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Abstract: Due to their advantageous properties, polyhydroxyalkanoates are a promising
alternative to conventional petroleum-based plastics. Currently, high production costs in
upstream and downstream have to be reduced to make the plastic material competitive. As
most of the PHA producing organisms metabolize a wide range of substrates upstream cost can
be reduced using carbon rich waste material. For large scale application sophisticated control
approaches based on mathematical models can help to further increase the productivity. In the
present work, a hybrid cybernetic model approach is presented, which is adapted to experiments
with fructose and acetate feeding, respectively. Furthermore, the validated model was used to
qualitatively predict the effect of co-substrate feeding.
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1. INTRODUCTION

Besides petroleum-based polymers, the group of polyhy-
droxyalkanoates (PHAs) represents promising raw mate-
rial for production of plastics. PHA-based materials are
biodegradable, non-toxic and bio-based, since these poly-
mers can be accumulated by a broad range of microorgan-
isms caused by limitation of, e.g., nitrogen, phosphorus
or oxygen (Raza et al., 2018). Probably the best studied
representative from the class of PHAs is polyhydroxybu-
tyrate (PHB). PHB is a homopolymer of the short-chain
fatty acid (scl fatty acid) hydroxybutyrate (HB) which
is produced by a variety of microorganisms from organic
material. The most prominent producer is the bacterium
Cupriavidus necator (C. necator), which was also used in
this work.
One major goal to make PHA-based plastics economically
competitive, is to reduce the costs of the fermentation
process by inexpensive substrates (Koller et al., 2010). Fur-
thermore, through smart process control and the combina-
tion of different substrates, productivity of the bioprocess
can be improved (Carius et al., 2018; Morabito et al., 2019;
Lopar et al., 2013; Špoljarić et al., 2013). These approaches
require sophisticated mathematical process descriptions.
Hybrid cybernetic models (HCMs) combine stoichiometric
information of metabolic networks with temporal dynam-
ics and are therefore promising candidates (Ramkrishna
and Song, 2018). Thus, more a priori knowledge is used
in HCMs in comparison to simple kinetic models. Further-
more, cellular regulatory mechanisms are considered with-
out modeling them in detail. For that purpose cybernetic

variables are introduced to regulate enzyme activity and
synthesis.
In the present work, we develop an HCM considering fruc-
tose and acetate, two common substrates for the PHB pro-
duction by combining two metabolic models of C. necator
from literature (Franz et al., 2011; Yu and Si, 2004).
Previous work for other microorganisms has already shown
that HCMs are suitable for studying co-substrates (Song
et al., 2009a). This is the first time, where the HCM
approach with co-substrate feeding is applied to the field
of biopolymer production in C. necator.
First, an adaption of the HCM rate constants kr to two
different data sets is performed by using the data obtained
after feeding with single carbon sources fructose and ac-
etate, respectively. An analysis of the theoretically pos-
sible yield space and experimental yields with respect to
total biomass and HB is provided. Furthermore, the time
evolutions for single carbon substrate feedings are shown.
Finally, simulations w.r.t. the maximum HB concentration
for the co-feeding are performed. Different ratios of fruc-
tose and acetate are assumed in the in silico study.

2. EXPERIMENTAL METHODS

2.1 Mircoorganism and cultivation conditions

The experiments were performed with C. necator (H16,
DSM 428) obtained from DSMZ GmbH Braunschweig. For
the experiment with acetate as a single carbon substrate, a
1 L shake flask was filled with 200 mL of culture. M81 me-
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dia 1 were supplemented with 10 g/L sodium acetate and
1.5 g/L ammonium chloride (both: Carl Roth, Karlsruhe)
and inoculated with C. necator H16, precultured in LB
media. The initial optical density of the culture was set to
0.4. The culture was incubated at 30 ◦C and 150 rpm for
120 hours (h). Samples were taken every 8 h and analysed
as described below. In contrast, for fructose as a single
carbon substrate, no new experiments were performed but
the data of Franz et al. (2011) obtained with the same
strain were used.

2.2 Enzyme Assay

The ammonium and fructose concentrations were deter-
mined from supernatant of the samples using an enzy-
matic test kits (Kit No. 5390 and No. 10139106035, R-
Biopharm AG, Darmstadt, Germany) and following the
manufactures instructions.

2.3 High pressure liquid chromatography

Acetate and HB concentrations were determined with
an Agilent 1100 high performance liquid chromatography
(HPLC). For acetate 10 µL of the filtered supernatants
were loaded on reversed phase column (Inertsil 100A
ODS-3, 5µm pore size, 250x4.6mm, MZ-Analysentechnik
GmbH, Mainz, Germany) and eluted isocratically with
1mL·min−1 and 0.1M NH4H2PO4 at pH 2.6 and 40 ◦C.
For the determination of the HB concentration 1 mL
culture broth was alkaline digested and prepared as re-
ported in (Satoh et al., 2016). 10µL of the digested and
filtered samples were loaded on the reverese phase col-
umn (see above) and eluted isocratically with 1mL·min−1

at 60 ◦C. The eluent consists of 92% low concentrated
H2SO4 (0.025% solution, Carl Roth, Karlsruhe) and 8%
acetonitrile (Carl Roth, Karlsruhe). The HB concentration
of the samples was determined by crotonic acid standards
(Carl Roth, Karlsruhe). Since the alkaline digestion is not a
perfect conversion from HB to crotonic acid, a PHB sample
(Sigma Aldrich, St. Louis) with known concentration must
additionally be processed to calculate a conversion yield
YHB (Satoh et al., 2016):

YHB =
cCA

cHB
·D (1)

Here, the dilution ratio is D = 2 (1:2 v/v) and cHB

is the known HB concentration of the test sample. The
concentration of crotonic acid cCA is determined by the
processed crotonic acid standard.
For both procedures peaks were detected with a photodiode-
array detector (G7115A, Agilent, Waldbronn, Germany).

2.4 Determination of Cell Dry Weight

For the determination of total cell dry weight, 1 ml culture
broth was centrifuged in pre-weighed plastic tubes for 10
minutes at 13000 x g and 4 ◦C. Subsequently, the cell pellet
was dried for 1 h at 99 ◦C and weighed.

3. MATHEMATICAL MODEL

3.1 Metabolic model

The present metabolic model (Appendix B) is based on
models of Franz and co-authors (Franz et al., 2011) as

1 Recipes for the Medium 81 can be found in Franz et al. (2011) or
on the web page of the DSMZ.

well as Yu and Si (2004). By combining both, the resulting
model was expanded to the two substrate inputs fructose
and acetate. Furthermore, the reversibility of reaction
equations was checked and adjusted using the KEGG
database.

3.2 Metabolic yield analysis

Metabolic yield analysis was performed as described by
Song and Ramkrishna (2009). First, the elementary modes
of the network have to be calculated. In the present work,
4857 elementary modes were calculated using Metatool. As
suggested by Song and co-authors (Song et al., 2009a), the
elementary modes of the metabolic model were classified
into different sub-models according to the input substrates
in order to preserve functionality of the overall model.
Subsequently, the elementary modes for each sub-model
were reduced to a set of GMs by designing the convex
hull of the elementary modes in the yieldspace of HB
and biomass via the MATLAB command convhulln. For
further information regarding the analysis in yield space
we refer to the publication of Song and Ramkrishna (2009).
For the presented model, 38 relevant GMs were selected to
describe the process dynamics.
GMs were further reduced by selecting active modes rele-
vant to experimental data. In the present work, selection
was done during the parameter estimation. The set of GMs
with the lowest normalized error square sum (ESS, (2))
was selected as AM set (N=15) shown in Table 1. The AMs
reflect all possible metabolic states during HB synthesis in
C. necator. In addition to the AMs that produce biomass,
HB or acetate, there are three other modes accounting
for cellular maintenance (AM 2, 11 and 14). Here, HB is
metabolized to residual biomass and energy. This process
produces CO2 (not shown in Table 1). Maintenance can
be considered in the absence of all external carbon sources
(AM 14) or if the uptake of the substrate is reduced (AM 2
and AM 11).

ESS =

n∑
i=1

(
xexp(ti)− xsim(ti)

max(xexp)

)2

(2)

To calculate the ESS, the difference between n simulated
and experimental data points (xsim and xexp) at time ti
was calculated, weighted with the maximum experimental
value and summed up. The variable x is defined as x =
[xfru, xace, xN , xHB , xc].

3.3 State equation

State equations for the given input substrates fructose
(xfru), acetate (xace) and ammonium (xN ) are defined
as follows:

d

dt

[
xfru
xace
xN

]
= SsZrMc (3)

The stoichiometric information and selected AMs of the
metabolic network are included by the AM matrix in yield
space SsZ. Furthermore, the influence of various substrate
concentrations for each AM is modeled with Monod-type
kinetic in rM,i (9).
In addition to the equations for the substrates, differential
equations for internal metabolites with slow dynamics
compared to the remaining internal metabolites can also
be described (Franz et al., 2011). This assumption holds

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17114



e.g. for cellular storage materials such as PHB. The dy-
namics of the HB content mHB can be described as

dmHB

dt
= SHBZrM − µmHB, (4)

where SHBZ describes the AM matrix with respect to HB
in yield space and µ the cellular growth rate.
A special feature of the hybrid cybernetic approach is the

use of enzymes for each theoretical AM:

de

dt
= α+ rEMb− βe− µe, (5)

where

ereli =
ei
emax
i

with emax
i =

αi + ke,i
βi + kr,i(ScZ)i

. (6)

The increase of the enzyme level occurs via the constitutive
enzyme synthesis rate α and the catalytically active part of
the total biomass b. The catalytically active biomass frac-
tion is controlled by Monod-type kinetics (10). Enzymes
are degraded by the rate β and diluted due to cell growth
(µ). The state equation for the total biomass concentration
c can be described as follows:

dc

dt
= µc. (7)

The growth rate µ is defined by the rate vector rM and
the AM matrix for the biomass in yield space ScZ:

µ = ScZrM. (8)

In general, the rates rM and rEM for the ith AM are
defined as:

rM,i = vikr,ie
rel
i rcore,i, (9)

rEM,i = uike,ircore,i. (10)

The rate rcore of the ith AM is a multiplied Monod-type
kinetic:

rcore,i =
X1

KX1
+X1

· ... · Xn

KXn
+Xn

. (11)

The substrate index n (fructose, acetate, ammonium)
depend on the number of negative yield coefficients for
each AM given in Table 1. Besides the Monod-type kinetic,
cybernetic control variables u and v which regulate enzyme
synthesis and enzyme activity, respectively, are calculated
by cybernetic control laws (Young and Ramkrishna, 2007):

u =
p

‖p‖1
v =

p

‖p‖∞
. (12)

Here, p is the return on investment which can be calcu-
lated as follows:

p = diag(fc)diag(erel)diag(kr)rcore (13)

The vector of uptaken carbon units fc is normalized with
respect to the highest carbon uptake. The vector is shown
in Table 1.

3.4 Parameters

Since the system was extended by enzyme equations for
the AMs and an adapted Monod kinetic for each mode on
the basis of our previous work (Franz et al., 2011), only
the constants kr,i in the definition of the rate rM,i are
free model parameters to be estimated from experimental
data. All other parameters of the model were kept as
given in Franz et al. (2011). The uptake of the carbon
source acetate is known to accelerate metabolism (Garcia-
Gonzalez and De Wever, 2018). Therefore, the saturation
constant KACE is assumed as KFRU/2. All parameter
values are given in Table 2.

Fig. 1. Yield space of carbon-normalized HB and
total biomass. Experimental yields are divided into
different phases (see text) for the carbon sources
fructose (FRU) and acetate (ACE). The grey squares
are the selected active modes (AMs) and the red
crosses are those AMs, that are used to adapt on
experiments with single carbon source (scs).

3.5 Numerical solution and parameter estimation

The model was implemented and solved numerically in
MATLAB2016b. Parameter adjustment of rates kr were
performed using the MATLAB routine fmincon with a
lower bound of zero on all model parameters. Furthermore,
as the optimization problem is highly nonlinear, a multi-
start optimization approach with n = 100 random initial
parameter estimates was implemented to reduce the risk
of ending up in a local extremum when minimizing the
cost function described in Equation (2).

4. RESULTS

In the present work an HCM was developed, which can
describe the growth and the HB accumulation with either
fructose or acetate as carbon source. Figure 1 shows the
yield space for carbon-normalized HB and total biomass
as well as the experimental yields. Two data sets were
used to adjust the parameters of the model: one data set
with fructose as carbon source from literature (Franz et al.,
2011) and another with acetate as carbon source from
our own shake flask experiment. Both data sets have been
divided into different phases for the calculation of yields:

• Phase I: exponential growth
• Phase II: HB accumulation
• Phase III: HB consumption

The position of experimental yields in Figure 1 gives an
indication about the model fit to describe the data. Yields
for data sets with fructose as carbon source are inside or
on the theoretical hull spanned by metabolic model. Due
to the high uncertainty in the measurement of small dry
biomass and the broad sampling time interval for the data
set with acetate as the carbon source, the yields for phase
I and III are on the edge or slightly outside the hull.

In the following, a parameter estimation was performed
for the constants kr,i, whose Monod-type kinetics in rM,i

can describe the growth on single carbon substrates. All
remaining constants kr,i have been set to zero, as the co-
substrate feeding was not investigated experimentally. The
AMs that were included in the adjustment are marked in
the yield space (Figure 1, crosses in gray squares) and in
Table 1 (FRU, ACE).
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Table 1. Values for the yields in g/gC of the active mode matrix subdivided into
different subsections: substrates SSZ (1, upper white entries), HB SHBZ (2, light grey
entries) and total biomass ScZ (3, grey entries). Furthermore the normalized vector of uptaken
carbon units fc and division of AMs for the submodels fructose (FRU) and acetate (ACE) are

shown.

AM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Yfru -2.50 -0.28 -2.50 -2.44 -1.00 -1.29 -2.50 -1.56 -2.50 0.00 0.00 0.00 0.00 0.00 -2.50
Yace (1) 0.00 0.00 0.00 -0.06 -0.01 -1.19 0.30 0.01 0.06 0.43 -0.01 -2.46 -2.46 0.00 0.00
YN -0.64 -0.73 0.00 -0.75 -0.72 0.00 -0.70 -0.76 0.00 -0.18 -0.33 -0.51 0.00 -0.001 -0.77

YHB (2) 0.31 -1.59 1.19 0.00 -1.07 0.25 0.00 -0.68 0.00 -1.79 -1.78 0.00 1.19 -0.021 0.00

Yc (3) 1.66 -0.05 1.19 1.58 0.47 0.25 1.49 0.93 0.00 -1.42 -1.08 1.08 1.19 -0.018 1.63

fc 1.00 0.75 1.00 1.00 0.83 0.99 1 0.89 1.00 0.72 0.72 0.98 0.98 0.01 1.00

Submodel FRU FRU FRU ACE ACE ACE ACE FRU FRU

Table 2. Parameters of the HCM

Constant Value

kr [1/h] 1 [0.26 3.71 0.07 01x6 3.44
1.51 0.44 0.44 0.44 0.25]T

ke [1/h] 0.115x1

α [1/h] 0.01ke

β [1/h] 515x1

KN [g/L] 0.01
KFRU [g/L] 0.06
KACE [g/L] 0.03
KHB [g/L] 0.05

1 estimated values, arranged according to Table 1
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Fig. 2. Dynamic behaviour using 20 g/L fructose as
carbon source. Experimental (circles and crosses)
and model kinetics (solid and dashed lines) of fructose
(upper black line and circles), ammonium (upper
dashed blue line and crosses), total biomass (bottom
black line and circles) and hydroxybutyrate (HB,
bottom dashed blue line and crosses) concentrations
are shown.

Figure 2 and 3 show the simulated dynamics after pa-
rameter adjustment for both data sets. In the case of
fructose as single carbon substrate (Figure 2), the model
can reproduce the data very well. An exception is the
fructose concentration, which decreases exponentially up
to approximately 18 h, but in the simulation only up to
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Fig. 3. Dynamic behaviour using 10 g/L acetate as
carbon source. Experimental (circles and crosses)
and model kinetics (solid and dashed lines) of acetate
(upper black line and circles), ammonium (upper
dashed blue line and crosses), total biomass (bottom
black line and circles) and hydroxybutyrate (HB,
bottom dashed blue line and crosses) concentrations
are shown.

approximately 15 h. The linear phase in the model starts
earlier, as the exponential decay of the substrate in the
kinetics is coupled to ammonium, that is consumed after
15 h. The delayed start of linear substrate uptake in the
experiment indicates that other metabolites such as or-
ganic acids are also generated at the beginning of the PHB
production phase. In the future, additional measurements
of the latter should be taken into account and included in
an extended model formulation.
In case of acetate as a carbon source, the dynamics can
be reproduced very well (Figure 3). Solely, the simulated
residual ammonium concentration gives evidence that the
linear relationship between biomass growth and ammo-
nium consumption should be adjusted in later model
variants by adjusting the stoichiometry in the biomass
equation.
Finally, the adapted HCM was used to analyze the effect of
fructose and acetate as co-substrates (Figure 4). Therefor,
different carbon ratios of acetate/fructose are simulated
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and compared regarding their maximum amount of HB.
Our model predicts an benefical effect of co-feeding that is
increased with an evaluated acetate concentration in the
substrate mixture. A ratio of 1/10 acetate/fructose in the
initial concentration predicts an improvement of 6% com-
pared to the summed HB concentration for feeding with
only one carbon source (max(HB)FRU+max(HB)ACE).
With an 1/1 acetate/fructose ratio, the increase is already
45%. This effect is a valuable information for the combi-
nation of waste materials as carbon sources with respect
to a cheap and productive process.

1/10 1/5 1/2 1/1
0

0.5

1

1.5

2

2.5

Fig. 4. Relative maximum concentration of HB with
different acetate/fructose (ACE/FRU) ratios.
The HB concentrations are normalized w.r.t. the
maximum HB concentration in the simulation with
fructose as the single carbon substrate.

5. CONCLUSION

In the present work, a HCM was developed and adapted
to experimental data with fructose and acetate as a single
carbon source. For this purpose, a metabolic yield analysis
was performed in which the relevant AMs were determined
(Song and Ramkrishna, 2009). This set of AMs is used to
describe the rates of all state variables. Thus, the model
has the advantage of being able to use the a priori informa-
tion from the metabolic network for the simulation of the
dynamics. In addition to the use of metabolic information,
the HCM approach uses cybernetic variables. These cyber-
netic variables make it possible to describe the growth on
several substrates in a proper way (Song et al., 2009a).
Due to the lack of a suitable experimental data set for
co-feeding, the HCM adapted on data with single feeding
strategies was used for an in silico study with different
acetate/fructose ratios. Therein, a positive effect on the
HB yield at a given co-substrate feeding with fructose
and acetate is predicted. This effect is already well-known
for different experimental setups and organisms (Garcia-
Gonzalez and De Wever, 2018; Karmann et al., 2019).
In contrast to our predictions, Garcia-Gonzalez and De
Wever (2018) also observed an inhibitory effect on biomass
production when feeding 4 g/l or even higher concentra-
tions of a feed containing only acetate. Future work will
focus on experimental investigations and corresponding
extension of our HCM to take such inhibitory effects into
account.
Furthermore, the simulation results should be experimen-
tally validated under controlled conditions. With such a
validation experiment the remaining AMs considering the
uptake of both, fructose and acetate, could be included in
the HCM, as an expansion of the model. In addition, a
sophisticated analysis of parametric inference, e.g. using

parametric bootstraps or profile likelihoods (Raue et al.,
2009), is planned.
After successful experimental validation, acetate can also
be used in combination with low cost substrates (for exam-
ple, regional waste products) to maximize PHA production
and make the bio-based, biodegradable plastic material
economically competitive to conventional plastic material.
In addition, the hybrid model approach can be integrated
into model-based control approaches to better control con-
tinuous bioprocesses for PHA production (Morabito et al.,
2019).
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Appendix A. METABOLITE ABBREVIATIONS

3PG 3-phosphoglycerate
αKG alpha-ketoglutarate
ACE acetate
AcACE acetoacetate
AcAcCoA acetoacetyl CoA
AcCoA acetyl CoA
ADP adenosine diphosphate
ATP adenosine triphosphate
AMP adenosine monophosphate
AMC ammonium chloride
BIO residual biomass
CO2 carbon dioxide
E4P erythrose-4-phosphate
F16P fructose-1,6-bisphosphate
F6P fructose-6-phosphate
FAD flavin adenin dinucleotide, oxidized
FADH flavin adenin dinucleotide, reduced
FRU fructose
G3P glyceraldehyde-3-phosphate
G6P glucose-6-phosphate
GLN glutamine
GLU glutamate
GOX glyoxylate
HB hydroxybutyrate
ISC isocitrate
MAL malate
NAD nicotinamide adenine dinucleotide (ox.)
NADH nicotinamide adenine dinucleotide (red.)
NADP nicotinamide adenine dinucleotide

phosphate (ox.)
NADPH nicotinamide adenine dinucleotide

phosphate (red.)
NH3 ammonia
O2 oxygen
OXA oxaloacetate
PEP phosphoenol pyruvate
PYR pyruvate
R5P ribose-5-phosphate
Rl5P ribulose-5-phosphate
S7P sedoheptulose-7-phosphate
SUC succinate
SucCoA succinyl-CoA
SUCx succinate, external
X5P xylulose-5-phosphate
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Appendix B. METABOLIC REACTIONS

No. Reaction

1 FRU + PEP + ATP −→ F16P + PYR + ADP
2 F16P −→ F6P
3 F16P ←→ 2 G3P
4 AMC −→ NH3

5 G6P + 2 NADP −→ Rl5P + CO2 + 2 NADPH
6 Rl5P ←→ R5P
7 Rl5P ←→ X5P
8 X5P + R5P ←→ S7P + G3P
9 S7P + G3P ←→ E4P + F6P
10 X5P + E4P ←→ G3P + F6P
11 F6P ←→ G6P
12 G3P + NAD + ADP ←→ 3PG + NADH + ATP
13 3PG ←→ PEP
14 PEP + ADP ←→ PYR + ATP
15 OXA + ATP ←→ PEP + ADP + CO2

16 PYR + NAD ←→ AcCoA + NADH + CO2

17 AcCoA + OXA ←→ ISC
18 ISC + NADP ←→ αKG + NADPH + CO2

19 αKG + NAD −→ SucCoA + NADH + CO2

20 SucCoA + ADP ←→ SUC + ATP
21 SUC −→ SUCx
22 SUC + FAD ←→ MAL + FADH
23 MAL + NAD ←→ OXA + NADH
24 MAL + NADP ←→ PYR + CO2 + NADPH
25 PYR + ATP −→ OXA + ADP
26 ISC −→ SUC + GOX
27 AcCoA + GOX −→ MAL
28 NH3 + αKG + NADPH ←→ GLU + NADP
29 GLU + NH3 + ATP ←→ GLN + ADP
30 2 AcCoA ←→ AcAcCoA
31 AcAcCoA + NADPH −→ HB + NADP
32 ACE + ATP ←→ AcCoA + AMP
33 HB + NAD ←→ AcACE + NADH
34 ACE + SucCoA ←→ AcAcCoA + SUC
35 AcACE + ATP −→ AcCoA + AMP
36 2 NADH + O2 + 4 ADP −→ 2 NAD + 4 ATP
37 ATP + AMP ←→ 2 ADP
38 2 FADH + O2 + 2 ADP −→ 2 FAD + 2 ATP
39 0.21 G6P + 0.07 F6P + 0.9 R5P + 0.36 E4P + 0.13 G3P

+ 1.5 3PG + 0.52 PEP + 2.83 PYR + 3.74 AcCoA + 1.79
OXA + 8.32 GLUT + 0.25 GLUM + 41.1 ATP + 8.26
NADPH + 3.12 NAD −→ BIO + 7.51 αKG + 2.61 CO2 +
41.1 ADP + 8.26 NADP + 3.12 NADH (Katoh et al., 1999)

All stoichiometric coefficients are given in mmol, except
BIO is given in g.
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