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Abstract: Soft-sensor technique is often used to estimate key variables in industrial manufacturing, of 

which the commonly used approaches as the first-principle modeling and data-driven modeling both have 

their limitations. To take full advantage of the modeling methods and overcome the problems of 

unmodeled dynamics in industrial manufacturing, a grey-box modeling method combining the first-

principle analysis with dynamic data-driven model is developed in this paper. In the framework of the 

presented grey-box model, the unmodeled dynamics in the first-principle model are obtained by the 

dynamic probabilistic latent variable model. On this basis, availability of models can be improved. 

Finally, the actual industrial data in the roller kiln of ternary cathode material manufacturing is used for 

simulation to verify the validity of the model. The results have practical guiding significance. 

Keywords: Grey-Box Model, Dynamic Probabilistic Latent Variable Model, Roller Kiln 

 

 

1. INTRODUCTION 

Soft-sensor techniques have been widely adopted in the 

process industry through the past decades. Key variables can 

be estimated by establishing models with available variables. 

To date, soft-sensor techniques often include three forms, 

first-principle modeling, data-driven modeling and grey-box 

modeling. The first-principle modeling method, also called 

as the white-box modeling, is to establish a mathematical 

model by analyzing the mechanism of related physical, 

chemical as well as biological reactions in industrial 

processes (Ferrer et al. (2019)). However, as to systems with 

complex manufacturing processes, the first-principle model 

often cannot perform well. Under this circumstance, there 

are growing appeals for data-driven modeling, as known as 

the black-box modeling. This method does not require a 

deep understanding of the mechanism and only rely on the 

data to build the model. Commonly used methods for data-

driven modeling include principal component regression 

(PCA), partial least squares regression (PLSR) and artificial 

neural network (Kadlec et al. (2010)). However, with the 

development of technology, the dimensionality and variety 

of data are increasing, the data-driven model faces the 

challenge of selecting and applying data. 

To handle the imperfection of first-principle model and 

data-driven model, the grey-box model addressing the 

concerns. (Ahmad et at. (2020)) In order to improve the 

accuracy and reliability of the model in industrial systems, 

the grey-box modeling which combines multiple models has 

received much attention (Yang et al. (2018), Sun et al(2013), 

Xie et al.(2015), Chen et al.(2017)). Although these models 

achieve better performance than standalone models, the 

dynamic characteristics in the first-principle analysis are 

hardly described. To this end, grey-box model can be 

adopted in compensating the deficiencies of standalone 

models. To gain the dynamic characteristics, a dynamic form 

is introduced into the probabilistic principal component 

analysis model (Nyamundanda et al. (2014)). However, this 

method is an unsupervised algorithm, thus the established 

models have weak correlation between input and output, 

leading to unsatisfactory results sometimes. On this basis, a 

dynamic probabilistic latent variable model is developed (Ge 

et al. (2019)). This method not only takes dynamic 

characteristics into consideration but develops a supervised 

form algorithm.  

Therefore, to combine advantages of dynamic form and 

grey-box model, this paper develops a grey-box model 

combining first-principle and dynamic probabilistic latent 

variable model. Furthermore, in order to ensure the same 

trend of the predicted and the actual value, a trend index is 

adopted to improve the credibility of the model in parameter 

identification step. 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 12047



The remaining parts of this paper are organized as follows. 

Section 2 provides the framework of the grey-box model and 

the descriptions of dynamic data-driven model. Section 3 

introduces first-principle model sintering roller hearth kiln in 

the ternary cathode material manufacturing. Then, the first-

principle model and the dynamic model are combined to 

obtain a developed grey-box model. Section 4 presents the 

results of simulation to verify the feasibility and superiority 

of the model. Finally, conclusion is delivered in the Section 

5. 

2. FRAMEWORK OF GREY-BOX MODEL 

Although many grey-box models have been proposed, 

there are situations that have not been taken into 

consideration such as the case of unmodeled dynamic 

variables (Ahmad et at. (2014)). To this end, a grey-box 

model combining dynamic data-driven model and first-

principle model is developed in the paper. In this grey-box 

model, the dynamic characteristics of parameters difficult 

determined in the first-principle model are obtained. In this 

way, not only the mechanism in the processes are fully used, 

but also the unmodeled dynamic variable can be obtained. 

The schematic diagram of grey-box is as shown in Figure 1. 

 

 
Figure 1  Framework of grey-box model 

 

In order to describe the dynamic relationships among the 

process variables, a dynamic probabilistic latent variable 

model is constructed based on the framework of the linear 

dynamic systems (Ge et al. (2019)). Assuming the input and 

output variables are generated by latent variables th . The 

two major assumptions about the latent variables can be 

applied in this model. First, the latent variables of all 

samples are independent and equally distributed. Second, all 

observations with latent variables are independent of each 

other. Give the assumption that latent variable 
HRh and 

input variables
VRx  can be generated using linearly 

transformed by latent variables, as shown in Eq. (1). 

1t t t

t t t

−= +

= +

h Ah η

x Ph e
                           (1) 

where 
H HR A  is the load matrix of latent variable, 

V HR P  is the load matrix of the input, 1H

t R η  and 

1V

t R e  are noises terms, which obey tη ~ (0, )N Σ  and 

te ~ (0, )eN Σ , respectively. H and V are the numbers of 

latent variables and input variables.  

In the similar way, assuming the output variable 
LRy can be generated as shown in Eq. (2) 

t t t= +y Ch f                                  (2) 

where L HR C  is the load matrix of the output, L is the 

number of output, and 1L

t R f  is the noise term of the 

output, which obey tf ~ (0, )fN Σ .  

From the above description, although the predictive 

distribution of the observed variables ty  only relies on its 

corresponding latent variable th , the latent variable th  is 

assumed to summarize all useful information from all 

previous results.  

According to the description of the dynamic model, the 

parameter set needs to be determined is 

 , , , , , , ,e f  =Θ μ Σ A Σ P C Σ Σ , where , μ Σ are mean 

and variance of latent variable 1h . By maximizing the log-

likelihood function, this parameter set can be obtained. The 

log-likelihood function for dynamic model is as Eq. (3) 
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The Expectation Maximization algorithm (EM algorithm) 

can be adopted for iteration to obtain the parameters of the 

model (Dempster et al. (1977), Xie et al. (2010)).  

In the E-step, the three statistics ( ), ( ),T

t t tE Eh h h  

1( )T

t tE +h h can be determined by forward and backward 

algorithm which includes forward filtering step and 

backward correction step. In the forward filtering step, 

posterior distribution of the latent variable at time t can be 

obtained, whose mean and variance are as shown in Eq. (4) 
1 1 1 1

1 1

1 1 1 1

( )

( ) ( ) ( ) ( )
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T T

t h e f hh

T T

e t x f t y

T T
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       (4) 

The initial posterior distribution can be obtained by Eq. (5) 

( ) ( ) ( ) ( )
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1 1
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1
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e f
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 (5) 

In the backward correction step, the initial latent variable 

distribution can be obtained from the forward step 

( , ) ( , )N N N NN N=m M l L .The posterior distribution at time t 

can be calculated as Eq. (6) 
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Then, 1( ), ( ), ( )T T

t t t t tE E E +h h h h h can be calculated as Eq. 

(7) 
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The parameter update equations can be obtained as 
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After obtaining the parameters of the model, the output of 

a series of query samples can be calculated. Assuming the 

input of query samples are 1 2 1, , , ,q q q q q

k k−
 =  X x x x x . The 

posterior distribution of the first latent variable obeys 

1 1( , )N l L ,which can be calculated as Eq. (9) 
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Then, the subsequent posterior distribution of the latent 

variables at time t obey ( , )t tN l L can be calculated as Eq. 

(10) 
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Finally, the output of the query samples at time t can be 

calculated as Eq. (11) 

, 1, 2, ,q q

t t t k= =y Ch                          (11) 

 

3. A GREY MODEL FOR SINTERING PROCESS OF 

TERNARY CATHODE MATRIAL 

In this section, the first-principle model of roller kiln will 

be established. On this basis, the grey-box model will be 

built. 

3.1 Description of roller kiln and the first-principle model 

In the manufacturing of lithium batteries, the material that 

affects products’ performance and price most is the cathode 

material, which determines not only the safety performance 

but also the prospects of lithium batteries (Li et al.(2014), 

Liu et al.(2017)). By analyzing the manufacturing of the 

ternary cathode material, it can be found that the sintering 

temperature has a great influence on the product quality. In 

order to ensure product quality, it is necessary to monitor the 

sintering temperature, which is of great significance for 

improving product quality and reaction efficiency. 

Roller kiln is the main equipment of controlling sintering 

temperatures. The overall diagram of the roller kiln is shown 

in Figure 2. 

 

Outlet vent

Inlet vent

Inlet vent
Inlet vent

thermocouple

thermocouple

thermocouple

silicon 

carbide 

rod saggars

 
Figure 2  The overall diagram of the roller kiln 

 

It can be found in the Figure 1 that roll kiln is mainly 

composed of four systems: inlet/outlet air system, 

transmission system, temperature control system and 

monitoring system. The roller kiln has a total length of 40 

meters and is divided into 21 temperature zones. The 

temperature zones of 1-9 is the heating section, the 

temperature zones of 10-18 is the constant temperature 

section, and the temperature zones of 19-21 is the cooling 

section. Moreover, the 21 temperature zones are divided into 

upper temperature zones and the lower temperature zones.  

The roller kiln is a typical system in which the relevant 

variables in the first-principle model cannot track the 

dynamic characteristics. In the roller kiln temperature 

prediction model, the predicted temperature is related to 
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many factors, such as the temperatures of the adjacent 

temperature zones, the temperature of the kiln wall, the 

heating current, and the temperature at the inlet and outlet of 

the atmosphere. Among them, the atmosphere outlet 

temperature as a related variable is difficult to obtain by 

using the first-principle, and the measurement interval of the 

data is large, so that some of the output data is missing. The 

data characteristics of the atmosphere outlet temperature are 

just suitable for the industrial characteristics in this paper. 

Therefore, the grey-box model of the first-principle analysis 

and data-driven model of the roller kiln will be established 

with the outlet temperature of the atmosphere as the output 

of the data-driven model. A first-principle model of i-th sub-

temperature zone can be established according to the 

thermodynamic principle (Dai et al. (2019)) 

1

21
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(12) 

where ai1 and ai2 are the heat conversion coefficient, i1, i2 are 

the upper and lower sub-temperature zone, respectively, iI  

is the heating current of the i-th sub-temperature zone, iR  is 

the heating resistance of the i-th sub-temperature zone, 
a
i ， b

i ， c
i ， d

i are the conversion coefficients of heat 

and temperature of i-th the sub-temperature zone, iC  is the 

heat capacities of saggars and material for the i-th sub-

temperature zone, a
iV ， b

iV  are the specific convective heat 

transfer coefficients of the i-th sub-temperature zone, a
iS ，

b
iS  specific heat convection areas of the i-th sub-temperature 

zone, iT  is the temperature of i-th sub-temperature zone, s
im  

is the mass of the inlet charging saggars of the sub-

temperature zone, 
w
im  is the mass of water evaporated in the 

sub-temperature zone. 

By some mathematical operation, the discrete form of 

first-principle model for the i-th temperature zone can be 

written as Eq. (13) 
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where 1 2 1 2 1 2,  ,  ,  ,  ,  i i i i i ia a b b c c      , 1 2,  , i id d 
1 2,  i ie e 

1 2,  i if f  , 1 ig 

2ig  are the influence coefficient. 1 2,  i ix x  is the temperature 

of temperature zone i1 and i2, ( 1),1 ( 1),2 ( 1),1 ( 1),2,  ,  ,  i i i ix x x x− − + + is 

the temperature of previous and subsequent temperature 

zone of the i-th upper and lower temperature zone, 1 2 ,i iu u  

is the square of the heating current in the temperature zones 

i1 and i2, iu   is inlet flow of atmosphere in the i-th 

temperature zone. 
1qT  is the temperature of atmospheric 

outlet which cannot be measured in time and can be 

predicted by data-driven model. 

3.2 Model integration and parameter optimization 

By analysing the relevant factors affecting the outlet 

temperature of the atmosphere, the input variables of the 

atmosphere outlet temperature data-driven model are 

selected as the upper and lower temperature zones currents, 

the adjacent and present temperature zones. Based on the 

dynamic data-driven model of the atmosphere outlet 

temperature, the predicted output is taken as the dynamic 

variable in the first-principle model. The grey-box model 

can be written as: 
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(14) 

where kx  is the input samples. Then identify the parameters 

in the grey-box model, define the parameter vector to be 

identified as  =[ 1ia , 2 ia , 1 ib , 2ib , 1ic , 2 ic , 1id  , 2id  , 1ie , 2ie , 

1 if  , 2if  , 1ig  , 2ig  . The traditional parameters identify 

methods computationally time-consuming and the range of 

parameters are limited. Therefore, they are often not optimal 

parameters, nor can they optimize mean square error, mean 

absolute value error or maximum absolute error. In this 

paper, Particle swarm optimization is used to identify model 

parameters. 
In addition, the real industrial manufacturing process can 

be reflected when the trend of the model predicts the same 

trend as the actual value. Therefore, in order to gain overall 

optimal parameters and ensure the same trend of the 

predicted and actual value, the trend consistency index is 

adopted to the optimization target. Then, converting the 

multi-objective optimization problem into a single-objective 

optimization problem, the fitness function can be obtained as 

shown in Eq. (15). 
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(15) 

where 1 1 1 2 2 2
ˆ ˆ

j j j j j je y y e y y= − = −， . 1 2j jy y，  are the 

actual temperature of j-th sample upper and lower 
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temperature zones, 1 2
ˆ ˆ

j jy y，  are the predicted temperature of 

j-th sample upper and lower temperature zones, 
1 1 1 2j jy y− −， ，，  

are the actual temperature of (j-1)-th sample upper and lower 

temperature zones, 
1 1 1 2

ˆ ˆ
j jy y− −， ，， are the predicted 

temperature of (j-1)-th sample upper and lower temperature 

zones, 
1j jx x −，  are the mean of the input sample of j-th and 

(j-1)-th sample, respectively,  and  are constant 

coefficient, N is the total number of training samples. The 

parameter identification steps are as follows: 

Step1: Initialization: set the data-driven model parameters, 

the particle group parameter range, learning factor and so on; 

Step2: Establish a data-driven model of the atmosphere 

outlet temperature and bring it into the established first-

principle model; 

Step3: Individual evaluation: taking the initial position of 

each particle as the individual extreme value, calculating the 

initial fitness J of each particle in the group according to Eq. 

(15), and finding the optimal position of the population; 

Step4: Update the velocity and position of the particle, 

generate a new population. Calculate the current fitness 

value of the particle, and its own historical optimal value pNs. 

If it is better than pNs, replace pNs with the current fitness 

value and update the particle position; the optimal 

population value is BestS, if it is better than BestS, BestS 

replaces with the current fitness value and updates the global 

optimal value of the population; 

Step5: Check the end condition, if it is satisfied, end the 

optimization; otherwise go to Step3. Repeat until the 

optimization reaches the maximum number of iteration steps 

or the evaluation value is less than the given precision. 

 

4.VERIFICATION OF THE GREY-BOX MODEL 

Taking a ternary cathode material manufacture plant in 

china as an example, the data of the industrial manufacturing 

roller kiln in October 2016 is collected to verify the 

developed model. The standard errors RMSE and R2 are 

used as performance indices when evaluating the predictive 

performance of the model.  

2
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1
ˆ( )
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i i

i
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= −                         (16) 
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−
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                          (17) 

The third temperature zone in the heating section is 

regarded as the main objective in the simulation. After using 

the Pauta criteria to eliminate the abnormal data, 1458 sets 

of data are obtained. For verifying the feasibility of the 

established model, the 1458 sets of data are denoted as data 

set W1, 30% of which are taken as training samples in data-

driven model, 30% as parameters identification training 

samples, and the remaining 40% are randomly selected 150 

samples as the test samples.  

4.1 Performance comparison of different parameter 

The related parameter in the model need to be determined 

first. In this paper, the latent variable dimension H need to 

be determined and varied from 2 to 6, the prediction results 

are shown as Table 1. 

Table 1 the prediction error of different zone 

H 2 3 4 5 6 

upper 3.9878 3.0412 2.6995 3.1109 2.9358 

lower 4.0218 2.5430 2.3368 2.0099 3.0711 

It can be seen from Table 1, the results show that when 

the latent variable dimension H is 4, better prediction results 

can be obtained. Therefore, the latent variable dimensions H 

are set to 4 in the subsequent simulation. 

 
Figure 3 The predicted results with H=4 

4.2 Performance comparison of different models 

To verify the superiority of the developed model, the 

mechanism model and the improved hybrid model are 

compared, which are denoted as Model 1 and Model 2, 

respectively. In addition, the models are established using 

the same datasets. The predicted results are shown in Table 

2. 

Table 2 the prediction error of different zone 

Temperature zone upper lower 

Model 1 
RMSE 5.3008 2.8503 

R2 -0.4910 0.2538 

Model 2 
RMSE 2.6995 2.3368 

R2 0.2159 0.3059 

It can be seen from Table 2, the grey-box model 

developed in this paper has a good effect in both the upper 

temperature zone and the lower temperature zone. This 

result shows that the grey-box model is able to gain the 

dynamic characteristic of variable in the mechanism model, 

thus have better prediction results than mechanism model. 

The predicted results are shown in Figure 4. 

 
Figure 4 The predicted results with grey-box model 

 

5. CONCLUSIONS 

In this paper, a grey-box modelling method combining 

first-principle analysis and dynamic data-driven model is 

developed. Variables in the first-principle model whose 

dynamic characteristics hardly obtained were measured 
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using a data-driven model. In the data-driven model, a 

dynamic probabilistic latent variable was adopted to match 

the characteristics of data in industrial manufacturing. 

Finally, the temperature in roller kiln was estimated by the 

grey-box model. The results showed that the developed 

model has good performance. 
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