triggered mechanism. In Fig. 5, we find that the minimal
triggering interval is around 0.55s, which is much longer
than the triggering lower bound, i.e., 0.1s.

0 2 4 6 8 10 12 14 16 18 20
t(s)

-3

-2

-1

0

1

2

St
at

e

x1(t)
x2(t)

Fig. 2. The system state trajectories.
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Fig. 3. The control input trajectory and its bounds.
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Fig. 4. The distribution of the triggering instants.
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Fig. 5. The triggering interval at each triggering instant.

6. CONCLUSION

We have designed a new STMPC scheme for linear
sampled-data systems with input constraints. In the new
scheme, we have added the inter-sampling intervals as the
decision variables in the receding horizon optimization,
with this, we have realized the co-design of the inter-
sampling interval and the control sequence. This reduces
the conservatism of the existing results. In addition, we
have shown that under mild assumption, the proposed
algorithm is feasible and the closed-loop system is asymp-
totically stable, and the designed algorithm provides a
ensured performance index.
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