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Abstract: Platooning of multiple autonomous vehicles has attracted significant attention in
both academia and industry. Despite its great potential, platooning is not the only choice for
the formation of autonomous vehicles in mixed traffic flow, where autonomous vehicles and
human-driven vehicles (HDVs) coexist. In this paper, we investigate the optimal formation of
autonomous vehicles that can achieve an optimal system-wide performance in mixed traffic
flow. Specifically, we consider the optimal H2 performance of the entire traffic flow, reflecting
the potential of autonomous vehicles in mitigating traffic perturbations. Then, we formulate
the optimal formation problem as a set function optimization problem. Numerical results reveal
two predominant optimal formations: uniform distribution and platoon formation, depending
on traffic parameters. In addition, we show that 1) the prevailing platoon formation is not
always the optimal choice; 2) platoon formation might be the worst choice when HDVs have
a poor string stability behavior. These results suggest more opportunities for the formation of
autonomous vehicles, beyond platooning, in mixed traffic flow.
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1. INTRODUCTION

For a series of human-driven vehicles (HDVs), it is known
that small perturbations may be accumulated and am-
plified, finally leading to stop-and-go waves. This phe-
nomenon, also known as phantom traffic jam, has result-
ed in a great loss of travel efficiency and fuel economy
(Sugiyama et al., 2008). The emergence of autonomous ve-
hicles is expected to smooth traffic flow and improve traffic
efficiency significantly. In particular, instead of controlling
each vehicle separately, cooperative formation and control
of multiple autonomous vehicles will revolutionize future
transportation systems (Li et al., 2017).

One typical example of cooperative formation is vehicle
platooning, which has attracted increasing attention in the
past decades. In a platoon, adjacent autonomous vehicles
are regulated to maintain the same desired velocity while
keeping a pre-specified inter-vehicle distance. Both rigor-
ous theoretical analysis (e.g., Zheng et al., 2015) and real-
world experiments (e.g., Milanés et al., 2013) have con-
firmed the great potential of vehicle platooning in achiev-
ing higher traffic efficiency, better driving safety, and lower
fuel consumption. However, platooning technologies typi-
cally require all the involved vehicles to have autonomous
capabilities. As the gradual deployment of autonomous
vehicles in practice, there will be a long transition phase of
mixed traffic flow, where HDVs and autonomous vehicles
coexist. This brings a challenge for the practical imple-
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mentation of vehicle platooning. Since autonomous vehi-
cles are usually distributed randomly in real traffic flow,
several maneuvers, including joining, leaving, merging, and
splitting, need to be performed to form the neighboring
autonomous vehicles into a platoon (Amoozadeh et al.,
2015). Despite the great potential of platooning, recent
works have revealed the possible negative impacts of these
maneuvers, which might even cause undesired congestions;
see, e.g., Mena-Oreja and Gozalvez (2018). These results
suggest that forming a platoon for autonomous vehicles
might not be necessary in mixed traffic flow.

In fact, platooning is not the only formation option for
autonomous vehicles in mixed traffic flow. Possible choices
can be much more diverse, since any combination form of
HDVs and autonomous vehicles is feasible. For example,
uniform distribution of autonomous vehicles (see Fig. 1(a)
for illustration) could be another simple formation. It
is of great importance to investigate the formation for
autonomous vehicles that can achieve optimal system-wide
performance for the entire mixed traffic flow. However,
most existing works on mixed traffic flow focus on the
influence of penetration rates; see, e.g., Talebpour and
Mahmassani (2016). These works typically assume either
a random formation (Fig. 1(b)) or the platoon formation
(Fig. 1(c)). The role of different formations of autonomous
vehicles in mixed traffic flow has not been well-understood.
In particular, whether the prevailing platoon formation
performs better than other formations in mixed traffic flow
remains unclear. In this paper, our main focus is to identify
an optimal formation for autonomous vehicles in mixed
traffic environment.
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(a) Uniform distribution

(b) Random formation

(c) Platoon formation

Fig. 1. Possible formations of autonomous vehicles in
mixed traffic flow. Gray vehicles and blue vehicles
denote HDVs and autonomous vehicles, respectively.

To address this problem, we utilize the notion of La-
grangian control of traffic flow (Stern et al., 2018), where
autonomous vehicles serve as mobile actuators for traffic
control. Its effectiveness in dampening traffic waves has
been validated in the case of one single autonomous vehi-
cle, including theoretical analysis (Cui et al., 2017; Zheng
et al., 2020), small-scale real-world experiments (Stern
et al., 2018) and large-scale numerical simulations (Vinit-
sky et al., 2018). Along this direction, it is important to
investigate the influence of different placements of multiple
autonomous vehicles on mixed traffic systems. A closely
related topic is the so-called actuator placement problem,
which has been discussed in many dynamical systems, in-
cluding mechanical systems (Hiramoto et al., 2000), power
grids (Qin et al., 2018) and biological networks (Gu et al.,
2015). It has also attracted extensive attention to investi-
gate an optimal placement of multiple actuators in order
to maximize certain system performance (Olshevsky, 2014;
Summers et al., 2015). To the best of our knowledge, the
placement of autonomous vehicles in traffic flow has not
been discussed in the literature, and the previous results
on actuator placement (Olshevsky, 2014; Summers et al.,
2015) are not directly applicable.

In this paper, we focus on the problem of optimal forma-
tion of autonomous vehicles in a ring-road mixed traffic
system. The formation of autonomous vehicles is charac-
terized by their placement pattern, i.e., their locations,
in traffic flow. Particularly, we aim to answer whether
platooning achieves a better performance than other for-
mations in mixed traffic flow. We formulate this problem as
maximization of a formation value function, which is a set
function representing the performance of the global traffic
system. Specifically, the H2 performance is considered,
and submodularity is discussed for this formulation. The
contributions of this paper are as follows.

(1) A set function optimization formulation is proposed
to model the optimal formation problem of au-
tonomous vehicles in mixed traffic flow. A global H2

optimal controller is considered for the autonomous
vehicles, which can reveal the maximum potential of a
given formation of autonomous vehicles in mitigating
traffic perturbations. We show that this optimization
problem is in general not submodular.

(2) We show that platooning is not always the optimal
formation for autonomous vehicles in mixed traffic
flow. In fact, numerical results reveal two predomi-
nant optimal formations: platoon formation and u-
niform distribution. Furthermore, we find that the
optimal formation relies heavily on the string stabil-
ity performance of the HDV car-following behavior.
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Fig. 2. System model. (a) The single-lane ring road s-
cenario with autonomous vehicles and human-driven
vehicles. (b) A simplified network system schematic.

When HDVs have a poor string stability behavior,
platoon formation might be the worst choice.

The rest of this paper is organized as follows. Section 2
introduces the modeling for mixed traffic systems and
the problem statement. Formulation and analysis of the
optimal formation problem is presented in Section 3.
Section 4 shows numerical results, and we conclude this
paper in Section 5.

2. SYSTEM MODELING AND PROBLEM
STATEMENT

In this section, we present a dynamic model of mixed traffic
systems with multiple autonomous vehicles in a ring-road
setup, and introduce the optimal formation problem.

2.1 Modeling Mixed Traffic Systems

As shown in Fig. 2, we consider a single-lane ring road
of length L with n vehicles, among which there are k
autonomous vehicles and n − k human-driven vehicles.
The ring road setup has been widely used in the litera-
ture (Sugiyama et al., 2008; Cui et al., 2017; Stern et al.,
2018; Zheng et al., 2020). This setup represents a simplified
closed traffic system with no boundary conditions, and
also corresponds to a straight road of infinite length and
periodic traffic dynamics.

The vehicles are indexed from 1 to n, and we define
Ω = {1, 2, . . . , n}. We characterize the formation of au-
tonomous vehicles by their placement pattern in mixed
traffic flow, which is represented as a set S = {i1, . . . , ik} ⊆
Ω, where i1, . . . , ik denote the indices of autonomous ve-
hicles. We denote the position, velocity and acceleration
of vehicle i as pi, vi and ai, respectively. The spacing of
vehicle i, i.e., its relative distance from vehicle i − 1, is
defined as si = pi−1−pi. Then the relative velocity can be
expressed as ṡi = vi−1 − vi. The vehicle length is ignored
without loss of generality.

Based on existing HDV models, the longitudinal dynamics
of an HDV can be described by the following nonlinear
process (Orosz et al., 2010; Treiber and Kesting, 2013)

v̇i(t) = F (si(t), ṡi(t), vi(t)), i /∈ S, (1)

meaning that the acceleration of an HDV is determined by
the relative distance, relative velocity and its own velocity.
In equilibrium traffic flow, where v̇i = 0 for i = 1, 2, . . . , n,
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each vehicle moves with the same equilibrium velocity v∗

and spacing s∗. Around the equilibrium state (s∗, v∗), we
define the error state as

s̃i(t) = si(t)− s∗, ṽi(t) = vi(t)− v∗. (2)

Applying the first-order Taylor expansion to (1), we can
derive a linearized model for each HDV around the equi-
librium state{

˙̃si(t) = ṽi−1(t)− ṽi(t),
˙̃vi(t) = α1s̃i(t)− α2ṽi(t) + α3ṽi−1(t),

i /∈ S, (3)

with α1 = ∂F
∂s , α2 = ∂F

∂ṡ −
∂F
∂v , α3 = ∂F

∂ṡ evaluated at the
equilibrium state (s∗, v∗). According to the real driving
behavior, we have α1 > 0, α2 > α3 > 0 (Jin and Orosz,
2016; Cui et al., 2017).

For each autonomous vehicle, the acceleration signal is
directly used as the control input ui(t), and its car-
following model is thus given by{

˙̃si(t) = ṽi−1(t)− ṽi(t),
˙̃vi(t) = ui(t),

i ∈ S. (4)

To model traffic perturbations, we assume there ex-
ists a scalar disturbance signal ωi(t) with finite ener-
gy in the acceleration of vehicle i (i ∈ Ω). Lump-
ing all the error states into one global state x(t) =

[s̃1(t), . . . , s̃n(t), ṽ1(t), . . . , ṽn(t)]
T

and letting ω(t) = [ω1(t)

, . . . , ωn(t)]T , u(t) = [u1(t), . . . , un(t)]
T

, the state-space
model for the mixed traffic system is then obtained

ẋ(t) = ASx(t) +BSu(t) +Hω(t), (5)

where we have

AS =

[
0 M1

α1 (In −DS) PS

]
∈ R2n×2n,

BS = [ei1 , ei2 , . . . , eik ] ∈ R2n×k,

H =

[
0
In

]
∈ R2n×n,

and

M1 =


−1 · · · 1
1 −1

. . .
. . .
1 −1

 ∈ Rn×n,

DS = diag (δ1, δ2, . . . , δn) ∈ Rn×n,

PS =


−α2δ̄1 · · · α3δ̄1
α3δ̄2 −α2δ̄2

. . .
. . .

α3δ̄n −α2δ̄n

 ∈ Rn×n.

Throughout this paper, we use In and diag(·) to denote an
identity matrix of size n and a diagonal matrix, respective-
ly. We also define a bool variable δi to indicate whether
vehicle i is an autonomous vehicle, i.e., δi = 0, if i /∈ S;
δi = 1, if i ∈ S. Let δ̄i = 1 − δi indicate whether vehicle
i is an HDV. In the input matrix BS , the vector eir is a
2n × 1 unit vector (r = 1, 2, . . . , k), with the (ir + n)-th
entry being one and the others being zeros.

Remark 1. Note that another mathematical model was in-
troduced in Zheng et al. (2020) to describe the dynamics of
a ring-road mixed traffic system with multiple autonomous
vehicles. Since the state vector therein can be transformed
to x(t) in (5) by a permutation matrix, model (5) is
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Fig. 3. Possible formations when n = 12, k = 4. Gray
nodes: HDVs; blue nodes: autonomous vehicles. (a)
Platoon formation (S = {1, 2, 3, 4}). (b) Uniform dis-
tribution (S = {1, 4, 7, 10}). (c) Abnormal formation
(S = {1, 6, 7, 8}).

essentially equivalent to that in Zheng et al. (2020). In
this paper, we choose the form (5) due to its convenience
to reflect the relationship between system matrices and the
formation S of autonomous vehicles.

Remark 2. It is demonstrated that autonomous vehicles
can be utilized as mobile actuators for traffic control,
leading to the notion of Lagrangian control of traffic
flow (Stern et al., 2018). The potential of one single au-
tonomous vehicle in stabilizing traffic flow and improving
traffic velocity has been revealed in recent works (Cui
et al., 2017; Stern et al., 2018; Zheng et al., 2020; Wang
et al., 2019). When multiple autonomous vehicles coexist,
their specific formation plays a key role on the global per-
formance of the entire traffic flow. The prevailing vehicle
platooning is a straightforward choice for the formation
(see Fig 3(a)). However, whether platooning is the optimal
one remains unclear.

2.2 Problem Statement

In this paper, our main focus is to identify an optimal for-
mation that maximizes a system-wide performance metric
of the entire traffic system.

Problem 1. Assume there are k autonomous vehicles in
the ring-road mixed traffic system (5). Find an optimal
formation, i.e., S = {i1, . . . , ik} ⊆ Ω, for the autonomous
vehicles, which achieves the optimal system-wide perfor-
mance for the entire traffic flow.

In Fig. 3, we illustrate three examples of the formation of
autonomous vehicles in the ring-road mixed traffic system,
when n = 12, k = 4. Possible formations include platoon
formation (Fig. 3(a)), uniform distribution (Fig. 3(b)) and
other abnormal cases (Fig. 3(c)). We are interested in
whether the prevailing platoon formation is the optimal
choice for the mixed traffic scenario. To formulate Prob-
lem 1 mathematically, we utilize the formation S as the
decision variable. To quantify the performance of certain
formation, we introduce a formation value function, J(S) :
2Ω → R, to measure the system-wide performance for a
given formation S ⊆ Ω. Note that J(S) is a set function,
and a larger value of J(S) indicates a better performance.
The cardinality of S is denoted as |S|. Then Problem 1
can be formulated abstractly as follows

max
S

J(S)

s.t. S ⊆ Ω, |S| = k
(6)

where the optimal solution S∗ offers the optimal formation
for autonomous vehicles in mixed traffic flow.
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Remark 3. Formulation (6) is a standard set function opti-
mization problem, which has been widely used in the prob-
lem of actuator placement in dynamical systems; see, e.g.,
Qin et al. (2018). For a linear time-invariant system given
by ẋ = Ax + Bu, most existing results typically consider
the case where the placement decision only determines the
input matrix B (Olshevsky, 2014; Summers et al., 2015).
In mixed traffic flow, however, autonomous vehicles and
HDVs have distinct dynamics. When we choose a different
formation for autonomous vehicles, the system matrix A
will also be changed. Therefore, in our system model (5),
both the system matrix AS and input matrix BS rely
on the formation S of autonomous vehicles. The results
in Olshevsky (2014) and Summers et al. (2015) are not
directly applicable.

Remark 4. Note that the choice of the system performance
metric J(S) has a great influence on the optimal solution
to (6). In previous works on optimal actuator placemen-
t, controllability criteria have received the most atten-
tion (Olshevsky, 2014; Summers et al., 2015). However,
it has been shown in Zheng et al. (2020) that a ring-road
mixed traffic system is not completely controllable but is
stabilizable, when |S| ≥ 1. In this paper, we consider anH2

optimal control performance metric, which can reveal the
maximum potential of a given formation of autonomous
vehicles in mitigating traffic perturbations. The detailed
formulation is presented in the next section.

3. PROBLEM FORMULATION AND ANALYSIS

In this section, a global H2 optimal controller is applied
to the autonomous vehicles and the resulting optimal
H2 performance value is chosen as the explicit form of
the formation value function J(S). Submodularity of this
specific formulation is also discussed.

3.1 Global Optimal Controller

For a given formation S of autonomous vehicles, we
consider a global state feedback controller

u = −KSx, KS ∈ R2n×k. (7)

The control objective is to achieve an optimal performance
for the global mixed traffic system via controlling the
autonomous vehicles. Specifically, the control target is to
minimize the influence of undesired perturbations ω(t) on
the mixed traffic system. Note that the optimal feedback
gain KS relies on the choice of the formation S.

We use z(t) to denote a performance output for the global
mixed traffic system

z(t) =

[
Q

1
2

0

]
x(t) +

[
0

R
1
2

]
u(t), (8)

where Q
1
2 = diag (γs, . . . , γs, γv, . . . , γv) and R

1
2 =

diag(γu, . . . , γu). The weight coefficients γs, γv, γu > 0
represent the penalty for spacing error, velocity error and
control input, respectively. When applying the controller
u = −KSx, the dynamics of the closed-loop mixed traffic
system then become

ẋ(t) = (AS −BSKS)x(t) +Hw(t),

z(t) =

[
Q

1
2

−R 1
2KS

]
x(t).

(9)

We use the H2 norm of the transfer function GS from
disturbance ω to output z to describe the influence of
perturbations on the traffic system. Then the optimal
feedback gain KS of the autonomous vehicles can be
obtained by solving the following optimization problem

min
KS

‖GS‖22 (10)

where ‖·‖2 denotes the H2 norm. The optimization prob-
lem (10) is in the standard form of H2 optimal con-
trol (Skogestad and Postlethwaite, 2007). Here, we directly
present a convex reformulation for (10) as follows (Zheng
et al., 2020)

min
X,Y,Z

Tr(QX) + Tr (RY )

s.t. (ASX −BSZ) + (ASX −BSZ)T +HHT � 0,[
Y Z
ZT X

]
� 0, X � 0,

(11)
where Tr(·) denotes the trace of a matrix. Problem (11)
can be reformulated into a standard semidefinite program,
which can be solved efficiently via existing solvers, e.g.,
Mosek (Mosek, 2010).

3.2 Reformulation of Optimal Formation

For a given formation decision S, the optimal feedback
gain KS can be obtained by solving (11). Meanwhile, the
optimal value of minKS

‖GS‖22 indicates the minimum in-
fluence of perturbations on the entire traffic flow when the
autonomous vehicles are optimally controlled. According-
ly, the specific expression of the formation value function
J(S) in (6) can be given by

J(S) := −min
KS

‖GS‖22. (12)

The negative sign exists for normalization. Now, the o-
riginal problem (6) of optimal formation of autonomous
vehicles in mixed traffic flow can be reformulated as

max
S

J(S) = −min
KS

‖GS‖22
s.t. S ⊆ Ω, |S| = k

(13)

In (13), the optimization problem (11) needs to be solved
first to calculate the specific value of J(S) for a given
formation decision S. Since it is proved in Zheng et al.
(2020) that the mixed traffic system with one or more
autonomous vehicles is always stabilizable, there exist
stabilizing feedback gains KS under which the H2 norm of
GS is finite, when |S| ≥ 1.

3.3 Submodularity Analysis

Based on combinatorial optimization problem (13), we
can obtain the optimal formation solution by enumerating
all possible subsets of cardinality k. Here, we attempt to
investigate whether (13) possesses certain useful properties
that lead to practically efficient algorithms. In particular,
we consider the property of submodularity, which plays
a significant role in set function optimization problems.
For submodular functions, a simple greedy algorithm can
return a near-optimal solution (Nemhauser et al., 1978).
Intuitively, submodularity of a set function describes a di-
minishing return property: adding an element to a smaller
set gives a larger gain than adding it to a larger set. The
formal definition is as follows.
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Definition 1. (Submodularity). A set function f : 2Ω → R
is called submodular if for all A ⊆ B ⊆ Ω and all elements
e ∈ Ω, it holds that.

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). (14)

We find that submodularity does not hold for J(S).
Here we present a simple counterexample. Assume α1 =
0.5, α2 = 2.5, α3 = 0.5 and γs = 0.01, γv = 0.05, γu = 0.1.
Let S1 = {4, 9, 10} and S2 = {2, 3, 4, 9, 10}, which implies
S1 ⊆ S2. Then we can compute directly that

J (S1 ∪ {1}) = −0.5982, J (S1) = −0.5003;

J (S2 ∪ {1}) = −0.7860, J (S2) = −0.6910.

It is clear to see that
J (S1 ∪ {1})− J (S1) = −0.098

≤ J (S2 ∪ {1})− J (S2) = −0.095,

which violates (14) in Definition 1, indicating that J(S)
is not submodular. Therefore, the greedy algorithm in
previous works, e.g., Summers et al. (2015), cannot provide
any guarantees when solving problem (13). Since our main
focus is to identify the optimal formation of autonomous
vehicles as shown in Problem 1, the brute force method is
one straightforward approach to obtain the true optimal
solution.

4. NUMERICAL RESULTS OF OPTIMAL
FORMATION

In this section, we present the numerical results of optimal
formation of multiple autonomous vehicles in mixed traffic
flow based on formulation (13).

4.1 Numerical Setup

We consider an explicit car-following model, the optimal
velocity model (OVM), for HDVs in our numerical studies.
The specific model of (1) can then be expressed as (Jin and
Orosz, 2016)

F (·) = α (V (si(t))− vi(t)) + βṡi(t), (15)

where α, β > 0 represent the driver’s sensitivity coef-
ficients and V (·) denotes the spacing-dependent desired
velocity, typically given by

V (s) =


0, s ≤ sst;

fv(s), sst < s < sgo;

vmax, s ≥ sgo,

(16)

with

fv(s) =
vmax

2

(
1− cos(π

s− sst

sgo − sst
)

)
. (17)

In OVM model, the values of the coefficients in the
linearized HDV model (3) can be calculated as

α1 = αV̇ (s∗) , α2 = α+ β, α3 = β, (18)

where V̇ (s∗) denotes the derivative of V (·) at s∗. Fig. 4

illustrates the curves of V (s) and V̇ (s) under a typical
parameter setup as that in Jin and Orosz (2016).

4.2 Two Predominant Optimal Formations

The first numerical study aims to answer Problem 1, i.e.,
identify the optimal formation of autonomous vehicles in
mixed traffic flow. Formulation (13) is considered and the
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Fig. 4. Typical profile of the spacing-dependent desired
velocity V (s) and its derivative V̇ (s) when α =
0.6, β = 0.9, vmax = 30, sst = 5, sgo = 35.

brute force method is utilized for numerical computation.
We fix vmax = 30, sst = 5, sgo = 35 and let γs = 0.01, γv =
0.05, γu = 0.1. Then we observe that the numerical
solution of the optimal formation relies on the parameter
setup in OVM model, i.e., the car-following behavior of
HDVs. Three examples are listed in Table 1 when n =
12, k = 4. Platoon formation, uniform distribution or
even certain abnormal formations might be the optimal
formation. A typical abnormal result is the same as that in
Fig. 3(c), which is essentially a transition pattern between
platoon formation and uniform distribution.

Table 1. Optimal Formation

α β s∗ numerical solution

1.4 1.8 10 platoon formation (Fig. 3(a))
0.6 0.9 20 uniform distribution (Fig. 3(b))
0.9 1.3 16 abnormal formation (Fig. 3(c))

We proceed to solve Problem (13) in various parameter
setups. The vehicle number is set to n = 12, k = 2 or 4. We
still fix vmax = 30, sst = 5, sgo = 35, but discretize α, β, s∗

within a common range: α ∈ [0.1, 1.5], β ∈ [0.1, 1.5], s∗ ∈
[5, 35]. Two different setups of the weight coefficients
γs, γv, γu in the performance output (8) are also under
consideration. Note that the brute force method can also
offer the worst formation based on (13) at the same
time. The numerical results of optimal formation and
worst formation are illustrated in Fig. 5. As can be
clearly observed, there exist two predominant patterns
for optimal or worst formations: platoon formation and
uniform distribution. This result holds regardless of the
specific number of autonomous vehicles k or the value
of weight coefficients in (8). Between these two patterns
there is an apparent boundary, along which there might
exist some abnormal results. One interesting observation
is that the optimal formation and the worst formation have
an evident corresponding relationship. Precisely, when
uniform distribution is optimal, platoon formation usually
becomes the worst, and vice versa. This result indicates
that the prevailing platoon formation might be the optimal
formation, but could also be the worst choice, depending
on the parameter of HDV car-following behaviors.

Then we make further investigations on the explicit re-
lationship between the optimal formation and the HDV
parameter setup. It is observed that the string stability
performance of HDV car-following behaviors has a strong
impact on the optimal formation of autonomous vehicles
in mixed traffic flow. A series of vehicles is called string
unstable if oscillations are amplified upstream the traffic
flow. As shown in Orosz et al. (2010), the condition for
strict string stability of OVM after linearization is
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Fig. 5. Optimal and worst formation at various parameter setups. Red circles, blue triangles, and gray stars denote
uniform distribution, platoon formation, and abnormal formations, respectively. In each panel, the left figure shows
the optimal formation, where the darker the red, the larger the value of ξ; the darker the blue, the smaller the value
of ξ. In contrast, the right figure shows the worst formation, where the darker the blue, the larger the value of ξ; the
darker the red, the smaller the value of ξ. (a)(b) γs = 0.01, γv = 0.05, γu = 0.1. (c)(d) γs = 0.03, γv = 0.15, γu = 0.1.

α+ 2β ≥ 2V̇ (s∗). (19)

Here we define a string stability index ξ as

ξ := α+ 2β − 2V̇ (s∗) . (20)

Note that a larger value of ξ indicates a better string sta-
bility behavior. In our parameter setup, V̇ (s∗) decreases
as |s∗− 20| grows up, as shown in Fig. 4(b). Therefore, a
larger value of α, β or |s∗ − 20| leads to a larger value of
ξ, i.e., a better string stability performance of HDVs.

In Fig. 5, we utilize the color darkness to indicate the
value of ξ. Then the relationship between string stability of
HDVs and the optimal formation of autonomous vehicles
can be clearly observed. At a larger value of ξ, platoon for-
mation could be the optimal choice. In contrast, when ξ is
small, indicating a poor string stability behavior of HDVs,
uniform distribution achieves the best performance, while
platoon formation becomes the worst. Note that in general
cases we always assume that HDVs have a poor string
stability behavior due to drivers’ large reaction time and
limited perception abilities (Sugiyama et al., 2008). This
result indicates that platoon formation might have the
most limited capability to improve traffic flow, compared
to other possible formations in mixed traffic flow. One
intuitive understanding is that when HDVs has a poor
string stability performance, distributing autonomous ve-
hicles uniformly allows autonomous vehicles to maximize
their capabilities in suppressing traffic instabilities and
mitigating undesired perturbations. Instead, when all hu-
man drivers have better driving abilities, organizing all the
autonomous vehicles into a platoon is a better choice.
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Fig. 6. Comparison between platoon formation and uni-
form distribution at different system scales. In OVM
model, α = 0.6, β = 0.9, s∗ = 20, vmax = 30, sst =
5, sgo = 35. (a) γs = 0.01, γv = 0.05, γu = 0.1. (b)
γs = 0.03, γv = 0.15, γu = 0.1.

4.3 Comparison Between Platoon Formation and Uniform
Distribution

Finally, we carry out another numerical study to make
further comparisons between the two predominant forma-
tions at different system scales n ∈ [8, 40]. In Section 4.2,
we consider different OVM parameters, but focus on the
single case where n = 12. Here we vary the system scale,
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but fix the OVM model to a typical setup for human’s
driving behavior as that in Jin and Orosz (2016). The
comparison results for J(S) of these two formations are
demonstrated in Fig. 6 (k = 2 or 4). Recall that a larger
value of J(S) denotes a better performance when |S| is
fixed. We observe that in this parameter setup, uniform
distribution is optimal, while platoon formation is the
worst. Moreover, as shown in Fig. 6, the performance gap
between the two formations is rapidly enlarged as the
system scale grows up. This results indicates that at a large
system scale, i.e., a low penetration rate of autonomous
vehicles, there could exist a huge performance difference
between platoon formation and other possible formations,
e.g., uniform distribution. In the near future when we only
have a few autonomous vehicles on the road, platooning
might not be a suitable choice for improving the global
traffic performance.

5. CONCLUSION

In this paper, we have formulated a set function opti-
mization problem to investigate the optimal formation
for autonomous vehicles in mixed traffic flow. Taking into
account the H2 performance metric, we reveal that there
exist two predominant optimal formations for autonomous
vehicles: uniform distribution and platoon formation. In
particular, our results indicate that when HDVs have a
poor string stability behavior, the prevailing vehicle pla-
tooning is not a suitable choice, which might even have
the least potential in mitigating traffic perturbations. Our
results suggest more opportunities for the formation of
autonomous vehicles in mixed traffic flow, beyond the
prevailing platoon formation. Reconsidering these possi-
bilities can take full advantage of the benefits brought by
autonomous vehicles in mixed traffic systems.
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