
An Artificial-Intelligence-Based Method to
Automatically Create Interpretable Models

from Data Targeting Embedded Control
Applications

Jens S. Buchner ∗ Sebastian Boblest ∗ Patrick Engel ∗

Andrej Junginger ∗ Holger Ulmer ∗

∗ ETAS GmbH, Borsigstraße 24, 70469 Stuttgart,
e-mail: jens.buchner@etas.com.

Abstract: The development of new automotive drivetrain layouts requires modeling of the
involved components to allow for ideal control strategies. The creation of these models is both
costly and challenging, specifically because interpretability, accuracy, and computational effort
need to be balanced. In this study, a method is put forward which supports experts in the
modeling process and in making an educated choice to balance these constraints. The method
is based on the artificial intelligence technique of genetic programming. By solving a symbolic
regression problem, it automatically identifies equation-based models from data. To address
possible system complexities, data-based expressions like curves and maps can additionally
be employed for the model identification. The performance of the method is demonstrated
based on two examples: 1. Identification of a pure equation based model, demonstrating the
benefit of interpretability. 2. Creation of a hybrid-model, combining a base equation with data-
based expressions. Possible applications of the method are model creation, system identification,
structural optimization, and model reduction. The existing implementation in ETAS ASCMO-
MOCA also offers a high efficiency increase by combining and automating the two procedural
steps of embedded function engineering and calibration.

Keywords: Nonlinear and optimal automotive control; Automotive system identification and
modeling; Modeling, supervision, control and diagnosis of automotive systems.

1. INTRODUCTION

To develop control strategies, like, e.g., model-predictive
control for components of physical systems, mathematical
models describing these components are required. The
industrial-scale application of these control strategies, by
implementing them into embedded control units, conse-
quently raises various constraints to the employed models.
These constraints are accuracy, interpretability, computa-
tional effort, memory usage, calibration effort, and gener-
alizability to similar systems.
Purely statistical modeling techniques, like neural net-
works or Gaussian process models are designed to robustly
reach high modeling accuracy. The accuracy is defined
by a suitable statistical metric like, for example, root
mean squared error. Though employing the same type
of metric, to learn equation-based models is less straight
forward. This is mainly due to the symbolic representation
of equations which requires to search for the most suitable
expression in a large combinatorial and discrete space.
In turn, the symbolic representation allows for an intu-
itive interpretation by experts. In addition fundamental
dependencies of a system may be represented by equation-
like expressions, e.g. like in the example shown in sec-
tion 4.1. This can lead to a comparably small number of
degrees of freedom to parameterize the model and with
that it reduces the calibration effort and memory usage.

For neural networks and Gaussian processes reduction of
the computational efforts is typically addressed by post-
processing techniques like pruning and model compression,
respectively. In the method put forward in this study,
reducing the computational efforts is addressed mainly
by three approaches which are explained in detail in the
referenced sections: First, by choosing functions of low
complexity (section 3.1). Second, by penalizing compu-
tational complexity (section 3.6). Third, by allowing for
an educated choice from a set of Pareto-optimal models
(section 2.5).
However, an accurate representation of all effects which
contribute significantly to the target quantity to-be-
modeled is crucial. For this, purely equation-based models
may not be suited to reach the required accuracy while
preserving interpretability. Hence, this may raise the need
for the usage of hybrid-model structures which extend
the equation-based models by data-based parts (e.g. as
employed by Sequenz et al. (2012)).
To validate a model’s accuracy, an appropriately measured
dataset of the modeled system is required in any case. In
this study, the possibility to automatically create models
meeting the above constraints from a measured dataset is
demonstrated employing artificial intelligence techniques.
To reach the goal of equation-based models, the under-
lying problem to be solved is defined as the symbolic-
regression problem. The applied method, however, needs

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 13979

to be open to create hybrid models as well. Symbolic
regression problems can be solved by various approaches
(Dong et al. (2015)). Several methods show promising
results by focusing purely on equation-based models.
McConaghy (2011) employs pathwise regularized learning
to prune a huge set of candidate basis functions down to
compact models, while Brunton et al. (2016) combined
sparsity-promoting techniques with machine learning. In
turn, Horesh et al. (2016) and Austel et al. (2017) use
mixed-integer non-linear programming to minimize com-
plexity along with solving the symbolic regression prob-
lem. A technique, which is well suited for addressing
problems which can be solved by solutions of a clearly
confined functional space was made available by Sahoo
et al. (2018). The authors embed symbolic equations into
a neural network framework to enable the application
of gradient based training methods. Recently, Iten et al.
(2020) and Udrescu and Tegmark (2020) addressed the
symbolic regression problem by employing neural networks
helping to identify system properties like symmetries. For
the given challenge of using one method to identify purely
equation-based models along with hybrid-models, the ar-
tificial intelligence technique of genetic programming was
identified to be most appropriate. Since Koza (1992) put
forward a seminal book on genetic programming, ongoing
research has been made. Most prominently Schmidt and
Lipson (2009) addressed problems with dependent multi-
dimensional outputs by defining cost-functions based on
partial derivatives. By that the authors demonstrated the
applicability of genetic programming for the identification
of conservation laws from data. Lately, Martins et al.
(2018) addressed the problem of exponential growth and
Iba et al. (2018) combined genetic programming with
relevance vector machines to identify solutions based on
linear combination of basis functions.
The algorithm (section 3) employed by the method (sec-
tion 2) described in this study extends the method of
Koza (1992) by two major improvements. First, being
inspired by Topchy and Punch (2001) a second-order local
optimization method was introduced. Second, data-based
model types – represented by SGR models (Priber (2003))
– are employed to allow for the creation of hybrid models.
In section 4 the performance of the method is demon-
strated in two real-world control engineering applications.

2. METHOD

To automatically create models from data, employing the
method demonstrated in this study, involves a workflow
which is described in the following.

2.1 Data Acquisition

To create a model for a specific system of interest, an
appropriate dataset has to be acquired by a measure-
ment. The dataset has to include the quantity of interest
characterizing the system’s behavior (output) along with
all quantities influencing the latter (inputs). The dataset
requires a statistically sufficient representation of the sys-
tem, which can for instance be achieved by a design-of-
experiment. The measurement needs to cover all operation
points which are to be represented by the model. Addi-
tionally, the input quantities should be varied such that

all significant variations in the observed system’s output
are taken into account. The dataset size should allow for a
meaningful split into training and test data. The current
implementation only fully supports static measurements.

2.2 Data Import and Preparations

The acquired data are prepared such that they are: (i)
Clean: All values are plausible, no not-a-number values
are given, and no errors from defect measurement devices
are included. (ii) Labeled: For all values included in the
data the actually measured quantity (also called label) is
defined along with its units. (iii) Split: The dataset is split
into a training and test dataset, with both subsets still
fulfilling the mentioned requirements.

2.3 Problem Statement and Algorithm Configuration

First, the actual symbolic regression problem is defined by
setting the target (output) quantity. Additionally, prior
knowledge is employed by the selection of all input quan-
tities which are expected to have a possibly significant
influence on the output quantity. Second, the algorithm
(section 3) is configured by choosing it’s settings.

2.4 Algorithmic Execution

The symbolic regression problem is solved by executing
the algorithm as depicted in Fig. 1. The iterative process
is carried out until a predefined termination criterion is
reached, or a user interrupts. The latter may occur on the
basis of the results of the last iteration.

2.5 Model Choice

Once the algorithm is finished, its results are made avail-
able. These results are the models which are part of the
Pareto front defined in the metric space spanned by the
models’ Fitness Method and complexity (section 3.6). By
selecting a model from the Pareto front, a user can make
an educated choice involving system knowledge and can
balance the model accuracy and complexity.

2.6 Statistical Analysis

The performance of the model is assessed by carrying out
a statistical analysis of data residuals. This means the
accordance of data obtained from the measurement and
from the model-prediction is evaluated using the Fitness
Method and linear regression analysis. This is carried out
both for the training data and the test data to judge on the
optimization result, to exclude overfitting, and assess the
generalization behavior of the model in the input quantity
space.

2.7 Structural and Semantic Analysis

Human interpretability of the results is a structural advan-
tage of symbolic regression methods compared to purely
statistical modeling techniques (such as Gaussian pro-
cesses or artificial neural networks). This step provides
the possibility to make use of this advantage and to give
detailed inside in the modeled system’s behavior. The

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13980

Function Set

Termination

Population

Selection

Selection

Reproduction Crossover Mutation

No

Optimization

Fitness

Dataset

Termination
Criteria

Fulfilled?

Population
Size

Reached?

Expansion

Yes

No

Yes

Evolution

Fig. 1. Algorithm: Flow-chart depicting the main algorith-
mic processing steps.

model is analyzed both on a structural and semantic level,
by following the actual computational steps and by making
sense of the symbolic expressions, respectively. The same
is carried out for the parameters involved in the model,
by assessing their actual numeric values and by graphical
inspections of curves and maps.

3. ALGORITHM

To solve the symbolic regression problem as stated (sec-
tion 2.3), the algorithm described in this section is em-
ployed. It is a modified version of genetic programming
(Koza (1992); Schmidt and Lipson (2009)), which was
extended by two main aspects: First by employing data-
based function types such as curves and maps and second
by carrying out a second-order local optimization proce-
dure. The major algorithmic steps are described below and
depicted in Fig. 1. Being used at many points during the
course of the algorithm, stochastic selection is fundamental
to the algorithm. The implementation realizes stochas-
tic selection deterministically to ensure reproducibility of
algorithmic results. However, the underlying probability

distributions are still sampled as they are defined. If not
mentioned differently, this distributions are uniform distri-
butions defined on a corresponding set of values. Depend-
ing on the context, this set is either real- or integer-valued.

3.1 Function Set

The algorithm relies on a set of functional expressions
(Tab. 1) which are employed during the course of the
algorithm. The noted curves and maps are realized in
the implementation by SGR models (Priber (2003)). With
that, the interpolated values of a curve or map are given
by its parameters a1, ..., am. The user brings-in prior- and
system-knowledge by selecting a subset of the functions.

Table 1. Functional expressions being em-
ployed. x and y represent the input values,
respectively. In case ai are given, they are
constant parameters of each function which are
degrees of freedom with respect to the local

optimization (section 3.4).

Functional Expressions Complexity

x+ y, x− y, x ∗ y, x/y 2

x2,
√
|x| 5

|x|a1 8
sin(a1x), cos(a1x), tan(a1x) 8

exp(a1x) 8
log(|x|) 5

min(x, y), max(x, y) 2
gaussian(x, a1, a2) 11

sigmoid(x) 5
1D Curve with 10 sampling points 20
2D Map with 3x3 sampling points 18
2D Map with 5x5 sampling points 50

3.2 Population

Based on the defined function set and the related parame-
ters, a population – a set of models having Population Size
elements – is created on a stochastic basis.
Starting with this step, the models are represented as
directed graphs with a tree structure (Augusto and Bar-
bosa (2000)). While the top node of each graph defines its
output, the non-terminal nodes are in general given by the
functions of Tab. 1. The terminal nodes are either constant
parameters or input quantities.
The graph creation process is carried by the different meth-
ods listed below and can optionally be strictly constrained
by the graphs’ properties depth, size, and complexity.
In the following each model in the population is denoted
as

Fi(ai,x1, ...,xni
). (1)

With i indexing the population members, ai representing
the parameters associated with this member, xj represent-
ing the values for input j, and ni being the number of
inputs of the given graph. During the course of the algo-
rithm the population evolves from the evolution operations
(section 3.8). Each iteration step in the main loop of the
algorithm (Fig. 1) corresponds to one generation.
Corresponding settings with default values in brackets:
Population Size: Number of models contained in each
population. [100]
Population Creation Method : The graphs in the initial
population are created with one of the following three

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13981

methods. [half-and-half]: (i) full : Each graph is created
such that it has a depth of Population Init Depth Max in
all branches. (ii) grow : Each graph is created such that at
least one branch has a depth of Population Init Depth Max.
(iii) half-and-half : One half of the population is created
with full method and the other half of the population is
created with the grow method. The employed maximum
depth value is determined from a uniform distribution
within Population Init Depth Min and Population Init
Depth Max, for each graph individually.
Population Init Depth Min: Minimum init. depth. [1]
Population Init Depth Max : Maximum init. depth. [3]
Max Program Complexity : No graphs are created (ini-
tially and during evolution) having a larger complexity.
A graphs’ complexity is an integer given by the sum of
complexities of all nodes (Tab. 1) the graph is made of.
[not employed]
Max Program Depth: No graphs are created (initially and
during evolution) having a larger depth. [not employed]
Max Program Size: No graphs are created (at any time)
having a larger size (number of nodes). [50]

3.3 Dataset

The training dataset is incorporated for the computation
of each graph’s output. The dataset consists of m inputs
x1, ...,xm and the output ymeas. Each model output ymod,i

is computed by

ymod,i = Fi(ai,x1, ...,xni
). (2)

It has to be mentioned that the inputs employed for an
individual model x1, ...,xni are a subset of the inputs
contained in the dataset.

3.4 Optimization

The output values of each graph are fitted to the mea-
sured output values. This is reached by solving the local
optimization problem

min
ai

OF i(ymod,i, ymeas). (3)

OF i denotes the objective function defined in equation (5).
Topchy and Punch (2001) employed a first-order opti-
mization procedure to increase the efficiency of genetic
programming for symbolic regression tasks. The algorithm
presented in this paper allows to use various second-order
optimization techniques as listed below. All employed op-
timization techniques are iterative techniques. They are
either carried out until their specific convergence criteria
is fulfilled or a maximum number of iterations is reached.
As a matter of principle, the values in ai are modified
during the course of the local optimization procedure. If
curves or maps (Tab. 1) are employed, this necessarily
leads to a potential readjustment of their input value range
and consequently their support points. Hence, the latter
are redefined in each iteration to equidistantly sample the
input values’ range.
Corresponding settings with default values in brackets:
Optimizer Method : Local optimization method [Leven-
berg-Marquardt]: Levenberg-Marquardt method, Trust-
region reflective, dogbox algorithm.
Optimizer Iterations: Maximum number of iterations the
local optimization should be carried out. [10]

3.5 Termination criteria fulfilled?

The algorithm stops if one of the following criteria holds.
For one of the models in the population the value obtained
by the OF i(ymod,i, ymeas) is smaller than the termina-
tion threshold. The maximum number of generations is
reached.
Corresponding settings with default values in brackets:
Termination Threshold : Threshold employed for termina-
tion. [not employed]
Number of Generations: Max. number of generations. [50]

3.6 Fitness

For each model in the population its fitness Fi is computed
as

Fi(Fi, ymeas) =
1

1 + F∗
i (Fi, ymeas)

. (4)

The raw-fitness F∗
i is defined as:

F∗
i (Fi, ymeas) = OF i(ymod,i, ymeas) + Pi(Fi), (5)

with the objective-function OF i(ymod,i, ymeas) given by
the different fitness methods listed below, and the penalty

Pi(Fi) = pCi (6)

Here, p represents the Parsimony Coefficient and Ci is the
graph’s complexity. Fi is a crucial quantity in the following
steps, hence it needs to be emphasized that the meaning
of a better fitness is related to a higher value of Fi.
Corresponding settings with default values in brackets:
Fitness Method : objective-function employed for fitness
computation. [RMSE]: RMSE: Root mean squared error.
MSE: Mean squared error. ABS: Normalized absolute
difference, which is the mean of the L1-norm.
Parsimony Coefficient : Factor to weight the impact of the
complexity penalty. [1]

3.7 Program Selection

The actual structural optimization of the graphs starts
with selecting graphs from the population. The selection is
done on the basis of Fi, with one of the following methods:
Tournament : From the given population Tournament Size
graphs are randomly drawn and the one with the lowest
fitness is selected.
Fitness-based : A probability distribution is derived from
the fitness of all graphs in the current population [Koza
(1992)]. This distribution is sampled to select graphs. The
fitter a graph is, the more likely it will be selected.
Greedy Overselection: The population is divided into a
high-fitness group and a low-fitness group. For both groups
fitness-based selection is used. The high-fitness group is
used with Probability Top. Else, the low-fitness group is
chosen.
Multi-Tournament : This method works as Tournament.
With a selectable probability, however, Fi/Ci is used as a
selection criterion instead of just Fi.
Program Selection Method : As described above. [Tourna-
ment]
Tournament Size: Number of programs to select for a
tournament. [5]
Fraction Top: The fraction of the population defines the
size of the high-fitness group. The group is filled with the
graphs having the highest fitness. [0.1]

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13982

Probability Top: Probability to employ the high-fitness
group for fitness-based selection. [0.9]
Probability Fitness: Probability to employ Fi/Ci instead
of Fi. [0.5]

3.8 Evolution

The evolution step comprises the graph-modification
operations of reproduction, expansion, mutation, and
crossover. It is the actual structural optimization step
and is carried out with the graph selected in the pre-
vious step. The probabilities for the different techniques
determine how likely they are to be applied to this graph.
Corresponding settings with default values in brackets:
Reproduction Probability : Probability to carry out the re-
production operation. [0.05]
Expansion Probability : Probability to carry out the expan-
sion operation. [0.05]
Mutation Probability : Probability to carry out the muta-
tion operation. [0.05]
Crossover Probability : Probability to carry out the crossover
operation. [0.85]

Reproduction Reproduction of a graph is taking it over
as-is to the population of the next generation. This opera-
tion ensures that graphs with a good fitness are transferred
unchanged to the next generation.

Expansion This relatively new method [Islam. et al.
(2018)] is carried out by repeatedly (i) randomly selecting
a terminal node of the graph, (ii) creating a new random
graph with depth two, (iii) replacing the terminal node
by the new graph. These steps are repeated for a fixed
number of times. If at any time the expanded graph has
a better fitness than the best program in the population,
it is taken over to the next generation. Else, the original
graph is taken over as-is.

Mutation A mutation of a graph is carried out with
three different operations, each of them being applied to
a randomly selected node of the graph: 1. Point: The
selected node is replaced by a random node with the
same number of inputs. 2. Hoist: The selected node of the
graph is replaced by a sub-tree of itself. 3. New Tree: The
selected node and all sub-nodes are replaced by a newly
created graph with a maximum depth of three. How likely
which method is applied is determined by the individual
probability listed below.
Corresponding settings with default values in brackets:
New Tree: Probability for the new tree operation. [0.5]
Hoist : Probability for the hoist mutation operation. [0.25]
Point : Probability for the point mutation operation. [0.25]

Crossover The crossover operation is the recombination
of two graphs to find an even fitter one. The operation
is carried out by the following steps: (i) The previously
selected graph is defined as the target graph. (ii) A second
graph - the source graph - is selected exactly as described
in section 3.7. (iii) In both graphs, one node with all
its sub-nodes is selected randomly as a branch to-be-
exchanged. (iv) The branch in the target graph is replaced
by the branch of the source graph. The resulting graph is
taken over to the population of the next generation.

3.9 Reached Population Size?

The evolution operations are applied until the population
of the next generation has Population Size number of
members.

3.10 Implementation

The method and workflow as described in section 2 and 3
has been implemented in ETAS ASCMO-MOCA. The
latter is a software product of ETAS which is delivered
as a desktop application. The basic functional scope of
ASCMO-MOCA is to enable efficient parameter optimiza-
tion of physical models, which are employed in control
applications. This functionality has now been extended
by the method described here. For this study the latest
version of the tool (V5.4 Beta 1, refresh 17, build 42754)
has been employed. All computations have been carried
out on a standard laptop computer (Intel(R) Core(TM)
i7-8650 CPU @ 1.90GHz, 32 GB RAM) on a single core.

4. RESULTS

In the following, the method described in section 2 is ap-
plied to two exemplary cases: first, modeling a power-loss
of an electric machine (section 4.1) and second creating a
torque-model of a gasoline engine (section 4.2). Both cases
are real engineering applications which involve specific
system properties to be taken into account and thus gave
rise to different solution approaches.

4.1 Power-Loss Model of an Electric Machine

With increasing maturity, the control of electric ma-
chines in automotive powertrains requires to consider even
higher-order effects influencing the system’s performance.
Such effects are, for instance, power-losses involved with
different components of the system, e.g., the winding head
in this case. Additionally, upper latency limits in the range
of micro-seconds demand models which are minimal with
respect to computational effort and memory demand.

System Setup For the given system, measurement of
stationary operation points have be carried out. The quan-
tities listed in Tab. 2 have been observed by equidistant
variations within their range of operation. The dataset

Table 2. Quantities observed for the power loss
of an electric machine.

Quantity Description Unit Min. Max. Type

ID Direct Current A -525 -1 In
IQ Quadratic Current A 1 525 In
Trtr Rotor Temperature ◦C -20 150 In
nmtr Motor Speed rpm 1 16000 In

Pmod Power loss W 0 4558 Out

contains 24684 datapoints which have been acquired. The
dataset was split into 10% training and 90 % testing data,
due to a significant high redundancy in the data. The
splitting was done by randomly selecting datapoints.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13983

Algorithmic Settings and Execution Compared to the
default algorithmic settings listed in section 3, the follow-
ing settings have been changed. The employed functions
were x + y, x − y, x ∗ y, x/y,

√
|x|, |x|a1 , log(|x|), and

exp(a1x). Population Size was set to 1000 and Parsimony
Coefficient to 0.1. After 6 iterations corresponding to 13
minutes of computation, the model provided in (7) was
chosen from the Pareto-front. The RMSE for the training
dataset is 0.029 W. The total amount of time spend for
model creation and analysis was ≈ 1 h.

Resulting Model The model which was identified is

Pmod = a1I
2
D + a2(a3IQ + I2Q) (7)

with the corresponding parameters listed in Tab. 3. Equa-
tion (7) obviously fulfills the required property of be-
ing interpretable. For instance, the absence of nmtr and

Table 3. Parameter values according to (7).

Parameter Value

a1 0.0083
a2 0.0083
a3 0.0354

Pmod directly determines their insignificance with respect
to Pmod. Additionally, by only having three calibration
parameters (Tab. 3), it is memory efficient and fast to
calibrate in future applications. Since the expression can
be computed only with few arithmetic operations it is also
computationally efficient.

Model Performance The accuracy of equation (7) was
evaluated by comparing ymeas and ymod,i for the testing
data. The result is depicted in Fig. 2, demonstrating that
the accuracy achieved with the training data is preserved
for the testing data. Comparing the RMSE of 0.029 W to
the value range of Pmod results in a relative model accuracy
of 0.00064%.

0 1000 2000 3000 4000

Predicted Power Loss Ploss [W]

0

1000

2000

3000

4000

M
ea

su
re

d
P

ow
er

L
os

s
P

lo
ss

[W
]

Fig. 2. Regression plot comparing measured ymeas and
the modeled output ymod,i obtained from (7) for the
testing data. The RMSE is 0.029 W with a coefficient
of determination r2 of 0.9999999.

4.2 Torque Model of an Internal Combustion Engine

The ongoing improvement of existing powertrain technolo-
gies, like internal combustion engines, naturally leads to

an increase in complexity of the models employed for the
associated control strategies. This manifests both in the
models’ structure and in the number of calibration pa-
rameters. Each increasing costs per-piece and development
costs respectively, when using the models in embedded
controllers. Thus, reducing the complexity is of interest in
this context. The suitability of the given method for this
task is demonstrated on the example of a torque model of
a gasoline engine.

System Setup 2813 measurements at stationary opera-
tion points have been carried out for the quantities listed
in Tab. 4, with equidistant variations in their range of op-
eration. The resulting dataset was split into 70% training
and 30% testing data, employing random selection.

Table 4. Quantities observed for the torque
model of an internal combustion engine.

Quantity Description Unit Min. Max. Type

neng Engine Speed rpm 597 5997 In
rl Relative Load % 13 86 In

ϕign Ignition Angle ◦Crank -27 61 In

Meng Engine Torque Nm -55 310 Out

Algorithmic Settings and Execution The following al-
gorithm settings were changed from their default values
(section 3). For the given system abstraction and inputs, a
purely equations-based description was not expected to be
suitable. Hence, the employed functions were set as x+ y,
x−y, x∗y, x/y, 1D Map with 10 sampling points, 2D Map
with 5x5 sampling points. Population Size was set to 15,
Parsimony Coefficient to 0.1, Max Program Complexity
to 200, Termination Threshold to 1 Nm, and Population
Init Depth Max to 5. After 10 iterations corresponding to
12 minutes of computation the model provided in Fig. 3
was identified from the Pareto-front, having an RMSE of
1.15 Nm for the training dataset. The total amount of time
spent for model creation and analysis was about 1.5 h.

𝑛𝑒𝑛𝑔

𝑀𝑒𝑛𝑔
𝑟𝑙

𝜑𝑖𝑔𝑛

Map
A

Curve B

Curve D

𝑎2

𝑎1

+

*

*

+

-

Map
C

𝑠1 𝑠2

𝑠3

𝑠4

𝑠5

Fig. 3. Causal model of Meng, which has been identified
by the algorithm.

Resulting Model The model which has been identified by
the algorithm can directly be translated to a causal model
as sketched in Fig. 3. The values of scalar parameters
included in this model are listed in Tab. 5. The corre-
sponding maps and curves are depicted in Fig. 4, 5, 6,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13984

Table 5. Parameter values according to Fig. 3.

Parameter Value

a1 6.773
a2 -79.18

and 7. The shown curves and maps are obtained directly
from the optimization procedure without any manual read-
justment. All maps are widely found to be smooth and
locally monotonic and by that fulfill a requirement, which
is highly rated by control engineers (e.g. Sequenz et al.
(2012)). It needs to be stressed that this property was
achieved without applying any smoothness regularization.
The penalization of complexity in equation (5) enforces
the complexity of the system description to be as low as
possible under the given constraints. Hence, redundancy
in the system description is reduced. For curves or maps
the smoothness emerges as a property of the system part
which is represented by it.
Though not being as concrete as (7), the model in Fig. 3
still offers the interpretation advantages which are associ-
ated with causal models. This holds for the computational
structure, the semantic meaning of nodes, as well as the
parameter values.

Signal s1
[-]

5000

10000

15000

20000

25000

30000

35000

40000

Relative Load rl [%]

10
20

30
40

50

60

70

80
S

ign
al

s
2

[-]
+

8
.5

6
9
2
4×

1
0

5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4. Plot of Map A as employed in the torque model
(Fig. 3).

−20 0 20 40 60

Ignition Angle ϕign [◦Crank]

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

S
ig

n
al

s 3
[-

]

−8.5692×105

Fig. 5. Plot of Curve B as employed in the torque model
(Fig. 3).

Ignition Angle ϕ
ign [◦Crank]

−20

0

20

40

60 Rela
tiv

e Load r l
[%]

10

20

30

40

50
60

70
80

S
ig

n
al

s 4
[-

]

0

20

40

60

80

100

Fig. 6. Plot of Map C as employed in the torque model
(Fig. 3).

1000 2000 3000 4000 5000 6000

Engine Speed neng [rpm]

1.0

1.5

2.0

2.5

3.0

S
ig

n
al

s 5
[-

]

Fig. 7. Plot of Curve D as employed in the torque model
(Fig. 3).

Model Performance The torque-model’s accuracy was
assessed by comparing ymeas and ymod,i for the testing data
(Fig. 8). Both the RMSE and r2 lead to the conclusion that
the system is reliably represented by the model in Fig. 3.

−50 0 50 100 150 200 250

Predicted Torque Meng [Nm]

−50

0

50

100

150

200

250

M
ea

su
re

d
T

or
qu

e
M

en
g

[N
m

]

Fig. 8. Regression plot comparing the measured testing
data and the prediction by Fig. 3. The RMSE is
1.19 Nm with a coefficient of determination r2 of
0.9998.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13985

A reference model is delivered along with ASCMO-MOCA
which achieved the same accuracy for the given dataset.
This model, however, has 118 calibration parameters com-
pared to 72 in Fig. 3, corresponding to a reduction of
degrees of freedom by 39%.

5. CONCLUSION AND OUTLOOK

In this study a novel method to automatically create
models from data is described. The method automatizes
the steps of control function engineering and calibration at
once, while preserving the possibility to bring-in system
expert knowledge at decisive points. Hence, it is specifi-
cally suited for embedded control applications.
The feasibility of the approach is successfully demon-
strated with two examples. First, by creating an equation-
based model which is able to describe the system in
a compact manner with 0.00064% accuracy. Second, by
identifying a causal model which leads to results having
the same accuracy as a reference model, along with a
significant reduction of calibration parameters. The com-
putation times and engineering efforts involved with the
two examples demonstrate the efficiency gain raised by
employing the method.
Although stemming from real-world engineering problems,
the examples are small with respect to the number of
input quantities and dataset size. The algorithmic design
determines that addressing larger problems, in the pre-
vious sense, causes higher computation time and more
development efforts. This, however, also holds for other
– both manual and automated – modeling attempts. The
given method also offers straight-forward options for par-
allel computation which can reduce the drawback of high
computation times. Besides creating models for predictive
control, possible applications of the method are model
compression, model run-time optimization, model struc-
ture optimization, system identification, model reduction,
and data analytics.
Enhancement of the method may be achieved by improv-
ing the complexity estimation for the different function
types by using empirical results of the respective compu-
tation efforts for a specific embedded device. Additionally,
extending the method to time-series data, along with in-
cluding derivative operators and time-shifts to the function
set, is mandatory for creating models of dynamic systems.
Most promising tackling generalization by employing var-
ious datasets can significantly increase the benefit created
by this method.

ACKNOWLEDGEMENTS

We would like to thank Markus Hanselmann, Thilo Strauß,
Matthias Werner, Fabian Jansen, and the ASCMO team
for the fruitful discussions.

REFERENCES

Augusto, D.A. and Barbosa, H.J.C. (2000). Symbolic
regression via genetic programming. In Proc. on the 6th
Brazilian Symp. on Neur. Networks, volume 1, 173–178.

Austel, V., Dash, S., Gunluk, O., Horesh, L., Liberti, L.,
Nannicini, G., and Schieber, B. (2017). Globally optimal
symbolic regression. In Interpretable ML Symposium,
31st Conference on Neural Information Processing Sys-
tems (NIPS 2017), 1–6.

Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2016). Dis-
covering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings of
the National Academy of Sciences, 113(15), 3932–3937.

Dong, X., Dong, W., Yi, Y., Wang, Y., and Xu, X. (2015).
The recent developments and comparative analysis of
neural network and evolutionary algorithms for solving
symbolic regression. In Intelligent Computing Theo-
ries and Methodologies, 703–714. Springer International
Publishing, Cham.

Horesh, L., Liberti, L., and Avron, H. (2016). Globally
optimal MINLP formulation for symbolic regression.
Technical report, IBM Research Division.

Iba, H., Feng, J., and Izadi Rad, H. (2018). GP-RVM:
Genetic programing-based symbolic regression using rel-
evance vector machine. In 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
255–262.

Islam., M., Kharma., N., and Grogono., P. (2018). Expan-
sion: A novel mutation operator for genetic program-
ming. In Proceedings of the 10th International Joint
Conference on Computational Intelligence - Volume 1:
IJCCI,, 55–66. INSTICC, SciTePress.

Iten, R., Metger, T., Wilming, H., del Rio, L., and Renner,
R. (2020). Discovering physical concepts with neural
networks. Physical Review Letters, 124, 010508.

Koza, J.R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA.

Martins, J.F.B.S., Oliveira, L.O.V.B., Miranda, L.F.,
Casadei, F., and Pappa, G.L. (2018). Solving the expo-
nential growth of symbolic regression trees in geomet-
ric semantic genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference,
GECCO ’18, 1151–1158. ACM, New York, NY, USA.

McConaghy, T. (2011). FFX: Fast, Scalable, Determin-
istic Symbolic Regression Technology, volume Genetic
Programming Theory and Practice IX of Genetic and
Evolutionary Computation Series, chapter 13, 235–260.
Springer New York, New York, NY.

Priber, U. (2003). Smoothed grid regression. In 13.
Workshop Fuzzy Systeme 2003, 159–172.

Sahoo, S.S., Lampert, C.H., and Martius, G. (2018).
Learning equations for extrapolation and control. In
Proc. 35th International Conference on Machine Learn-
ing, ICML 2018, volume 80, 4442–4450. PMLR.

Schmidt, M. and Lipson, H. (2009). Distilling free-
form natural laws from experimental data. Science,
324(5923), 81–85.

Sequenz, H., Keller, K., and Isermann, R. (2012). Zur
Identifikation mehrdimensionaler Kennfelder für Ver-
brennungsmotoren. Automatisierungstechnik Methoden
und Anwendungen der Steuerungs-, Regelungs- und In-
formationstechnik, 60(6), 344–351.

Topchy, A. and Punch, W.F. (2001). Faster genetic
programming based on local gradient search of numeric
leaf values. In Proc. of the 3rd Annual Conf. on Genetic
and Evolutionary Comp., GECCO’01, 155–162. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Udrescu, S.M. and Tegmark, M. (2020). Ai feynman: A
physics-inspired method for symbolic regression. Science
Advances, 6(16).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13986

