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Abstract: The generation of high-energy laser pulses by so-called regenerative (optical)
amplifiers is limited by the occurrence of period-doubling bifurcations induced by an inherently
unstable pulse-to-pulse dynamics. Recently, the application of linear feedback methods to
stabilize this pulse-to-pulse dynamics by modifying the supplied seed pulses was suggested as
an alternative to the quite expensive current state of the art involving dedicated pre-amplifiers.
To address some shortcomings inherent to the linear feedback, this paper investigates the design
of nonlinear state feedback laws and in particular the possibility to stabilize the pulse-to-pulse
dynamics globally subject to the given input constraints.
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1. INTRODUCTION

Ultra-short pulses of intense laser light have become an
essential tool in many scientific areas such as strong field
physics (see Krausz and Ivanov (2009)), coherent light-
matter interactions as investigated in Goswami (2003),
for pumping of optical parametric amplifiers and free
electron lasers (see, e.g., Malevich et al. (2013) and Kellert
et al. (2013)). Chapman et al. (2011) proposed the use
of such pulses for the crystallographic analysis of fragile
protein structures. Due to the high power density, short
high-energy pulses are used for ablation-based material
processing of micro-mechanical devices (e.g., in Nolte et al.
(1997); Tönshoff et al. (2000); Jiang et al. (2018)) and
laser-based eye surgery (e.g., in Sekundo et al. (2008)).

The generation of high-energy pulses is usually done by
feeding seed pulses with low pulse energy into so-called re-
generative amplifiers (RAs), where a continuously pumped
gain medium is placed inside an optical resonator. The
pulse is then cycled several times until the stored energy
of the gain medium is extracted and the amplified pulse is
released. Since the pumping process is typically not strong
enough to fully recharge the gain medium between two
consecutive pulses, the amplification characteristics of the
current pulse depends on the previous pulse and a pulse-
to-pulse dynamic emerges. The seed pulses are injected
into the resonator with a fixed periodicity and thus the
amplifier approaches a steady state where the pumping
process exactly compensates the energy extracted by the
previous pulse. When trying to exploit the full potential
of a given amplifier, it has to be operated close to the
damage threshold of the cavity optics. An uncontrolled ex-
citation of the pulse-to-pulse dynamics is thus potentially
hazardous. The coupling of consecutive pulses described
above can even render the amplifier unstable in certain
operational regions as analyzed by Dörring et al. (2004);

Grishin et al. (2007). Unfortunately, these regions usually
contain interesting operating points such as the point of
highest energy extraction and the point of highest energy
efficiency. A simple but rather costly solution to this prob-
lem proposed by Grishin et al. (2009) is to increase the
available seed energy using dedicated pre-amplifiers. While
this has become the standard approach today, an early
work by Dörring et al. (2004) already indicated the pos-
sibility of feedback methods to stabilize such operational
regimes. Recently, Deutschmann et al. (2019) presented a
first implementation of feedback approaches by modifying
the energy of the seed pulses using programmable optical
filters. Such filters are commonly employed in different
applications, e.g., to compensate for gain-narrowing and
pulse propagation effects in Malevich et al. (2013), or to
iteratively generate output pulses of arbitrary shape in
Deutschmann et al. (2018).

The experimental and numerical analysis of the linear out-
put feedback laws in Deutschmann et al. (2019) illustrates
their sensitivity with respect to disturbances due to the
nonlinearity of the output map. Since it is possible to
infer the system’s state directly from measurements of
the residual pumping beam, application of state feedback
methods can increase the robustness of the closed-loop
system. However, for operating points in a highly non-
linear regime, the region of attraction of linear feedback
designs becomes quite small. Therefore, it seems natural
to investigate the design of a nonlinear controller which
ensures global asymptotic stability (GAS) of the closed-
loop system. This paper exactly pursues this goal.

To this end, the mathematical model is briefly summarized
in Section 2 and a motivating example is given in Section 3.
Section 4 investigates the design of nonlinear feedback laws
and their limitations in practice. Finally, a short conclusion
is given in Section 5.
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2. MATHEMATICAL MODEL

This section shortly summarizes the mathematical model
of the regenerative amplifier. For more details, the reader
is referred to Deutschmann et al. (2019); Deutschmann
(2019). Since we are mainly interested in the pulse-to-
pulse dynamics, the laser pulses can be described using
the intensity I(t) while neglecting their spectral proper-
ties. Without loss of generality, we consider regenerative
amplifiers using a simple atomic four-level structure of the
gain medium and a ring cavity design as illustrated in
Fig. 1, i.e., the laser pulse passes the gain medium once
per round trip. Additionally, the amplifier is operated in a
so-called end-pumped configuration, i.e., the gain medium
is excited using a continuous pumping beam IP(t) which
is fed through the gain medium axially aligned with the
laser pulses and propagates in the same direction.

gain
medium

Iseed Inin In,kin
IP In,kout Inout

k = 1, . . . ,MRT

ηRC

ηnin ηout

Fig. 1. Schematic overview of a regenerative amplifier.

As a result, identical seed pulses Iseed(t) from a source with
repetition rate frep are fed through an optical filter with
an adjustable input loss factor 0 ≤ ηnin ≤ 1 which can be
modified for each pulse with index n. The resulting input
pulse is thus given by

Inin(t) = ηninIseed(t). (1)

Denoting the k-th round trip inside the cavity of the n-

th pulse by In,kin (t) and In,kout (t) according to Fig. 1, the
modified input pulse Inin(t) is then injected into the cavity,

i.e., In,1in (t) = Inin(t). Aligning the propagation direction
with the z-axis and using the population inversion of the
excited states ∆N , each amplification process in the gain
medium can be described using the coupled set of (partial)
differential equations, see Deutschmann et al. (2019),

∂I

∂t
= −v ∂I

∂z
+ σv∆N I (2a)

∂IP
∂t

= −vP
∂IP
∂z
− σPvP (Ndop −∆N) IP (2b)

∂∆N

∂t
= −γ∆N − σI

~ω
∆N +

σPIP
~ωP

(Ndop −∆N) , (2c)

with the reduced Planck constant ~, the relaxation rate
γ, the density of the dopant Ndop and the associated
group velocities v, vP, the atomic transition cross-sections
σ, σP, and the corresponding angular frequencies ω, ωP,
respectively. For each round trip k, the input pulse enters

the gain medium on the left boundary I(0, t) = In,kin (t)
with the initial condition I(z, 0) = 0. The amplified output

pulse is given by In,kout = I(L, t) with the length of the
gain medium L. Similarly, it follows for the continuous
pumping beam that IP(0, t) = ppump(t)/AB with the (slowly)
adjustable pump power ppump(t) and the beam cross
sectional area AB . Since the pump power is changing
slowly, it is assumed that its initial value IP(z, 0) is
a steady-state solution of (2b). Finally, the population
inversion couples the successive round trips in the form
∆N(z, 0) = ∆Nn,k−1

rem (z), with the remaining population
inversion of the previous round trip ∆Nn,k−1

rem (z). After

MRT round trips, the amplified output pulse is finally given
by

Inout(t) = ηoutI
n,MRT

out (t) (3)

with the output loss factor ηout. For the remaining time un-
til the next pulse In+1

in (t) arrives, the cavity remains empty
(i.e., I(z, t) = 0) and the population inversion is able to
regenerate according to (2) to obtain the initial population
inversion of the next pulse ∆Nn

in(z) = ∆Nn+1,0
rem (z).

In case this regeneration process is not able to fully re-
store the initial population inversion, the current behav-
ior of the regenerative amplifier depends on the previous
pulses which results in a coupling of consecutive pulses.
By using time-scale separation and singular perturbation
approaches as shown in Deutschmann et al. (2019), this
pulse-to-pulse dynamics of (2) can be described by a
nonlinear discrete-time dynamic system

xn+1 = f(xn, un; pn) (4a)

yn = h(xn, un), (4b)

with the dynamic map f and the output map h using

xn = exp

(
σ

∫ L

0

∆Nn
in(z)dz

)
, (5a)

un = AB

∫ ∞
0

Inin(ξ)dξ, yn = AB

∫ ∞
0

Inout(ξ)dξ. (5b)

Additionally, it has been be assumed that the pump power
remains approximately constant for the time between two
consecutive pulses, i.e., ppump(t) ≈ pn for t ∈ [tn, tn+1)
with tn+1 = tn+1/frep. Note that f and h are quite complex
iterative relations which can be found in Deutschmann
et al. (2019); Deutschmann (2019). From a physical per-
spective, the state variable x according to (5a) denotes the
so-called initial “small signal” gain of the gain medium
during a single pass of the laser pulse while u and y
denote the total energy of the input and output pulses,
respectively.

The corresponding initial condition x0 of the discrete-time
system (4) is defined by the initial population inversion
∆N0

in(z) according to (5a). By integration of (1) and
multiplying the result with cross sectional area AB, the
input un can be expressed as a function of the adjustable
input loss factor of the optical filter as un = ηninWseed

with the available energy of the seed pulses Wseed. Since
0 ≤ ηnin ≤ 1, it follows that the system is subject to the
input constraint

0 ≤ un ≤ u, (6)

with u = Wseed.

Regenerative amplifiers are used to generate a train of
identical high-energy pulses most of the time. The dynamic
model (4) is thus operated at a steady state xs given by

xs = f(xs, us; ps), (7)

with the corresponding steady-state values us, ps and

ys = h(xs, us). (8)

Due to the scalar nature of the state, the dynamic and
output map according to (4) and the solution of (7) can
be illustrated as shown in Fig. 2 for different pump powers
p. When the steady state xs moves into the steep declining
section of f , the amplifier becomes unstable and the output
trajectory converges to periodic orbits (except for chaotic
points as analyzed in Grishin et al. (2007) using a simpler
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Fig. 2. Dynamic map f and output map h for us = u and
different pump powers p: the solutions xs of (7) and
the corresponding outputs ys are marked by dots.
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Fig. 3. Simulated ω-limit set of the output yω due to
the unstable dynamics of the regenerative amplifier
at higher pump powers p compared to the steady-
state output ys (dashed line) and measurements from
a Yb:CaF2-based experimental amplifier.

model). The resulting limit set exhibits so-called period-
doubling bifurcations shown in Fig. 3. This figure also
shows that the model (4) is in excellent agreement with
measurement data from a Yb:CaF2-based experimental
amplifier.

Remark 1. To obtain this high level of agreement be-
tween simulation and measurement data as shown in
Fig. 3, detailed properties of the physical setup (e.g., the
quasi-three-level nature of Yb:CaF2, a multi-pass pumping
scheme, etc.) have to be considered. Due to space limi-
tation, these details are omitted in this work. The pre-
sented results, however, can be transferred directly to this
more complicated case. The interested reader is referred
to Deutschmann (2019) for more details on this topic.

3. A MOTIVATING EXAMPLE

The amplifier according to Fig. 3 is designed for pulse
energies up to approximately 6 mJ and any open-loop
operation above 55 W pump power may damage its intra-
cavity optics. Additionally, a stable operation is limited
to approximately 2 mJ output pulses while a steady-state
operation up to 70 W pump power would be possible by
either increasing the seed energy, which is the current
state of art but requires an additional pre-amplifier, or
by stabilizing the amplifier using feedback. The latter was
recently proposed by Deutschmann et al. (2019) including
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Fig. 4. Numerical analysis of the region of attraction. The
shaded areas indicate the largest set of initial values
x0 around the desired steady state from which the
closed loop converges to the steady state xs using the
linear output feedback law (9).

experimental results using a dynamic output feedback law
of the form

un+1 = us + ς

(
kT
FB

[
yn − ys
un − us

])
, (9)

with the strictly monotonous sigmoid function ς : R 7→
[−us, u−us] to satisfy the input constraints (6). A suitable
linear feedback gain kFB can be obtained by transforming
(4) into sensor coordinates, i.e., by substituting xn by yn

in the vicinity of any xn where h can be inverted locally.

Simulation scenarios using the detailed model (2) together
with the feedback law (9) show a satisfying behavior of
the closed-loop system up to roughly 55 W pump power,
which is confirmed by the experimental implementation
in Deutschmann et al. (2019). For higher pump powers
p, where the amplifier becomes increasingly unstable and
nonlinear, the region of attraction of such linear feedback
designs decreases rapidly as illustrated in Fig. 4. Moreover,
the convergence behavior starts to become significantly
non-monotonic as one approaches the region of attraction’s
borders, which can produce transient pulse energies far
off the steady-state as shown in Fig. 5. As a result, the
behavior of the closed-loop system is quite sensitive to
disturbances such as fluctuations of the emitted power of
the pumping laser or of the energy of the seed pulses.

To operate amplifiers safely at pumping levels where a
failure of the feedback stabilization is potentially damag-
ing to the cavity optics, one requires feedback laws that
exhibit a certain level of robustness and ideally guarantee
stability of the closed-loop system. Since the state x can
be estimated directly by using measurements of the trans-
mitted pumping beam, it seems quite natural to apply
state feedback methods and design nonlinear feedback laws
based on the model (4) that systematically account for the
input constraints (6).

4. NONLINEAR STATE FEEDBACK

We are looking for a state feedback uk = g(xk) : X 7→ [0, u]
such that the closed-loop system xk+1 = fCL(xk) =
f(xk, g(xk)) exhibits a desired behavior and is globally
asymptotically stable (GAS). Notice that the dependence
on p is omitted for clarity. Without loss of generality, we
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Fig. 5. Dynamic behavior of the controlled and uncon-
trolled regenerative amplifier for p = 65 W.

restrict the following considerations to scenarios where
energy is stored inside the gain medium initially, i.e.,
x0 ≥ 1, and the pumping beam is active, i.e., p > 0. By the
definition of f(x, u) it is clear that f(x, u) > 1 for x > 1.
This is quite intuitive, since the incoming laser pulses can
only extract energy as long as the laser medium has some
population inversion left. As a result, the dynamics of the
system is restricted to the domain x ∈ X = [1,∞).

Since we are interested in continuous feedback functions g,
the discrete-time nature of the dynamics (4) implies that
the closed-loop system is GAS if fCL(x) is a contraction
map, i.e.,

|fCL(x1)− fCL(x2)| ≤ c |x1 − x2| (10)

holds for all x1, x2 ∈ [1,∞) with c < 1. This can be easily
seen by using the Lyapunov function V (ek) = |ek| with
ek = xk − xs where xs = fCL(xs). Applying Lyapunov’s
direct method for discrete-time systems (see, e.g., Freeman
(1965)) directly results in

V (ek+1)− V (ek) = |fCL(xk)− xs| − |xk − xs|
< (c− 1)|xk − xs| < 0. (11)

Since fCL(x) is differentiable, the condition (10) is satisfied
iff ∣∣∣∣dfCL

dx
(x)

∣∣∣∣ ≤ c < 1 (12)

for all x. Differentiating the closed-loop dynamics with
respect to x yields

dfCL

dx
(x) =

∂f

∂x
(x, g(x)) +

∂f

∂u
(x, g(x))

dg

dx
(x), (13)

which is why a desired fdCL(x) can be obtained by solving
the differential equation

dg

dx
=

(
∂f

∂u
(x, g)

)−1(
dfdCL

dx
(x, g)− ∂f

∂x
(x, g)

)
(14)

with respect to g in the vicinity of any point (x, g) ∈ X ×
[0, u] with ∂f

∂u (x, g) 6= 0. This formulation is particular
beneficial since it is much simpler to give desired values

for
dfd

CL

dx (x, g) than for fdCL(x) itself.
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Fig. 6. Exemplary behavior of ∂f
∂x (x, u) (solid) and ∂f

∂u (x, u)
(dashed) for input pulses u ∈ {u/10, u/2, u}.

4.1 Global asymptotic stabilization

Since ∂f
∂u (x, g) < 0 for all values inside the region of

interest except for points on the domain boundaries x = 1
and x → ∞, we can solve (14) starting from the initial
condition

g(1) = u (15)

while ensuring that the desired correction
dfd

CL

dx (x, g) −
∂f
∂x (x, g) becomes sufficiently small when approaching the
domain boundaries. This is easily possible since the am-
plifier’s natural behavior ∂f

∂x (x, g) only starts to violate
the stability condition (12) far off the boundaries. An

exemplary behavior of ∂f
∂x (x, u) and ∂f

∂u (x, u) is depicted
in Fig. 6. Since the regions where the amplifier becomes
unstable are aligned with those regions where ∂f

∂u (x, u)
is large, shaping the closed-loop system in an arbitrary
way is quite difficult and requires large control efforts.
In contrast, stabilizing a certain operating point locally
is rather easy. While it is expected (cf. Grishin et al.
(2009)) that lower energies of the input pulse tend to
destabilize the amplifiers, it is interesting to note that this
also corresponds to an increased influence of the input on
the amplifier’s dynamics.

To stabilize the amplifier globally, one can choose

dfdCL

dx
(x, g) =

{
1− ε for ∂f

∂x (x, g) ≤ 1− ε
∂f
∂x (x, g) else

(16)

with a small stability margin ε > 0. A resulting solution
g(x) of (14) with (15) and (16) and the corresponding
closed loop dynamics fCL(x) is illustrated in Fig. 7.

Remark 2. Obtaining a numerical solution of (14) can be
quite difficult when approaching the lower limit u = 0 and
thus the usage of implicit schemes is beneficial.

Although decreasing the input is increasing its influence
on the amplifier’s dynamics (cf. Fig. 6), one is typically
not able to arbitrarily shape the closed-loop dynamics
since the one-sided limit limu→0+

∂f
∂u (x, u) is bounded and

thus the corrective action of the feedback law adhering
to the input constraints remains limited (see (14)). The
complexity and semi-analytic formulation of the dynamic
map f(x, u) makes it quite difficult to give strict results on
the integrability of (14) over X subject to (6) for arbitrary
amplifiers. Nevertheless, simulation results suggest that
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dynamics fCL(x) = f(x, g(x)) for p = 65 W and
ε = 0.03. The contraction map case strictly fulfills
(12) while the invariant set case uses the relaxed
condition (17).

one can indeed always choose an ε > 0 such that a GAS
feedback law g(x) exists.

Since fCL(x) is bounded from above, as shown in Fig. 7, it
is clear that I =

[
1, fCL

]
with fCL = maxx∈X fCL(x) is an

invariant set of the closed-loop dynamics, i.e., fCL(I) ⊂ I.

If one ensures that dfCL

dx < 0 for all x 6∈ I, i.e., x >

fCL, which is naturally fulfilled by keeping g(x) constant
when using a feedback design as given above, the closed-
loop dynamics maps all states greater than fCL into the
invariant set I, i.e., fCL(X \ I) ∈ I. From a stabilization
perspective, it is thus sufficient to replace (12) by∣∣∣∣dfCL

dx
(x)

∣∣∣∣ < 1 for x ∈ I and
dfCL

dx
< 0 else (17)

as illustrated in Fig. 7.

The main benefit of this invariant set condition becomes
obvious when one considers the physical realization of
such feedback strategies. First of all, the characteristics
of optical filters is quite nonlinear and sensitive to errors
at very low transmission factors ηin � 1. Additionally,
randomly scattered light pulses and background noise
starts to become dominant compared to very small input
pulses us at such operating points. The invariant set
condition can thus be seen as a lower bound on the
required actuation capabilities of the optical filters such
that globally stabilizing feedback laws can be realized in
practice.

This becomes particularly relevant if one considers the
resulting feedback law for different levels of pump power
p as shown in Fig. 8. While the shape of the feedback law
itself remains unchanged, the required corrective action
to ensure the contraction property of (17) at higher
pump powers p increasingly shifts the steady-state input
us and the required actuation capabilities towards very
low values. For example, to globally stabilize the given
amplifier at p = 75 W, one requires the input filter to
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Fig. 8. Required feedback g(x) with (16) and ε = 0.03 to
satisfy (17) for different pump powers p. Dots indicate
the resulting steady-state inputs us of the closed-loop
system.

accurately produce input pulses down to approximately
4% of the seed pulse in total energy.

4.2 Highly saturated amplifiers

As we have seen above, trying to globally stabilize ampli-
fiers by feedback methods may not be a practical solution
for high pumping levels. However, highly saturated am-
plifiers have properties that can be beneficial for certain
applications, e.g., as in Kroetz et al. (2015). Moreover,
practical feedback laws are usually evaluated by more
criteria than merely ensuring global asymptotic stability,
such as the rejection of disturbances in the vicinity of the
steady state.

In such cases, one can still use a nonlinear controller design
based on (14) to stabilize a desired operating point (xs, us)
according to (7) by replacing the initial condition (15) with

g(xs) = us (18)

and solving (14) in both directions x > xs and x < xs. If
the upper input constraint of (6) is violated, un = g(xn) is
set to the corresponding boundary value u. Furthermore,
one can modify (16) to adjust the decay of perturbations
in the vicinity of xs using

dfdCL

dx
(x, g) =


1− ε for ∂f

∂x (x, g) ≤ 1− ε
κ for f(x, g)− x ≤ δ
∂f
∂x (x, g) else,

(19)

with the desired decay rate κ for all |x − xs| ≤ δ. A
solution of (14), (18), and (19) for p = 85 W and a chosen
us = 4/10 u using ε = 0.03, δ = 0.05, and κ = −0.25 is
shown in Fig. 9. Clearly, by raising the steady-state input
due to (18) compared to (15) (see Fig. 8), the resulting
feedback law has not sufficient control margin with respect
to the upper input constraint to stabilize the amplifier
globally.

Operating points close to the maximum of h(x, u) (roughly
xs ≈ 1.15, cf. Fig. 2) are a natural choice if one is aiming
for low fluctuations of the resulting output pulses. Since
such operating points are usually located within or close to
the unstable operating regime, one is bound to feedback
schemes to stabilize the amplifier. One typical source of
disturbances are fluctuations of the pump power ppump.
Simulation scenarios for fluctuations with a standard de-
viation of 1% of the nominal value are shown in Fig. 10.
Since the globally stabilizing feedback law spends most
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of the available control effort to ensure stability, the high
level of pumping (p = 85 W) results in quite low values
of un. Conversely, the feedback law given in Fig. 9 puts
more effort into achieving a strongly damped behavior in
the vicinty of the steady state xs and thus rejects the
disturbances of the pump power significantly better at the
cost of local stability only.

Remark 3. An adjustable decay as in (19) can be com-
bined with GAS feedback laws using the initial condition
(15), but this further increases the corrective action of the
feedback law and thus shifts the resulting us to even lower
values. However, this is clearly a reasonable approach for
low pump powers where us remains sufficiently far away
from the lower input constraint.

5. CONCLUSIONS

This paper presents nonlinear state feedback laws for op-
tical regenerative amplifiers to (globally) stabilize their
pulse-to-pulse dynamics. By relating the derivative of the

feedback law with the derivative of the desired closed-
loop dynamics, one is able to design feedback laws that
ensure global asymptotic stabilization (GAS) of the am-
plifier. Achieving GAS of the closed-loop system for a given
amplifier indeed seems to be always possible. However,
the limited capabilities of typical input filters restrict the
applicability of such laws to low pump powers. Never-
theless, the same nonlinear design approach can be used
to shape the closed-loop system locally while keeping a
desired steady-state input.
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