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Abstract: In this paper, a tube-based economic Model Predictive Control (MPC) scheme
for systems subject to bounded disturbances is investigated that uses neither terminal costs
nor terminal constraints. We provide robust guarantees on the closed-loop performance under
suitable dissipativity and controllability conditions. Furthermore, we prove practical convergence
to an optimal robust control invariant set, as well as its practical stability under slightly stronger
assumptions. Hence, this work extends the results from nominal economic MPC without terminal
conditions to systems with bounded disturbances by using similar turnpike arguments and a
properly modified stage cost. The results are discussed in a numerical example.
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1. INTRODUCTION
In the past decade, economic Model Predictive Control
(MPC) has emerged as an active field of research, see
(Faulwasser et al., 2018) for an overview. MPC schemes
repeatedly solve finite horizon optimal control problems in
a receding horizon fashion. In economic MPC, the objec-
tive of this optimization problem is a general cost function,
which often is given by some underlying economic consid-
erations such as energy consumption, production amounts,
etc., and does not need to be be positive definite with re-
spect to a desired setpoint as it is standard in conventional
MPC. A common technique to guarantee performance and
stability of such MPC schemes is to add suitable terminal
conditions to the optimal control problem. These terminal
conditions, however, can be difficult to design, lead to
an unnecessary reduction of the region of attraction, and
increase the computational burden such that, in practice,
they are frequently dropped. An explanation of why this
practice is often successful was given by Grüne (2013) and
Grüne and Stieler (2014); therein, the authors considered
an economic MPC scheme without terminal conditions
and provided practical stability as well as performance
guarantees up to an error term vanishing with growing
prediction horizons.

In the presence of uncertainties, Bayer et al. (2014) show
that the performance of an economic MPC scheme can
be significantly improved if the possible uncertainties are
considered within the cost function of the optimization
problem. Optimal system operation, performance guaran-
tees, and stability results of robust economic MPC have
been considered thoroughly in recent years, see e.g., (Bayer
et al., 2016), (Bayer et al., 2018), and (Dong and Angeli,
2018); all using terminal conditions. In this work, we show
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277536708, AL 316/12-2 and MU 3929/1-2 - 279734922. The authors
thank the International Max Planck Research School for Intelligent
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that terminal conditions are often not needed to provide
similar stability and performance results. The results of
Grüne (2013) on the nominal case without terminal condi-
tions do not apply to the robust setting, since the nominal
closed-loop sequence in the proposed tube-based approach
is no trajectory of the nominal system. Hence, there are
no theoretical closed-loop guarantees for such a scheme
yet, only open-loop considerations are provided by Olshina
et al. (2018).

The main contribution of this paper is a thorough analysis
of robust economic MPC without terminal conditions.
Assuming nominal dissipativity it is shown that the ro-
bust asymptotic average performance is no worse than
the robust optimal steady-state (ROSS) performance up
to an error vanishing with growing prediction horizons. If
further a robust dissipativity condition holds, we can show
convergence and stability-like behavior of the nominal
closed-loop sequence. While convergence of the real closed-
loop trajectory to a robust positive invariant set around
the ROSS follows immediately, we need additional assump-
tions to show practical stability of this set. The findings
are illustrated and discussed in a numerical example.

Notations. The set of continuous monotonically increasing
functions α : R≥0 → R≥0 with α(0) = 0 is denoted by
K, and by K∞ if additionally α(x) → ∞ as x → ∞.
The set of continuous monotonically decreasing functions
δ : R≥0 → R≥0 with δ(t) → 0 as t → ∞ is denoted L.
Further, β ∈ KL, if β(·, t) ∈ K and β(x, ·) ∈ L for all
x, t ≥ 0. For x ∈ Rn, Ω ⊂ Rn, the point-to-set distance
is denoted ‖x‖Ω := infy∈Ω ‖x− y‖. The set of all integers
in the interval [a, b] is denoted by {a..b} := Z ∩ [a, b]. The
ball with radius ρ and center x ∈ Rn is denoted by Bnρ (x).

2. PROBLEM SETUP
The setup is mainly inherited from Bayer et al. (2018)
except that the terminal cost and terminal constraints are
omitted. The system to be controlled is of the form
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x(t+ 1) = f
(
x(t), u(t), w(t)

)
, x(0) = x0 (1)

with f : Rn×Rm×W→ Rn continuous, where x(t) ∈ Rn
is the system state, u(t) ∈ Rm is the control input, and
w(t) ∈ W ⊆ Rq is an external disturbance. Moreover, the
state and input constraints (x(t), u(t)) ∈ Z ⊆ Rn × Rm
have to hold at all times t ≥ 0.
Assumption 1. The sets W and Z are compact, convex,
have a nonempty interior, and 0 ∈ intW.

The control goal is to operate the system optimally with
respect to a continuous (not necessarily positive definite)
stage cost L : Rn ×Rm → R such that the constraints are
satisfied. We follow a tube-based approach, which utilizes
a continuous feedback parameterization

u(t) = π(x(t), v(t)), π : Rn × Rm → Rm (2)
and invariant sets, compare e.g. (Mayne et al., 2005)
and (Bayer et al., 2013). With this feedback we can
rewrite the system dynamics, stage cost, and constraints
as fπ(x, v, w) = f(x, π(x, v), w), Lπ(x, v) = L(x, π(x, v)),
and Zπ =

{
(x, v) ∈ Rn × Rm

∣∣(x, π(x, v)) ∈ Z
}
. We define

the nominal system as
z(t+ 1) = fπ

(
z(t), v(t), 0

)
, z(0) = z0 (3)

and the error between the real and the nominal state as
e(t) = x(t)− z(t). This leads to the error dynamics

e(t+ 1) = fπ
(
x(t), v(t), w(t)

)
− fπ

(
z(t), v(t), 0

)
. (4)

Definition 1. (Bayer et al. (2016)). A compact set Ω ⊆
Rn is robust control invariant (RCI) for the error system
(4) if there exists a feedback law (2) such that for all
x, z ∈ Rn with e = x − z ∈ Ω, v ∈ Rm with (x, v) ∈ Zπ,
and w ∈W it holds that e+ = fπ(x, v, w)−fπ(z, v, 0) ∈ Ω.

A discussion how to find such an RCI set Ω is, e.g.,
provided in Bayer et al. (2016). Henceforth, we assume
its existence in the following.
Assumption 2. There exists an RCI set Ω for the error
system (4) such that Ω and

Z̄ :=
{

(z, v) ∈ Zπ
∣∣∀ε ∈ Ω : (z + ε, v) ∈ Zπ

}
(5)

are compact and have a nonempty interior.

This assumption implies that the real system under the
feedback (2) stays in a tube around the nominal state
x(t) ∈ {z(t)} ⊕Ω for all times t ≥ 0 if e(0) ∈ Ω. A further
implication is Z̄ ⊕ Ω ⊆ Zπ, i.e., if the nominal system
satisfies the tightened constraints (z(t), v(t)) ∈ Z̄, then
robust constraint satisfaction (x(t), v(t)) ∈ Zπ follows.

Bayer et al. (2014) pointed out that for robust performance
considerations it is not reasonable to take only the nominal
stage cost into account and instead proposed to use an
average cost over the possible real states

Lint
π (z, v) :=

∫
Ω

Lπ(z + ε, v) dε. (6)

As an alternative to the average, Bayer et al. (2016)
suggested a worst case stage cost

Lmax
π (z, v) := max

ε∈Ω
Lπ(z + ε, v). (7)

Due to this selection, we generally denote the stage cost
by `, which may be e.g., Lπ, Lint

π , or Lmax
π .

Assumption 3. The stage cost ` : Zπ → R is Lipschitz
continuous on Zπ with Lipschitz constant κ` ∈ R, i.e. for
all (z1, v1), (z2, v2) ∈ Zπ it holds

|`(z1, v1)− `(z2, v2)| ≤ κ` ‖(z1, v1)− (z2, v2)‖ . (8)

The optimal control problem (OCP) that we propose to
solve in each step of the tube-based MPC scheme is similar
to (Bayer et al., 2018), however, without any terminal
conditions, as these are often omitted in practice. Hence,
the nominal initial state is also a decision variable - an idea
that traces back to (Mayne et al., 2005) and improves the
performance. Therefore, we will denote the OCP in two
steps: First, given z0 ∈ Rn, the nominal OCP is

VN
(
z0

)
= min
z(·),v(·)

JN
(
z0, v(·)

)
(9a)

s.t. z(k + 1) = fπ
(
z(k), v(k), 0

)
,

z(0) = z0,
(9b)(

z(k), v(k)
)
∈ Z̄, (9c)

for all k ∈ {0..N − 1},

with JN
(
z0, v(·)

)
=

N−1∑
k=0

`
(
z(k), v(k)

)
, (9d)

with the minimizer z?N (·; z0), v?N (·; z0). Second, given
x(t) ∈ Rn, the robust OCP is

VN (x(t)) = min
z0

VN (z0) (10a)

s.t. x(t) ∈ {z0} ⊕ Ω, (10b)
where the minimizer is denoted by z?0(x(t)). Further, we in-
troduce the convenient notations z?N (·|t) := z?N (·; z?0(x(t)))
and v?N (·|t) := v?N (·; z?0(x(t)). We can use the OCP (10) in
order to define the feedback law by the following MPC
iteration. At each time instant t we perform the steps

(1) Measure the current state x(t) of the system,
(2) Solve OCP (10) to get v?N (k|t), k ∈ {0..N − 1},
(3) Apply the feedback u(t) = π(x(t), v?N (0|t)),
such that we obtain the closed-loop dynamics

x(t+ 1) = f
(
x(t), π(x(t), v?N (0|t)), w(t)

)
. (11)

The sets of all possible next nominal and real states of the
MPC controlled closed-loop system are denoted by

Z+
cl(z) :=

{
z?0(x+

cl)
∣∣x+

cl ∈ {fπ(z, v?N (0; z), 0)} ⊕ Ω
}
, (12)

X+
cl(x) :=

{
fπ(x, v?N (0; z?0(x)), w)

∣∣w ∈W
}
. (13)

Moreover, we denote the set of all initial states for which
there exists an infinite horizon admissible input by

X̄∞ := {z ∈ Rn|∃ (z̃, ṽ) : N→ Z̄ : z̃(0) = z

∧ z̃(k + 1) = fπ(z̃(k), ṽ(k), 0),∀k ≥ 0}.
(14)

In our analysis, we will compare the performance to the
one at the robust optimal steady state (ROSS) defined by

(zs, vs) := arg min
(z,v)∈Z̄,z=fπ(z,v,0)

`(z, v). (15)

Note that zs (and vs) depends on `. Thus, for the specific
choices ` = Lπ, L

int
π , or Lmax

π we write zLs , zint
s , or zmax

s .
Assumption 4. The ROSS lies in the interior of the con-
straint set, i.e. there is ρ3 > 0 with Bm+n

ρ3 (zs, vs) ⊆ Z̄.

For dissipative systems, Grüne and Stieler (2014) have
shown that economic MPC schemes without terminal
conditions are converging and satisfy closed-loop perfor-
mance bounds. Compared to their work, we will assume
a slightly stronger dissipation inequality that was used in
(Faulwasser et al., 2018) as well to simplify some of the
later proofs, see Remark 3.1 therein for a discussion on
different dissipation inequalities.
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Assumption 5. The nominal system (3) is strictly dissipa-
tive on Z̄ with respect to the supply rate s(z, v) = `(z, v)−
`(zs, vs), i.e. there is α` ∈ K∞ and a bounded storage
function λ : Rn → R such that for all (z, v) ∈ Z̄ it holds

λ
(
z+
)
− λ(z) ≤ s(z, v)− α`(‖(z, v)− (zs, vs)‖) (16)

with z+ = fπ(z, v, 0).

Further, we need some reachability and some local con-
trollability of zs, compare (Faulwasser et al., 2018) and
(Grüne and Stieler, 2014).
Assumption 6. The ROSS (zs, vs) of system (3) is exponen-
tially reachable, i.e. for all z ∈ X̄∞ there exists an infinite
horizon admissible trajectory (ζ, ν) : N→ Z̄ and constants
c1 > 0, ρ1 ∈ [0, 1) such that ζ(0) = z and for all k ≥ 0 it
holds ζ(k + 1) = fπ(ζ(k), ν(k), 0) and

‖(ζ(k), ν(k))− (zs, vs)‖ ≤ c1ρk1 . (17)
Assumption 7. System (3) is locally controllable at (zs, vs),
i.e. there exist ρ2 > 0, M ∈ N, and c2 > 0 such that for
all y, z ∈ Bnρ2(zs) there is νzy : {0..M − 1} → Rm with the
corresponding nominal state trajectory ζzy : {0..M} → Rn
satisfying (3) and for all k ∈ {0..M − 1}

ζzy (0) = y, ζzy (M) = z, (18a)∥∥(ζzy (k), νzy (k)
)
− (zs, vs)

∥∥ ≤ c2 max
ȳ∈{y,z}

‖ȳ − zs‖ . (18b)

Remark 1. The constants c1, c2, ρ1, ρ2, ρ3, κ`, M , and
the K∞ function α` are unique throughout this paper.
Whenever, for example, there appears ρ2 in the manuscript
it will refer to the local controllability Assumption 7
without further referencing.

3. PERFORMANCE BOUND
The goal of this section is to derive average performance
bounds for the real closed-loop system controlled by the
MPC scheme proposed in the previous section with pre-
diction horizon N , i.e. to bound

J cl
T (x(0), N) =

1

T

T−1∑
t=0

Lπ
(
x(t), v?N (0|t)

)
, (19)

J cl
∞(x(0), N) = lim supT→∞ J cl

T (x(0), N). (20)
To this end, we will first derive bounds on the nominal
closed-loop performance with the modified stage cost `

Jcl
T (z,N) =

1

T

T−1∑
t=0

`
(
z?N (0|t), v?N (0|t)

)
, (21)

Jcl
∞(z,N) = lim supT→∞ Jcl

T (z,N) (22)
by exploiting the so-called turnpike property, which follows
from dissipativity and exponential reachability.
Proposition 1. Let Assumptions 1–3, 5, and 6 hold. Then
the OCP (9) satisfies the turnpike property, i.e. for all
N ∈ N, ε > 0, and z ∈ X̄∞ it is #Qε(N, z) ≥ N − c3

α`(ε)

with
Qε(N, z) = {k ∈ {0..N − 1}|

‖(z?N (k; z), v?N (k; z))− (zs, vs)‖ ≤ ε},
(23)

where c3 := κ`c1(1 − ρ1)−1 + 2λmax and λmax =
sup(z,v)∈Z̄ |λ(z)| <∞.

Whenever clear from context, we will write Qε = Qε(N, z)
in a slight abuse of notation. A proof of Proposition 1
can be found e.g. in (Faulwasser et al., 2018, Proposition
4.1). To derive a performance bound, we follow the steps in

(Grüne, 2013). However, the main difficulty with the tube-
based setup is that the nominal closed-loop sequence is no
longer a trajectory of the nominal system, since z?N (0|t) is
a decision variable. Still, we can modify Proposition 4.1 in
(Grüne, 2013) such that it extends to this setup.
Proposition 2. Let Assumption 1 and 2 hold and assume
there exists N0 ∈ N, δ1, δ2 ∈ L such that for all N ≥ N0

and for all z ∈ X̄∞ there exist P ∈ {0..N} and v̂N (·; z) :
{0..N} → Rm with the corresponding nominal trajectory
ẑN (k; z) for k ∈ {0..N} satisfying the nominal dynamics
(3) and (ẑN (k; z), v̂N (k; z)) ∈ Z̄ such that

(i) ĴN (z) :=
N∑

k=0, k 6=P
`
(
ẑN (k; z), v̂N (k; z)

)
≤ VN (z)+δ1(N)

(ii) `
(
ẑN (P ; z), v̂N (P ; z)

)
≤ `(zs, vs) + δ2(N).

Assume further that z?N (0|0) ∈ X̄∞ implies z?N (1|t) ∈ X̄∞
for all t ≥ 0. Then for all z = z?N (0|0) ∈ X̄∞ and all T ∈ N
it holds with ε1 = δ1 + δ2 ∈ L
Jcl
T (z,N) ≤ 1

T VN (z)− 1
T VN

(
z?N (0|T )

)
+ `(zs, vs)

+ ε1(N − 1),
(24)

Jcl
∞(z,N) ≤ `(zs, vs) + ε1(N − 1). (25)

Proof. The idea of the proof is to relate the closed-loop
performance Jcl

T (z,N) to the open-loop value functions
VN (z) and bound them with (i), (ii). The main difference
to the proof of Proposition 4.1 in (Grüne, 2013) is that
due to the robust setup we have z?N (0|t) 6= z?N (1|t − 1).
Nevertheless, we know from the optimality of z?N (0|t) that

VN
(
z?N (0|t)

)
= VN (x(t)) ≤ VN

(
z?N (1|t− 1)

)
(26)

since z?N (1|t−1) satisfies (10b), i.e. x(t) ∈ {z?N (1|t−1)}⊕Ω.
Step 1: We relate Jcl

T (z,N) to VN (z) as follows
TJcl

T (z,N) =
∑T−1
t=0

`
(
z?N (0|t), v?N (0|t)

)
=
∑T−1
t=0

(
VN
(
z?N (0|t)

)
− VN−1

(
z?N (1|t)

))
(26)
≤
∑T−2
t=0

(
VN
(
z?N (1|t)

)
− VN−1

(
z?N (1|t)

))
+ VN (z)− VN−1

(
z?N (1|T − 1)

)
.

(27)

Step 2: Bound VN with (i) and (ii). For y ∈ X̄∞ it holds
VN (y)− VN−1(y)

(i)
≤ JN

(
y, v̂N−1(·; y)

)
− ĴN−1(y) + δ1(N − 1)

= `
(
ẑN−1(P ; y), v̂N−1(P ; y)

)
+ δ1(N − 1)

(ii)
≤ `(zs, vs) + δ2(N − 1) + δ1(N − 1). (28)

Step 3: Merge the two previous steps. If we insert (28) with
y = z?N (1|t), t ∈ {0..T − 2} into (27) and then use again
(28) with y = z?N (1|T − 1) we obtain

TJcl
T (z,N)

(27,28)
≤ (T − 1)

(
`(zs, vs) + δ2(N − 1) + δ1(N − 1)

)
+ VN (z)− VN−1

(
z?N (1|T − 1)

)
(28)
≤ T`(zs, vs) + Tδ2(N − 1) + Tδ1(N − 1)

+ VN (z)− VN
(
z?N (1|T − 1)

)
(26)
≤ T`(zs, vs) + Tδ2(N − 1) + Tδ1(N − 1)

+ VN (z)− VN
(
z?N (0|T )

)
.

Since ` is continuous and Z̄ is compact, we can bound
N`max ≥ VN (z) ≥ N`min. Dividing by T yields for T →∞

Jcl
∞(z,N) ≤ `(zs, vs) + δ2(N − 1) + δ1(N − 1). 2
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In the following theorem, we will use the turnpike prop-
erty and local controllability to show that indeed there
exists a candidate solution satisfying the requirements of
Proposition 2; thereby proving recursive feasibility and
the performance bounds (24), (25) for the proposed MPC
scheme.
Theorem 1. Let Assumptions 1–7 hold. Then, there exists
N0 ∈ N and ε1 ∈ L such that for all N ≥ N0 the OCP
(10) is feasible for all times t ≥ 0 if it is initially feasible
with z?0(x(0)) ∈ X̄∞. Further, the performance estimates
(24) and (25) hold for all z ∈ X̄∞ and T ≥ 0.

Proof. To prove this result, we will use Proposition 2. We
start with showing recursive feasibility, which is assumed
therein. To this end, we show Z+

cl(z) ⊆ X̄∞ for z ∈ X̄∞,
which implies z(t) ∈ X̄∞ for all t ≥ 0 if z?0(x(0)) ∈ X̄∞
and thus x(t) ∈ X̄∞ ⊕ Ω for all t ≥ 0 such that the OCP
(10) is feasible for all t ≥ 0. First, let δ ∈ L be

δ(N) = α−1
`

(
c3M
N−M

)
for N > M and choose N0 ∈ N large enough such that
δ(N0) < min{ρ2, c

−1
2 ρ3}. Then we know by the turnpike

property from Proposition 1 for N ≥ N0 and z ∈ X̄∞ that

#Qδ(N)(N, z) ≥ N − c3
α`(δ(N)) = N − N

M + 1. (29)

Without loss of generality we can assume M ≥ 2 since
M = 1 implies that local controllability also holds with
M = 2. Thus, there exists P ∈ Qδ(N)(N, z) with P ≥ 1.
Due to our choice of N0 we know δ(N) < min{ρ2, c

−1
2 ρ3}

for N ≥ N0 such that we can use the local controllability
input to go from z?N (P ; z) to zs since δ(N) < ρ2 and
that this trajectory is feasible since c2δ(N) < ρ3. This
renders z?N (k; z) ∈ X̄∞ for all k ∈ {0..P} and in par-
ticular for k = 1. In the proof of the turnpike property
of optimal solutions starting at z ∈ X̄∞ in Proposition
4.1 in (Faulwasser et al., 2018) we see that z ∈ X̄∞
is only needed to give a constant upper bound on the
value VN (z) via exponential reachability. The same up-
per bound holds for VN (z?N (0; z+

cl )) since z?N (1; z) ∈ X̄∞
and VN (z?N (0; z+

cl )) ≤ VN (z?N (1; z)) due to optimality of
z?N (0; z+

cl ) and the fact that z?N (1; z) is a feasible point for
the OCP (10) because the subsequent real system state
x+

cl satisfies x
+
cl ∈ {z?N (1; z)} ⊕ Ω. Therefore, we conclude

that optimal trajectories starting at z+
cl satisfy the turnpike

property and as we have seen this implies that zs can be
reached and thus z+

cl ∈ X̄∞. The assumption z?N (1|t) ∈ X̄∞
in Proposition 2 follows directly.

Now let us construct a candidate solution of length N + 1
that satisfies the assumptions (i) and (ii) of Proposition 2.
Combinatorial arguments and (29) yield that there are M
consecutive points {P..P +M − 1} ⊆ Qδ(N)(N, z), P ∈ N
in a δ(N) neighborhood of (zs, vs). To see this, assume
for the sake of contradiction that no such P exists, then
there must be at least one element in each of the

⌊
N
M

⌋
disjunct pieces of lengthM in {0..N} that is not in Qδ(N),
i.e. #Qδ(N) ≤ N −

⌊
N
M

⌋
, which is a contradiction. Due

to {P..P + M − 1} ⊆ Qδ(N)(N, z), we can replace the
middle piece {P..P + M − 2} of v?N (·; z) with the input
νz2z1 (·) from the local controllability for z1 = z?N (P ; z) and
z2 = z?N (P +M − 1; z), since both z1, z2 ∈ Bnρ2(zs) due to
P, P +M − 1 ∈ Qδ(N) and δ(N) < ρ2, i.e.

v̂N (k; z) =


v?N (k; z) for k ∈ {0..P − 1}
νz2z1 (k − P ) for k ∈ {P..P +M − 1}
v?N (k − 1; z) for k ∈ {P +M..N}.

(30)

This input yields the open-loop nominal trajectory

ẑN (k; z) =


z?N (k; z) for k ∈ {0..P − 1}
ζz2z1 (k − P ) for k ∈ {P..P +M − 1}
z?N (k − 1; z) for k ∈ {P +M..N + 1},

(31)

which has length N + 1, and is feasible because of
Bn+m
ρ3 (zs, vs) ⊆ Z̄ and c2δ(N) < ρ3. To show the condition

(i) of Proposition 2 we use

ĴN (z)− VN (z) =
N∑

k=0, k 6=P
`
(
ẑN (k; z), v̂N (k; z)

)
− VN (z)

=
M−1∑
k=1

`
(
ζz2z1 (k), νz2z1 (k)

)
−
P+M−2∑
k=P

`
(
z?N (k; z), v?N (k; z)

)
≤ (M − 1)(c2 + 1)κ`δ(N)

where κ` is the Lipschitz constant from Assumption 3. Set
δ1(N) := (M −1)(c2 + 1)κ`δ(N) to obtain (i). Further, we
have due to the local controllability for P
`(ẑN (P ;z), v̂N (P ;z)) = `(z1, ν

z2
z1 (0)) ≤ `(zs, vs)+κ`c2δ(N).

Set δ2(N) := c2κ`δ(N) to obtain (ii). Finally, apply
Proposition 2 to conclude the proof. 2

The performance bounds in Theorem 1 are only valid for
stage cost ` of the nominal system. The control goal,
however, is to minimize the stage cost Lπ of the real
system. Depending on the choice of ` we can derive the fol-
lowing statements on the closed-loop average asymptotic
performance of the real system, the transient performance
bound (24) can be shown analogue.
Corollary 1. Let Assumptions 1–7 hold. Then there exists
N0 ∈ N and ε1 ∈ L such that for all N ≥ N0 and all
x ∈ X̄∞ ⊕ Ω it holds for ` = Lmax

π

J cl
∞(x,N) ≤ Lmax

π (zmax
s , vmax

s ) + ε1(N − 1) (32)
and for ` = Lπ
J cl
∞(x,N) ≤ Lπ(zLs , v

L
s ) + κLπ max

ε∈Ω
‖ε‖+ ε1(N − 1). (33)

Proof. In the case of ` = Lmax
π we can directly estimate

Lπ(x(t), v(t)) ≤ Lmax
π (z(t), v(t)) since x(t) ∈ {z(t)} ⊕ Ω

which yields J cl
∞(x,N) ≤ Jcl

∞(z,N) for x ∈ {z}⊕Ω. In the
case of ` = Lπ we see that Lπ(x(t), v(t)) ≤ Lπ(z(t), v(t))+
κLπ maxε∈Ω ‖ε‖ since x(t)− z(t) ∈ Ω.
Remark 1. We can conclude that the robust performance
guarantee (32) resulting from ` = Lmax

π is better than
(33) resulting from ` = Lπ due to Lmax

π (zmax
s , vmax

s ) ≤
Lmax
π (zLs , v

L
s ) ≤ Lπ(zLs , v

L
s ) + κLπ maxε∈Ω ‖ε‖. The im-

provement can be quite large as the motivation example
in (Bayer et al., 2014) shows. On the other hand, using
` = Lmax

π is computationally more involved such that in
some applications Lπ might be the only viable choice. For
` = Lint

π it is not easily possible to derive a bound on
J cl
∞(x,N), however, in this case (25) provides a bound on

the performance averaged over the tube of possible closed-
loop trajectories.
Remark 2. In nominal economic MPC, the dissipativity
Assumption 5 implies optimal operation at steady state,
which means that no trajectory can achieve better perfor-
mance than the steady state, see e.g. (Faulwasser et al.,
2018). Given the performance bound (25), this yields to a
convergence of Jcl

∞(z,N) to `(zs, vs) up to ε1(N − 1). In
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the robust setting, however, this does not hold anymore
since two consecutive closed-loop nominal states z?N (0|t)
and z?N (0|t+1) do not satisfy the nominal system dynamics
(3). Bayer et al. (2018) have shown that robust optimal
operation at steady state follows if the closed-loop nominal
sequence obeys the dissipation inequality

λ
(
z+
cl

)
≤ λ

(
z
)

+ s
(
z, v?N (0; z)

)
(34)

for all z ∈ X̄∞ and for all z+
cl ∈ Z+

cl(z), which is
generically satisfied for Ω-robustly dissipative 1 setups.
This is a rather strong dissipativity formulation and often
not satisfied, however, (34) can be enforced by the MPC
design as Bayer et al. (2014) presented:

(i) The inequality (34) can be implemented in the OCP
(10) to constrain the initial conditions z0. Alterna-
tively, (34) follows by the constraint

λ(z?N (0|t+ 1)) ≤ λ(z?N (1|t)) (35)
due to the nominal dissipativity of Assumption 5.

(ii) Fixing z0 = z(t) = z?N (1|t− 1) in the OCP (10) to be
consistent with (3) yields (34) due to Assumption 5.

Given (34), it follows Jcl
T (z,N) ≥ `(zs, vs). Together

with the derived performance bound of Theorem 1 this
yields that the closed-loop average performance Jcl

T (z,N)
converges to the set [`(zs, vs), `(zs, vs) + ε1(N − 1)] as
T →∞ for N ≥ N0.

4. PRACTICAL CONVERGENCE
In many applications, we do not want the closed loop to
behave unpredictably and are interested in the optimal
steady-state operation. Therefore, we investigate in this
section for what class of problems the nominal closed-
loop sequence converges to zs, which implicitly includes
convergence of the real closed loop to the set {zs}⊕Ω. As
the performance bound (25) comprises the error ε1(N−1),
we only expect convergence to a neighborhood of zs that is
shrinking with growing N , so-called practical convergence.
To this end, we assume strict dissipativity of the nominal
closed-loop sequence compared to dissipativity (34), which
is required for convergence of the performance.
Assumption 8. Let Assumption 5 hold. For all z ∈ X̄∞
and z+

cl ∈ Z+
cl(z) the following dissipation inequality holds

λ
(
z+
cl

)
≤ λ(z) + s

(
z, v?N (0; z)

)
− α`(

∥∥(z, v?N (0; z)
)
− (zs, vs)

∥∥).
(36)

If this assumption is not satisfied, it can be induced by
constraints in the OCP as discussed in Remark 2.

Grüne and Stieler (2014) have shown practical asymptotic
stability for nominal economic MPC without terminal
conditions by establishing the rotated value function

ṼN (z0) = min
v(·),z(·), s.t. (9b,9c)

N−1∑
k=0

˜̀(z(k), v(k)) (37)

with the minimizer z̃?N (·; z0), ṽ?N (·; z0) as practical Lya-
punov function, where the rotated stage cost is defined by

˜̀(z, v) = `(z, v)− `(zs, vs) + λ(z)− λ(fπ(z, v, 0)). (38)
This rotated value function is also crucial in the stability
proof of economic MPC with terminal conditions, see
(Amrit et al., 2011) for the nominal and (Bayer et al.,
1 Ω-robust dissipativity requires the dissipation inequality λ(z+)−
λ(z) ≤ s(z, v) to hold all feasible subsequent nominal states z+ ∈
Z+

cl(z), see Bayer et al. (2018).

2014) for the robost case. However, an essential difference
to these works when omitting terminal conditions is that
the minimizer of the rotated OCP is generally not identical
to the minimizer of the original OCP.
Remark 3. If the strict dissipativity condition (Assump-
tion 5) holds for the original OCP (9), then it also holds
for the rotated OCP (37) with respect to the rotated
supply s̃(z, v) = ˜̀(z, v) − ˜̀(zs, vs) = ˜̀(z, v). This follows
immediately from (16) with the rotated storage λ̃ = 0 and
α̃` = α`. Thus, we can show the turnpike property as in
Proposition 1 for the rotated OCP with the same constant
c3 and the same function α`.

We will heavily exploit the similarity of optimal solutions
following from the turnpike property. In particular, we will
exploit that two solutions of the same OCP have end pieces
with similar costs and that two solutions with the same
initial condition but one of the original and one of the
rotated OCP have start pieces with similar costs as stated
in the following Lemma, which is inspired by Lemma 7.3
and Lemma 7.5 in (Grüne, 2013).
Lemma 1. Consider the two OCPs
V iN (z0) = min

v(·),z(·), s.t. (9b,9c)
JN (z0, v(·)) + F i(z(N)) (39)

differing in their terminal costs F i : Rn → R, for i ∈ {1, 2}
and let the trajectory of the corresponding minimizer be
denoted (zi?N (·; z0), vi?N (·; z0)). Let Assumption 1–4 and 7 be
satisfied. Then, for c3 = M(c2+1)κ`, ρ4 = min{ρ2, c

−1
2 ρ3},

and i, j ∈ {1, 2} the following statements hold:

(i) For all y, z ∈ X̄∞, all δ ∈ (0, ρ4], and all P ∈ N with
{P..P +M} ⊆ Qiδ(N, z) ∩Qiδ(N, y) it holds∣∣V iN−P (zi?N (P ; y))− V iN−P (zi?N (P ; z))

∣∣ ≤ c3δ. (40)

(ii) For all z ∈ X̄∞, all δ ∈ (0, ρ4], and all P ∈ N with
{P..P +M} ⊆ Qiδ(N, z) ∩Qjδ(N, z) it holds∣∣JP (z, vi?N (·; z))− JP (z, vj?N (·; z))

∣∣ ≤ c3δ. (41)

The set Qiδ(N, z) is defined analogue to (23) but for the
optimal sequence of OCP (39).

Proof. To show (i) we use the local controllability As-
sumption 7 to go from zi?N (P ; y) ∈ Bnδ (zs) to zi?N (P +
M ; z) ∈ Bnδ (zs) and the Lipschitz continuity of ` to obtain
V iN−P (zi?N (P ; y)) ≤ V iN−P−M (zi?N (P +M ; z))

+M`(zs, vs) +Mc2κ`δ

≤ V iN−P (zi?N (P ; z)) +M(c2 + 1)κ`δ

where the last inequality holds due to {P..P + M} ⊆
Qiδ(N, z). Interchanging y and z yields the absolute value.
For verifying (ii) we use the local controllability to go from
zj?N (P ; z) ∈ Bδ(zs)

n to zi?N (P + M ; z) ∈ Bδ(zs)
n and the

Lipschitz continuity of ` to obtain
V iN (z) ≤ JP (z, vj?N (·; z)) +M`(zs, vs) +Mc2κ`δ

+ V iN−P−M (zi?N (P +M ; z))

≤ JP (z, vj?N (·; z)) + V iN−P (zi?N (P ; z)) +M(c2 + 1)κ`δ

where the last inequality holds since {P..P + M} ⊆
Qiδ(N, z). Noting that

JP (z, vi?N (·; z)) = V iN (z)− V iN−P
(
zi?N (P ; z)

)
,

leads to the desired inequality without the absolute value,
but interchanging i and j completes the proof. 2
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Remark 4. We can recover the original OCP (9) V 1
N (z) =

VN (z) with F 1(z) = 0. The lemma can also be used for
the rotated OCP (37) with F 2(z) = −λ(z) if one considers
that V 2

N (z) = ṼN (z) − λ(z) + N`(zs, vs). The minimizers
ṽ?N (·; z) and v2?

N (·; z) are the same since the cost functions
only differ by a constant depending on z.

We can use the rotated value function ṼN to show con-
vergence of the nominal closed-loop sequence up to an
error term vanishing with growing N using Lyapunov
arguments.
Theorem 2. Let Assumptions 1–8 hold. Then there exist
N1 ∈ N and ε2 ∈ L such that for all N ≥ N1 there is
β ∈ KL with
‖z?N (0|t)− zs‖ ≤ max {β (‖z?N (0|0)− zs‖ , t) , ε2(N)} (42)

for any sequence z?N (0|t + 1) ∈ Z+
cl(z

?
N (0|t)), t ≥ 0 with

initial value z?N (0|0) ∈ X̄∞.

Proof. We will show that ṼN is a practical Lyapunov
function w.r.t. δ3(N), which means that there exist
α1, α2, α3 ∈ K∞ such that for all z ∈ X̄∞ it holds

α1(‖z − zs‖) ≤ ṼN (z) ≤ α2(‖z − zs‖) (43)

and for all z+
cl ∈ Z+

cl(z) it holds

ṼN (z+
cl ) ≤ ṼN (z)− α3(‖z − zs‖) + δ3(N). (44)

Then, we can conclude for all sequences z?N (0|t + 1) ∈
Z+

cl(z
?
N (0|t)) ⊆ R̄n∞ convergence in the sense of (42) w.r.t.

ε2(N) = α−1
1 (α2(α−1

3 (δ3(N))) + δ3(N)) as stated e.g. in
(Grüne and Stieler, 2014). Due to Assumption 5 it holds

ṼN (z) = min
v(·),z(·), s.t. (9b,9c)

∑N−1
k=0

˜̀(z(k), v(k))

≥ min
v(·),z(·),

s.t. (9b,9c)

∑N−1
k=0 α`(‖(z(k), v(k))− (zs, vs)‖)

≥ α`(‖z − zs‖) =: α1(‖z − zs‖).
To construct an upper bound we distinguish z ∈ Bnρ4(zs)

and z 6∈ Bnρ4(zs), ρ4 = min{ρ2, c
−1
2 ρ3}. For z ∈ Bnρ4(zs) we

can use the local controllability since ρ4 ≤ ρ2 to construct
a candidate solution that is feasible since ρ4 ≤ c−1

2 ρ3 and
steers the system from z to zs in M steps. Since (zs, vs)
is a steady state, the candidate solution can stay there
with ˜̀(zs, vs) = 0 for N − 2M steps and finally the local
controllability can be used again to steer from zs to z in
the last M steps to cancel out the storage function in the
rotated costs
Ṽ (z) ≤

∑M−1
k=0

˜̀
(
ζzsz (k), νzsz (k)

)
+
∑M−1
k=0

˜̀
(
ζzzs(k), νzzs(k)

)
≤ 2Mκ`c2 ‖z − zs‖ .

For z 6∈ Bρ4(zs) we define M ′ ∈ N such that c1ρM
′

1 < ρ4,
which is the number of time steps needed for the exponen-
tial reachability to reach Bρ4(zs). In this neighborhood of
zs, we can reach zs within M steps without violating the
constraints. Thus, with K = M +M ′ we have

ṼN (z) ≤ K`max + 2λmax −K`(zs, vs) =: C ≤ C

ρ4
‖z − zs‖ .

In summary, we can conclude for both cases

ṼN (z) ≤ max

{
2Mκ`c2,

C

ρ4

}
‖z − zs‖ =: α2(‖z − zs‖).

As next step, we verify the decrease (44) up to δ(N), δ ∈ L
of the practical Lyapunov candidate ṼN . To this end, we
want to show that there exists δ3 ∈ L with
ṼN (z)−ṼN (z+

cl ) + δ3(N) ≥ s(z, v?N (0; z))− λ(z+
cl ) + λ(z),

(45)
for all z+

cl ∈ Z+
cl(z) such that with (36) we directly obtain

(44) with α3 = α` and δ = δ3(N). We will exploit
the turnpike property of the five trajectories z?N (·; z),
z̃?N (·; z), z?N (·; z+

cl ), z̃
?
N (·; z+

cl ), and z?N (·; z+
ol) with z+

ol =
fπ(z, v?N (0; z), 0). Hence, in order to use Lemma 1, we have
to choose N1 ∈ N large enough, such that for all N ≥ N1

there exists P ∈ N with {P..P +M} ⊆ Q′, where
Q′ := Qδ(N, z+

ol) ∩
⋂
y∈{z,z+cl}

(
Qδ(N, y) ∩ Q̃δ(N, y)

)
. (46)

Thus, if we choose δ = δ(N), i.e. δ ∈ L, as

δ(N) = α−1
`

(
5c3(M+1)
N−M−1

)
then there exists P such that {P..P +M} ⊆ Q′ holds. To
see that, assume for the sake of contradiction that no such
P exists, then there must be at least one element in each
of the

⌊
N

M+1

⌋
pieces of length M + 1 in {0..N} that is not

in Q′, i.e. #Q′ ≤ N −
⌊

N
M+1

⌋
. Further, we know due to

the turnpike property for each of the five trajectories that
#Qδ(N)(N, y) ≥ N − N

5(M+1) + 1
5

and thus #Q′ ≥ N − N
M+1 + 1, which is a contradiction.

Now choose N1 ∈ N large enough such that δ(N1) < ρ4 to
ensure feasibility. Having established the requirements of
Lemma 1, we can use it in the sense of Remark 4 to begin
showing (45)

∆ := ṼN (z+
cl )− ṼN (z) + λ(z)− λ(z+

cl )
(40)
≤ JP

(
z+
cl , ṽ

?
N (·; z+

cl )
)
− JP

(
z, ṽ?N (·; z)

)
+ c3δ(N)

2x(41)
≤ JP

(
z+
cl , v

?
N (·; z+

cl )
)
− JP

(
z, v?N (·; z)

)
+ 3c3δ(N).

Since z+
cl = arg min{y|x+

cl−y∈Ω} VN (y) and x+
cl − z

+
ol ∈ Ω we

know that VN (z+
cl ) ≤ VN (z+

ol). Using (40), this implies
JP
(
z+
cl , v

?
N (·; z+

cl )
)
≤ JP

(
z+
cl , v

?
N (·; z+

ol)
)

+ c3δ(N).

Thus, we arrive at
∆ ≤ JP

(
z+
ol, v

?
N (·; z+

ol)
)
− JP

(
z, v?N (·; z)

)
+ 4c3δ(N).

In order to relate JP
(
z+
ol, v

?
N (·; z+

ol)
)
with JP+1

(
z, v?N (·; z)

)
we have to use the candidate solution v̂N (·; z) from (30)
for P + 1 instead of P to obtain in a first step
VN (z+

ol) ≤ JN
(
z+
ol,
(
v̂N (k; z)

)
k∈{1..N}

)
≤ JP

(
z+
ol,
(
v?N (k; z)

)
k∈{1..P+1}

)
+M`(zs, vs)

+ c3δ(N) + VN−P−M (z?N (P +M ; z))

≤ JP+1(z, v?N (·; z))− `(z, v?N (0; z)) + VN (z)

− JP (z, v?N (·; z)) + 2c3δ(N)

≤ `(zs, vs)− `(z, v?N (0; z)) + VN (z) + 3c3δ(N).

Now we can use (40) to get rid of the end pieces of the
trajectories and obtain

JP (z+
ol, v

?
N (·; z+

ol)) ≤ `(zs, vs)− `(z, v
?
N (0; z))

+ JP (z, v?N (·; z)) + 4c3δ(N),

which finally leads to (45)
∆ ≤ `(zs, vs)− `(z, v?N (0; z)) + 8c3δ(N)

with δ3(N) = 8c3δ(N) and completes the proof. 2

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7184



Remark 5. Due to the convergence of the nominal closed-
loop sequence (42), the real trajectory satisfies

‖x(t)‖{zs}⊕Ω ≤ ‖x(t)‖{z(t)}⊕Ω︸ ︷︷ ︸
=0, due to Ω RCI

+ ‖z(t)− zs‖

≤ max {β(‖z?N (0|0)− zs‖ , t), ε2(N)} , (47)
which proves that the trajectory x(t) converges to {zs}⊕Ω
up to ε2(N) as t→∞.

5. PRACTICAL ASYMPTOTIC STABILITY
The convergence of x(t) to {zs} ⊕ Ω up to ε2(N) does
not yet prove practical asymptotic stability of {zs} ⊕
Ω, since ‖z?N (0|0)− zs‖ is not necessarily proportional
to ‖x(0)‖{zs}⊕Ω. Nevertheless, we can prove practical
asymptotic stability with respect to ε3(N) ≥ ε2(N) if we
assume that the storage function is continuous and has a
maximum at zs.
Assumption 9. There exists αλ ∈ K∞ such that for all
z ∈ Rn the storage function λ satisfies the inequalities

λ(zs) ≥ λ(z), (48)
λ(zs)− λ(z) ≤ αλ(‖z − zs‖). (49)

This Assumption is similar to the one required in (Bayer,
2017) to show asymptotic stability of robust economic
MPC with terminal conditions and is needed to ensure
that there are no directions from which zs can be reached
cheaper than it costs to stay at z(0) = zs. If this were the
case, even x(0) = zs could cause z(0) 6= zs and thus x(t)
could leave {zs}⊕Ω. However, with Assumption 9 we can
conclude closed-loop practical stability of the real system.
Theorem 3. Let Assumptions 1–9 hold. Then there exist
N1 ∈ N and a function ε3 ∈ L such that for all N ≥ N1

the set {zs} ⊕Ω is practically asymptotically stable w.r.t.
ε3(N) under the closed-loop dynamics (11), i.e. for all
x(0) ∈ X̄∞ ⊕ Ω it holds
‖x(t)‖{zs}⊕Ω ≤ max

{
β
(
‖x(0)‖{zs}⊕Ω , t

)
, ε3(N)

}
(50)

for any trajectory x(t+ 1) ∈ X+
cl(x(t)), t ≥ 0.

Proof. For this proof, we use a more general version
of the Lyapunov characterization of practical asymptotic
stability that also allows for an error in the upper bound
of the Lyapunov function and modify it for stability of
a set. This is possible, since the proof for estimating
the sequence ‖x(t)− zs‖ does not change compared to a
sequence ‖x(t)‖{zs}⊕Ω. In particular, we define the rotated
value function for the real state as

ṼN (x) = ṼN (z?0(x)) (51)
where z?0(x) is the minimizer of (10). We show for all
x ∈ X̄∞ ⊕ Ω and all x+

cl ∈ X+
cl(x) that

α1(‖x‖{zs}⊕Ω) ≤ ṼN (x) ≤ α4(‖x‖{zs}⊕Ω) + δ4(N) (52)

ṼN (x+
cl) ≤ ṼN (x)− α3(‖x‖{zs}⊕Ω) + δ3(N) (53)

holds to obtain practical asymptotic stability of the set
{zs}⊕Ω for the real closed-loop trajectory w.r.t. ε3 = α−1

1 ◦
(α4 ◦ (α−1

3 ◦ δ3 + δ3)+ δ4 + δ3), see (Faulwasser et al., 2018,
Proposition 4.3). For the first inequality of (52) it is easy
to see that
ṼN (x) = ṼN (z?0(x)) ≥ α1(‖z?0(x)− zs‖) ≥ α1(‖x‖{zs}⊕Ω).

To show the second inequality of (52), we have to distin-
guish x ∈ Bnρ4(zs) ⊕ Ω from x /∈ Bρ4(zs) ⊕ Ω. In the first
case we define zmin = arg min{z|x−z∈Ω} ‖z − zs‖, for which

a feasible trajectory exists since ‖zmin − zs‖ < ρ4 ≤ ρ2

allows to construct a trajectory with the help of the local
controllability that steers in M steps to zs and stays
there, where the feasibility follows from ρ4 ≤ c−1

2 ρ3.
We will use Lemma 1 to bound ṼN (x) = ṼN (z?0(x))

w.r.t. ṼN (zmin). Note that the trajectories z?N (·; z?0(x)),
z̃?N (·; z?0(x)), z?N (·; zmin), and z̃?N (·; zmin) satisfy the turn-
pike property and that N1 was chosen large enough such
that any five trajectories share at least M + 1 consecutive
points in an δ(N) = δ3(N)/(8c3) neighborhood of zs. In
particular, this holds for these four trajectories, thus, there
exists P ∈ N such that {P..P +M} ⊆ Q′. Therefore, it is

JP (z?0(x), ṽ?N (·; z?0(x)))
(41)
≤ JP (z?0(x), v?N (·; z?0(x))) + c3δ(N)

(40,55)
≤ JP (zmin, v

?
N (·; zmin)) + 2c3δ(N)

(41)
≤ JP (zmin, ṽ

?
N (·; zmin)) + 3c3δ(N)

(54)
where we used the optimality of z?0(x)

VN (z?0(x)) ≤ VN (zmin) (55)
at the marked inequality. Thus, we have with V 2

N from
Remark 4 and due to Assumption 9
ṼN (z?0(x)) = V 2

N (z?0(x)) + λ(z?0(x))−N`(zs, vs)
(40,54)
≤ JP (zmin, ṽ

?
N (·; zmin)) + λ(z?0(x))−N`(zs, vs)

+ V 2
N−P (z̃?N (P ; zmin)) + 4c3δ(N)

= V 2
N (zmin) + λ(z?0(x))−N`(zs, vs) + 4c3δ(N)

(48)
≤ ṼN (zmin) + λ(zs)− λ(zmin) + 4c3δ(N)

(49)
≤ α2(‖zmin − zs‖) + αλ(‖zmin − zs‖) + 4c3δ(N).

Defining α4 = α2 + αλ and δ4 = 4c3δ(N) it follows
ṼN (x) = ṼN (z?0(x)) ≤ α4(‖x‖{zs}⊕Ω) + δ4(N).

For x /∈ Bnρ4(zs)⊕ Ω we can show

ṼN (x) = ṼN (z̃?0(x)) ≤ C

ρ4
‖x‖{zs}⊕Ω ≤ α2(‖x‖{zs}⊕Ω)

analogue to this case in the proof of Theorem 2. Condition
(52) follows due to α2 ≤ α4. To show (53), we note that

ṼN (x+
cl) = ṼN (z?0(x+

cl)) = ṼN (z+
cl )

(44)
≤ ṼN (z?0(x))− α3(‖x‖{zs}⊕Ω) + δ3(N)

= ṼN (x)− α3(‖x‖{zs}⊕Ω) + δ3(N).

This establishes that ṼN is a practical Lyapunov function
and thus {zs}⊕Ω is practically asymptotically stable with
respect to ε3(N). 2

Remark 6. The fact that ε3(N) ≥ ε2(N) results from
asymptotic stability (guaranteed up to ε3) being a stronger
property than asymptotic convergence (guaranteed up to
ε2), since it also includes bounds for the transient behavior.
This transient behavior, however, depends crucially on the
choice of the first nominal state z?0(x(0)), x(0)−z?0(x(0)) ∈
Ω, such that we needed the additional Assumption 9 to
ensure that z?0(x(0)) is close to zs whenever x(0) is close
to {zs} ⊕ Ω.
Remark 7. The statement of Theorem 3 does also hold
under Assumptions 1–8, if one modifies the MPC such
that at time 0 the nominal initial state is not chosen as
z?N (0|0) = z?0(x(0)) the minimizer of (9) but as z?N (0|0) =
zmin(x(0)) := arg min{z|x(0)−z∈Ω} ‖z − zs‖. This choice
guarantees that ‖z?N (0|0)− zs‖ = ‖x(0)‖{zs}⊕Ω holds and
thus (47) implies (50) even with ε2(N) instead of ε3(N).
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Approach Worst case Average
` = Lmax

π −1.209 −1.403
` = Lmax

π , (35) −1.205 −1.427
` = Lint

π , (35) −1.168 −1.447
` = Lπ , (35) −1.143 −1.445

Table 1: Mean and maximum of the real stage cost L(x(t), u(t)) along
the closed-loop trajectory over t ∈ [0, 2000] for different choices of
the stage cost ` used in the OCP with and without enforcing (35).

6. NUMERICAL EXAMPLE
Consider the scalar economic growth model from Grüne
and Stieler (2014) with dynamics

x(k + 1) = u(k) + w(k) (56)
and the stage cost L(x, u) = − ln(Axα − u), with A = 5
and α = 0.34, where we introduced an additive disturbance
w(k) ∈ W = [−1, 1]. The state and input constraints are
Z = [0, 10]× [0.1, 5]. Since the error dynamic is stable, we
do not need the pre-stabilizing feedback π, i.e. π(x, v) = v
such that f = fπ, Z = Zπ and L = Lπ. Since the system
is static, the RCI set Ω can be chosen as Ω = W. Lipschitz
continuity of the cost function L on the feasible set Z
is not given in this example as L is not even defined
everywhere in Z. To fix this, we relax the logarithm ln(ξ)
for ξ < 0.001 to a parabola, that smoothly continues ln
at 0.001. As discussed in (Grüne and Stieler, 2014), the
problem is (nominally) strictly dissipative with the linear
storage function λ(x) = 0.2306x. Thus, we conclude that
Assumptions 1–7 hold such that Corollary 1 provides the
bound (32) on the asymptotic average performance.

Indeed, we can verify (32) in the simulation results shown
in Fig. 1 with prediction horizon N = 10, initial condition
x(0) = zmax

s , and w(k) sampled uniformly from W.
The real closed-loop trajectory (yellow dots) is always in
cheaper regions than Lmax

π (zmax
s , vmax

s ) = −1.2. However,
since the nominal state sequence (yellow circles) does not
converge to zmax

s , we conclude that Assumption 8 is not
satisfied. Thus, we implement the dissipativity inducing
constraint (35) in the OCP formulation as discussed in
Remark 2, (ii). We can see in Fig. 1 that this forces
the sequence of nominal states to converge to (stay at)
zmax
s . Surprisingly, the performance values in Table 1
indicate that this additional constraint in the optimization
improves the average cost in closed loop although the MPC
controller has less freedom to choose the control action.
Further, we can see in Fig. 1 and Table 1 that the running
cost is on average over time and in the best case better for
` = Lπ and ` = Lint

π . Finally, we verified that using ` =
Lmax
π leads to the best worst case performance and using

` = Lint
π leads to the best average performance, although in

this example, the difference to ` = Lπ is almost negligible.
For shorter horizons, we observed practical convergence
up to an perceptible error ε(N) as in (Grüne and Stieler,
2014). By increasing the horizon to N = 10 this error gets
negligible, such that in Fig. 1 the limit point of the nominal
closed-loop sequence and (zs, vs) are not distinguishable.

7. CONCLUSION
In this work, we have verified that robust economic MPC
can be implemented without terminal conditions if the sys-
tem satisfies suitable (nominal) controllability and dissi-
pativity conditions. We have derived performance bounds
not only on the nominal closed-loop sequence w.r.t. the
modified stage cost, but also for the perturbed closed-
loop trajectory w.r.t. the real stage cost. If the system
satisfies a robust dissipativity condition, or if dissipativity
of the nominal closed-loop sequence is enforced with an
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Fig. 1: The state-input domain with levels of the stage cost L (black,
solid), the manifold of steady states x = f(x, u) (black, dashed),
and the Ω-tube around it (gray, dashed). As we can see, the optimal
steady state (square �) depends on the choice of `. The real closed-
loop trajectory (dots •) and the nominal closed-loop sequence (circles
◦) converge to {zs} ⊕ Ω × {vs} and (zs, vs), respectively, only if
we explicitly enforce robust dissipativity (35) in the OCP, as the
simulations t ∈ [0, 100] starting at the optimal steady state zs show.

additional constraint in the OCP, then the real closed loop
practically converges to the set {zs}⊕Ω, where the system
is robust optimally operated. The error ε2(N) vanishes
with increasing prediction horizons N . To summarize, we
have extended the economic MPC framework from Grüne
(2013) such that it can handle disturbances and we have
shown that the robust EMPC scheme by Bayer et al.
(2014) can be implemented without terminal cost and
constraints under suitable assumptions.
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