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Abstract: In direct-current control scheme, self-oscillations or limit cycles occur due to the
hysteresis controller. In this contribution, the different types of self-oscillations in a three-level
hysteresis current controlled H-bridge are analyzed. The investigations are based on Tsypkin’s
method for self-oscillations in relay control systems. So, the conditions for the different types
of self-oscillations are given and the frequency of the oscillation and the on-to-off-ratio or pulse
width of the switching hysteresis output are calculated exactly. The values correspond to the
switching frequency and the duty cycle of the H-bridge. Furthermore, some analyses about the
transfer characteristic of the control loop are made.
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1. INTRODUCTION

H-bridges or full bridges are used in electrical DC-drives,
single-phase AC-drives, single-phase grid injections, etc.
In combination with a current regulator, these are able
to provide nearly constant or sinusoidal currents with
variable frequency and amplitude to the load depending
on the application. A common strategy is to use a linear
controller, mostly in PI-configuration, in combination with
pulse width modulation (PWM). This modulation tech-
nique generates the control signals for the H-bridge with
an average value proportional to the regulating voltage of
the linear controller output, see Holmes and Lipo (2003).

In contrast to a linear controller with PWM, the hys-
teresis unit directly provides the necessary control signals
for the power electronics. These so-called direct-current
controllers have some advantages compared to the linear
control techniques. In practice, direct-current controllers
show good dynamical performance and high robustness
against disturbances. The controller keeps the current er-
ror bounded in a predefined tolerance.

Irrespective of the controller type, linear or nonlinear,
there are two possibilities to drive an H-bridge. One is
a two-level control with two different output voltages of
the H-bridge, a positive and negative one like in Gatlan
and Gatlan (1997). The other is a three-level control with
three different output voltages, a positive and a negative
one and additional zero voltage, see Mao et al. (2012).

From a control theoretical point of view, the hysteresis
control loop has self-oscillations or limit cycles. A theoret-

ical analysis is necessary to categorize these oscillations. In
general, self-oscillations in nonlinear control loops can be
analyzed by the describing function method, see Atherton
(1982) or Gelb and Vander Velde (1968). It linearizes the
input/output behavior of the nonlinearity and studies the
linearized loop for marginal stability. But this is only an
approximation for the occurring self-oscillations. In some
cases like in loops with hysteresis controllers and first-order
systems, the describing function method provides even no
solution although a limit cycle arises, see, for example,
Unbehauen (2009) or Gelb and Vander Velde (1968).

Tsypkin (1984) presented an accurate method to deter-
mine self-oscillations in relay control systems. Tsypkin’s
method sums all Fourier harmonics of the hysteresis out-
put or more precisely their transfer to the output of the lin-
ear system. As a result, Tsypkin’s locus is obtained which
is a frequency dependent curve. Similar to the describing
function method in combination with Nyquist’s locus, the
intersections of Tsypkin’s locus with the hysteresis limit
specify the self-oscillations. Based on Tsypkin’s method,
Boiko (2009) and Johansson (1997) presented the deter-
mination and identification of self-oscillations in two-level
hysteresis control system from a state-space description of
the linear system. In this paper, Tsypkin’s theory is ex-
panded to self-oscillations in three-level hysteresis control
loops in general and to hysteresis controlled H-bridge in
particular.

The paper is organized as follows. A system overview
is given in Section 2. In Section 3, the conditions and
the description for the different types of self-oscillations
in three-level hysteresis systems are presented. Therefore,
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Fig. 1. H-bridge with RL-load

Fig. 2. Three-level hysteresis control element

Tsypkin’s loci are set up for these systems with a linear
part of any order with additional dead-time. The self-
oscillations are also checked for their stability. The general
derivations are applied to the H-bridge control system in
Section 4, while conclusions are drawn in Section 5.

2. SYSTEM OVERVIEW

The plant consists of an H-bridge or full bridge with four
transistors and the connected load. The basic circuit of
the plant is shown in Fig. 1. The aim is to control the
current i in the RL-load by switching the transistors with
the hysteresis controller. So the transfer function from the
hysteresis output to the current results in

G(s) =
1

L · s+R
(1)

The three level hysteresis controller consist of an upper
and a lower subhysteresis unit with symmetrical limits
δ1 and the transitions between these both defined by the
hysteresis limit δ2. So, the whole hysteresis element has a
positive, a negative and two zero output stages leading to
positive as well as negative load voltage in the H-bridge.
The zero stages correspond to two freewheeling circuits.
The hysteresis element with its limits and the three output
levels is defined by Fig. 2.

For the four different stages or the output of the hystere-
sis the corresponding transistor conditions are shown in
Table 1.

Table 1. Switching table

subhystersis u T1 T2 T3 T4

upper
s0 = Udc ON OFF OFF ON

0 ON OFF ON OFF

lower
0 OFF ON OFF ON

−s0 = −Udc OFF ON ON OFF

Caused by a discrete-time implementation of the con-
troller, there is an additional dead-time Tt within the
control loop as shown in Fig. 3.

Fig. 3. Three-level hysteresis control loop

Fig. 4. Different types of oscillation defined by the transi-
tion paths of the three-level hysteresis

3. SELF-OSCILLATIONS

In a control loop with a three-level hysteresis element,
there are several different types of self-oscillations possible.
Their existence or occurrence depends on the linear part
of the control loop, the hysteresis limits, the set point as
well as the disturbance. Regarding the different transition
paths through the three-level hysteresis, three different
types of oscillation can be defined. These three types are
shown in Fig. 4.

Type I: The path is characterized by all the three output
levels of the hysteresis. Starting at the positive level s0, the
path follows the limit −δ1 to the zero level and further to
the level −s0 by the switching limit −δ2. Afterwards, the
way leads back to the positive level s0 through the limits
δ1 and δ2 respectively.

Type II: The oscillation only occurs by the upper sub-
hysteresis defined by the two levels s0 and zero and the
symmetrical limits ±δ1.

Type III: This type of oscillation is defined by the lower
subhysteresis with its two levels zero and −s0 and the
symmetrical limits ±δ1.

These different types of self-oscillations are studied in the
following subsections. The conditions for each one and
their stability are established. For this purpose, Tsypkin’s
loci are derived.

Tsypkin’s locus J (ω) for a symmetrical self-oscillation in
two point hysteresis control loop is defined by

J (ω) = − 1

ω
˙̃y−
(π
ω

)
− jỹ−

(π
ω

)
(2)

where ω is the frequency. The imaginary part −ỹ−
(
π
ω

)
is the negative output value of the loop at the switching
point of the hysteresis in the middle of the period under
oscillation with ω. The real part− 1

ω
˙̃y−
(
π
ω

)
is defined as the

negative derivative of the output at the switching instant
divided by the frequency. The superscript − implies a very
short time shift before the switching. This is important
for systems in which the output or its derivative change
instantaneously by the hysteresis switching. The tilde
indicates the periodicity of the signal. For more complex
self-oscillations a set of Tsypkin’s loci must be defined,
like for asymmetrical oscillations one for the switching in
between the period and one for the end of the period.
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Fig. 5. General asymmetrical self-oscillation of Type I

3.1 Self-Oscillations of Type I

First, the self-oscillations of Type I are studied. As defined
above, the output of the hysteresis passes through all three
levels. Without losing generality, the time t = 0 is defined
as the point in time when the output of the hysteresis is
switching to the positive stage. In a general case, the self-
oscillation of Type I can be asymmetrical. Fig. 5 shows the
output of the hysteresis and the oscillating control loop
output for this general case. So, the switching conditions
are consequently defined by the control deviations and its
derivative at the switching events.

e (0) = e

(
2π

ω

)
= δ2 ė (0) = ė

(
2π

ω

)
> 0

e

(
κ1λ

2π

ω

)
= −δ1 ė

(
κ1λ

2π

ω

)
< 0

e

(
λ

2π

ω

)
= −δ2 ė

(
λ

2π

ω

)
< 0

e

(
(λ+κ2−κ2λ)

2π

ω

)
= δ1 ė

(
(λ+κ2−κ2λ)

2π

ω

)
> 0

(3)

But, these asymmetrical self-oscillations are undesirable
in practical power electronic applications, because they
execute more switching events than necessary leading to
higher switching losses and further to a higher ripple on
the current. In order to avoid these asymmetrical self-
oscillations, a criterion is derived from symmetrical self-
oscillations of Type I, which are considered further now.
For symmetrical self-oscillation of Type I the following
conditions must hold.

κ1 = κ2 = κ λ = (1− λ) = 0.5 (4)

Caused by the dead-time Tt, there are in general six
different cases to be distinguished. These cases result from
the relative shift of the control signal in relation to the
time period T and the effective turn-on time κ shown in
Fig. 6. It shows the hysteresis output u and the delayed
one u′ for these six cases.

For all these different cases, the system response to the
control signal can be calculated. More precisely, the output
value at the switching events have to be evaluated to
construct Tsypkin’s loci. The exact derivation is quite
lengthy and is not shown in this paper. The basic approach
for a two-level hysteresis is shown in Åström (1995) and
Boiko (2009) and can be applied to three-level hysteresis.

Fig. 6. Different cases of the dead-time Tt dependent shift
in relation to κ and the time period T in case of
symmetric self-oscillations of Type I

As a result, Tsypkin’s loci Jκ(ω, κ) for the switching event
at t = κT/2 and J 1

2
(ω, κ) for the switching event at

t = T/2 are given. Assuming that the matrix (I +eA
2π
ω ) is

invertible for all ω (equivalent to A having no eigenvalues
on the imaginary axis), Tsypkin’s loci can be given as
follows. Some of the different cases leading to the same
result. For Jκ(ω, κ), the cases 1, 4, 5 are equal as well as
the cases 2, 3, 6.

Jκ(ω, κ) = (−1)l
{

1

ω
s0c

T

[ (
I + eA

π
ω

)−1
(
I + eA

π
ω − e

A
(

(l+1)π
ω −Tt

)
− e

A
(

(l+κ)π
ω −Tt

))
− I

]
b

+ js0

[
cT
(
I + eA

π
ω

)−1
A−1(

I + eA
π
ω − e

A
(

(l+1)π
ω −Tt

)
− e

A
(

(l+κ)π
ω −Tt

))
b− d

]}
for l

π

Tt
< ω < (l + κ)

π

Tt
(5)

Jκ(ω, κ) = (−1)l
{

1

ω
s0c

T

[ (
I + eA

π
ω

)−1
(
− e

A
(

(l+1)π
ω −Tt

)
+ e

A
(

(l+1+κ)π
ω −Tt

))]
b

+ js0

[
cT
(
I + eA

π
ω

)−1
A−1(

− e
A
(

(l+1)π
ω −Tt

)
+ e

A
(

(l+1+κ)π
ω −Tt

))
b

]}
for (l + κ)

π

Tt
< ω < (l + 1)

π

Tt
(6)

For J 1
2
(ω, κ), the cases 1, 2, 4 are equal as well as the cases

3, 5, 6.
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J 1
2
(ω, κ) = (−1)l

{
1

ω
s0c

T

[ (
I + eA

π
ω

)−1
(
− e

A
(

(l+1)π
ω −Tt

)
+ e

A
(

(l+1−κ)π
ω −Tt

))]
b

+ js0

[
cT
(
I + eA

π
ω

)−1
A−1(

− e
A
(

(l+1)π
ω −Tt

)
+ e

A
(

(l+1−κ)π
ω −Tt

))
b

]}
for l

π

Tt
< ω < (l + 1− κ)

π

Tt
(7)

J 1
2
(ω, κ) = (−1)l

{
1

ω
s0c

T

[ (
I + eA

π
ω

)−1
(
I + eA

π
ω − e

A
(

(l+1)π
ω −Tt

)
− e

A
(

(l+2−κ)π
ω −Tt

))
− I

]
b

+ js0

[
cT
(
I + eA

π
ω

)−1
A−1(

I + eA
π
ω − e

A
(

(l+1)π
ω −Tt

)
− e

A
(

(l+2−κ)π
ω −Tt

))
b− d

]}
for (l + 1− κ)

π

Tt
< ω < (l + 1)

π

Tt
(8)

Now, the conditions for a symmetrical self-oscillation of
Type I in terms of Tsypkin’s loci result in

ImJκ(ω, κ) = −δ1 ReJκ(ω, κ) < 0

ImJ 1
2
(ω, κ) = −δ2 ReJ 1

2
(ω, κ) < 0

(9)

In general for asymmetrical self-oscillations of Type I, a
set of four Tsypkin’s loci must be defined with the four
parameters ω, λ, κ1 and κ2.

To analyze the local stability of the self-oscillations which
satisfy the conditions of (9), a small initial perturbation
xδ0 at t = 0 from the periodical solution of the state
variables x̃(0) is investigated.

x(0) = x̃(0) + xδ0 (10)

Now the propagation of the initial perturbation over half of
a switching cycle can be studied. Caused by the distortion,
the points in time of the switching events will change. So
the states at t = κT2 + tδ1 and t = T

2 + tδ2 becomes

x

(
κ
T

2
+ tδ1

)
≈ x̃

(
κ
T

2

)
+ W κ · xδ0 (11)

x

(
T

2
+ tδ2

)
≈ x̃

(
T

2

)
+ W 1

2
· xδ1 (12)

≈ x̃

(
T

2

)
+ W 1

2
·W κ · xδ0 (13)

where

W κ =

(
I −

˙̃x
−(
κT2
)
· cT

cT · ˙̃x
−(
κT2
)
)
· eAκλT2 (14)

W 1
2

=

(
I −

˙̃x
−(T

2

)
· cT

cT · ˙̃x
−(T

2

)
)
· eA(1−κ)λT2 (15)

So, the self-oscillation is locally asymptotically stable if
and only if the perturbation decreases over time. Analyti-
cally, this means if and only if the largest absolute value of
the eigenvalues of the product of W κ and W 1

2
is smaller

than one.

ρ
(
W κ ·W 1

2

)
< 1 (16)

Caused by higher switching losses in the power electronic,
this self-oscillations of Type I are undesirable and should
be avoided. So the aim is to enlarge the time of the
zero level of the hysteresis, because during this time only
the self-reinforcing tendencies of the system decrease the
state values. So, the hysteresis limit δ2 must set higher
to increase the relative time of the zero level defined by
(1− κ). A criterion can be derived from the condition (9)
for a symmetrical limit cycle. So the critical value for
the outer hysteresis limit δ2,crit for a given inner limit δ1
leading to a critical κcrit and can be evaluate by

ImJκ(ω, κcrit) = −δ1 ReJκ(ω, κcrit) < 0

ImJ 1
2
(ω, κcrit) = −δ2,crit ReJ 1

2
(ω, κcrit) = 0

(17)

Graphically, this means that the output value touches
the hysteresis limit at the point t = T

2 . So, there is no
intersection of the limit and consequently no switching.
It can be shown that if there is no symmetrical self-
oscillation then there is also no asymmetrical one. This
critical hysteresis limit δ2,crit is the theoretical limitation
of the existence of the Type I oscillation. Nevertheless,
it is possible that this self-oscillation even not occurs with
smaller hysteresis limits δ2, because the area of attractivity
becomes smaller the larger this limit is.

3.2 Self-Oscillations of Type II and Type III

The self-oscillations of Type II and Type III can be
analyzed together. The only difference between these two
is the output value of the hysteresis. But generalizing
the values to s+ and s− for a higher and lower level,
the two types can be described by one set of equations.
Consequently, the levels for Type II are s+ = s0 and
s− = 0, for Type III s+ = 0 and s− = −s0. A positive set
point r leads to Type II and a negative one to Type III.

The switching conditions for both types are

e (0) = e

(
2π

ω

)
= δ1 ė (0) = ė

(
2π

ω

)
> 0

e

(
λ

2π

ω

)
= −δ1 ė

(
λ

2π

ω

)
< 0

(18)

As for symmetrical self-oscillations of Type I, there are also
six different cases for the relative shift of control signal in
relation to the period duration time T and the duty cycle
λ shown in Fig. 7.

Some cases lead to the same result of the Tsypkin’s
loci description. Assuming that the matrix (I − eA

2π
ω ) is

invertible for all ω, the equations can be given as follows.
For Jλ(ω, λ), the cases 1, 4, 5 are equal as well as the cases
2, 3, 6.
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Fig. 7. Different cases of the dead-time Tt dependent shift
in relation to the duty cycle λ and the time period
T in case of asymmetric self-oscillations of Type II or
Type III

Jλ(ω, λ) =
1

ω
cT
[(

I − eA
2π
ω

)−1
((

I − eA
2π
ω + e

A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+λ)2π
ω −Tt

))
s+

+
(
− e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+λ)2π
ω −Tt

))
s−

)
− Is+

]
b

+ j

[
cT
(
I − eA

2π
ω

)−1
A−1((

I − eA
2π
ω + e

A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+λ)2π
ω −Tt

))
s+

+
(
− e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+λ)2π
ω −Tt

))
s−

)
b− ds+

]
for l

2π

Tt
< ω < (l + λ)

2π

Tt
(19)

Jλ(ω, λ) =
1

ω
cT
[(

I − eA
2π
ω

)−1
((

I − eA
2π
ω − e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+1+λ)2π
ω −Tt

))
s−

+
(

e
A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+1+λ)2π
ω −Tt

))
s+

)
− Is−

]
b

+ j

[
cT
(
I − eA

2π
ω

)−1
A−1((

I − eA
2π
ω − e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+1+λ)2π
ω −Tt

))
s−

+
(

e
A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+1+λ)2π
ω −Tt

))
s+

)
b− ds−

]
for (l + λ)

2π

Tt
< ω < (l + 1)

2π

Tt
(20)

For J1(ω, λ), the cases 1, 2, 4 are equal as well as the cases
3, 5, 6.

J1(ω, λ) =
1

ω
cT
[(

I − eA
2π
ω

)−1
((

I − eA
2π
ω + e

A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+1−λ)2π
ω −Tt

))
s−

+
(
− e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+1+λ)2π
ω −Tt

))
s+

)
− Is−

]
b

+ j

[
cT
(
I − eA

2π
ω

)−1
A−1((

I − eA
2π
ω + e

A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+1+λ)2π
ω −Tt

))
s−

+
(
− e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+1+λ)2π
ω −Tt

))
s+

)
b− ds−

]
for l

2π

Tt
< ω < (l + 1− λ)

2π

Tt
(21)

J1(ω, λ) =
1

ω
cT
[(

I − eA
2π
ω

)−1
((

I − eA
2π
ω − e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+2−λ)2π
ω −Tt

))
s+

+
(

e
A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+2−λ)2π
ω −Tt

))
s−

)
− Is+

]
b

+ j

[
cT
(
I − eA

2π
ω

)−1
A−1((

I − eA
2π
ω − e

A
(

(l+1)2π
ω −Tt

)
+ e

A
(

(l+2−λ)2π
ω −Tt

))
s+

+
(

e
A
(

(l+1)2π
ω −Tt

)
− e

A
(

(l+2−λ)2π
ω −Tt

))
s−

)
b− ds+

]
for (l + 1− λ)

2π

Tt
< ω < (l + 1)

2π

Tt
(22)

The conditions for an asymmetrical self-oscillation of
Type II or Type III in terms of Tsypkin’s loci result in

ImJλ(ω, λ) = −r − δ1 ReJλ(ω, λ) < 0

ImJ1(ω, λ) = −r + δ1 ReJ1(ω, λ) > 0
(23)

The local stability of the self-oscillation can also be ana-
lyzed by the concept of a small initial perturbation and its
propagation over time. The whole period is considered. So
the states at t = λT + tδ1 and t = T + tδ2 becomes

x (λT + tδ1) ≈ x̃ (λT ) + W λ · xδ0 (24)

x (T + tδ2) ≈ x̃ (T ) + W 1 · xδ1 (25)

≈ x̃ (T ) + W 1 ·W λ · xδ0 (26)

where

W λ =

(
I −

˙̃x
−
(λT ) · cT

cT · ˙̃x
−
(λT )

)
· eAλT (27)

W 1 =

(
I −

˙̃x
−
(T ) · cT

cT · ˙̃x
−
(T )

)
· eA(1−λ)T (28)

So, the self-oscillation is locally asymptotically stable if
and only if

ρ (W λ ·W 1) < 1 (29)
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4. APPLICATION TO DIRECT-CURRENT
CONTROL

Using the Tsypkin’s loci, the behavior of the direct-current
control loop with a three-level hysteresis controller can be
analyzed. For the H-bridge with RL-load (Fig. 1), the state
matrices and vectors become scalars.

A = −R
L
, b =

1

L
, cT = 1, d = 0 (30)

In the following, only positive set points are considered
leading to Type II oscillations (s− = 0, s+ = Udc). The
outer hysteresis limit δ2 is set as big enough in order to
avoid Type I oscillations. Furthermore, restricting to the
cases 1 and 4, Tsypkin’s loci for the H-bridge with RL-load
result in

Jλ(ω, λ) =
Udc

ωL
· e−

R
L ( 2π

ω −Tt) − e−
R
L (λ2πω −Tt)

1− e−
R
L

2π
ω

− j
Udc

R
·
(
1 +

e−
R
L ( 2π

ω −Tt) − e−
R
L (λ2πω −Tt)

1− e−
R
L

2π
ω

)
(31)

J1(ω, λ) = −Udc

ωL
· e−

R
L ( 2π

ω −Tt) − e
−RL
(

(1+λ)2π
ω −Tt

)
1− e−

R
L

2π
ω

+ j
Udc

R
· e−

R
L ( 2π

ω −Tt) − e
−RL
(

(1+λ)2π
ω −Tt

)
1− e−

R
L

2π
ω

(32)

With these expressions for Tsypkin’s loci, equation (23)
can be solved for the switching frequency ω and the duty
cycle λ with different values of the set point r and the
hysteresis limit δ1. In general, an analytical solution is not
possible. So, the set of equations is solved numerically.
(The solutions hold also the restriction to case 1 or 4.)
Fig. 8 shows the result of this analysis.

The parameters are set to: R = 1.5 Ω, L = 0.3 mH,
Tt = 0.1 ms, Udc = 12 V.

For all different values of the hysteresis limit δ1, the duty
cycle is equal to 0.5 for the set point r = 4. For other set
points, the calculated duty cycles differ for the different
hysteresis limits as well as from the “ideal” duty cycle for
which the control deviation would be zero (dashed line
in Fig. 8). The difference increases with the difference
between the set point and this middle point r = 4. A
smaller hysteresis limit leads to a higher the switching
frequency of the power electronics and vice versa. At
the duty cycle λ = 0.5, the frequency is the highest
and decreases to both sides of this value symmetrically.
Knowing the duty cycle λ of the self-oscillation, it is also
possible to calculate the mean output value of the control
loop.

y = [s+ · λ+ s− · (1− λ)] ·G(0) (33)

5. CONCLUSION

In this paper, Tsypkin’s method is applied to analyze the
switching behavior of three-level hysteresis controllers used
for direct current control in H-bridge based applications.
There are three different types of self-oscillations in such
control loops possible. For these types, Tsypkin’s loci were
given. So, the behavior of direct current could be analyzed.

Fig. 8. Duty cycle and switching frequency of the power
electronic in the direct-current control loop for differ-
ent values of hysteresis limit δ1
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