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Abstract: This work studies the vibration rejection on elastic cable-driven parallel robots
(CDPRs). Additional cold-gas thrusters are embedded on the robot in order to improve the
rejection bandwidth. Such Unilateral Force Generators (UFGs) work as on-off actuators. Under
the framework of optimal control, a Model Predictive Control (MPC) is designed to compute
the control law and allocate the control signals to the available actuators by assigning their
binary on-off states, thus forming a Mixed Integer Quadratic Programming (MIQP)-based MPC
controller. Simulations highlight the benefits of the proposed predictive approach that yields a
better rejection, fuel efficiency, and a reduced switching between ON and OFF states with
respect to previous approaches.
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1. INTRODUCTION

The rigid links of traditional parallel robots were replaced
by flexible cables for the first time in the 1980s, according
to Qian et al. (2018). The goal was to increase the speed
and acceleration of the manipulator thanks to lower cable
inertia, and reach wider workspaces thanks to a better
scalability. The drawback is an increased flexibility that
yields vibrations degrading performance and accuracy of
such a robotic architecture.

Usual actuators for Cable-Driven Parallel Robots (CD-
PRs) are winches. They can be mounted on the supporting
structure or on the platform and are used to control the
pose of the platform. They can also be used to reject
vibrations, but they generally act with relatively slow
dynamics. To better handle these vibrations, recent works
proposed to embed additional actuators on the platform.
Thus, the cable winches are used for the pose regulation
and trajectory tracking, while extra actuators focus on
active damping of the oscillations. For instance, Weber
et al. (2014) assessed reaction wheels (commonly used in
satellite stabilization) on a planar CDPR. Lesellier et al.
(2018) used rotating arms to actively stabilize a 3-DoF pla-
nar CDPR. Rotating arms were also combined with cable
winches in Qi et al. (2019) for both vibration control and
trajectory tracking of a hybrid cable-driven robot. Binary
or on-off actuators, such as cold-gas thrusters, have also
been evaluated in Sellet et al. (2019). Such a technology
can only take ON or OFF values and the actuator, an
electromagnetic valve, has only two states: open or closed.
These actuators may be difficult to implement (because of
the need for an embedded pressure buffer and a trailing
pipe that supplies the compressed air) and to control, due

to their switched behavior. Nonetheless, they have a faster
response time than reaction wheels or rotating arms. Fur-
thermore, thrusters do not alter the platform inertia and
can maintain a unilateral force over an extended period of
time compared to inertia-based actuators that are prone
to saturation.

Dedicated actuators with fast dynamics is a promising
solution to improve active damping, but the controlled sys-
tem generally becomes over-actuated. Several approaches
studying control allocation of over-actuated systems can
be found in literature. In particular, a Model Predictive
Control (MPC) can be employed to both design the control
law and allocate the various embedded actuators under
the framework of optimal control. The so-called Model
Predictive Control Allocation (MPCA) methods were re-
viewed by Johansen and Fossen (2013). They received a lot
of interest in many fields like marine vessels, underwater
systems and mobile vehicles. For example, in order to
maintain an over-actuated marine vessel to a certain posi-
tion, known as dynamic positioning, Veksler et al. (2016)
implemented an algorithm combining both the position
control and the thruster allocation into one predictive
controller. Bächle et al. (2015) studied the performance of
a MPCA on an over-actuated vehicle drive-train equipped
with motors and brakes and designed an algorithm suitable
for real-time implementation. Qian et al. (2016) resolved
the trajectory planning of an autonomous vehicle under
the predictive control framework. Moreover, as their actu-
ators have both continuous and discrete output values, the
optimization problem was formulated as a Mixed Integer
Quadratic Programming (MIQP).

In the present paper, a model predictive control allocation
for an elastic CDPR with embedded Unilateral Force
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Fig. 1. CDPR planar configuration.

Generators (UFGs) is proposed. The actuator constraints
are explicitly considered, particularly the on-off behavior
of the cold-gas thrusters. Note that this work focuses
on oscillation rejection using fast UFGs. The control of
the winches is not considered here. The remainder of the
paper is organized as follows. Section 2 describes the over-
actuated elastic CDPR and the embedded on-off actuators
along with their dynamic equations. In Section 3, a two-
stage controller (speed control and control allocation)
is briefly introduced, derived from Sellet et al. (2019).
The MIQP-based MPCA is also detailed, especially when
binary actuators are used. The predictive controller is then
studied for the case of a 3-DoF (Degree of Freedom) planar
robot in section 4. Simulation results are used to assess the
proposal. A conclusion is finally given in Section 5.

2. SYSTEM DESCRIPTION

The system of this study is a n-DoF cable-driven parallel
robot whose platform is moved using nc elastic cables.
Additional unidirectional forces can be generated by na
actuators mounted on the platform (see Fig. 1). Let x =

[pT θθθT ]T ∈ Rn be the pose of the CDPR platform in
the inertial frame Fg, with p the vector of coordinates
of its center of gravity G and θθθ the vector of Euler angles
describing its orientation.

2.1 UFG Actuators

The unidirectional force generators (UFGs), like cold-
gas thrusters, are mounted on the platform. Their thrust
direction uai is constant into the platform frame Fb, as
represented in Fig. 1, and the thrust delivered is positive
of magnitude ti ≥ 0.

Let t = [t1, . . . , tna ]T be the vector of the thrusts for all
UFGs. The resulting wrench on the platform is given by:[

bFa
bNa

]
= −

[
bua1 . . . buana

bba1 ×b ua1 . . . bbana
×b uana

]
︸ ︷︷ ︸

Aa

t (1)

where bai is the vector of coordinates between the gravity
center G and the thruster position on the platform, Fa and
Na are the forces and moments respectively applied by the
different UFGs, Aa is the constant configuration matrix of

the embedded actuators. The wrench matrix Wa ∈ Rn×na

expressed in the inertial frame Fg is:[
gFa
gNa

]
=

[
Rgb(x) 0

0 Rgb(x)

]
Aa︸ ︷︷ ︸

Wa(x)

t (2)

where Rgb is the rotation matrix between Fg and Fb.
Finally, the UFGs are considered as binary actuators with:

ti = Tmaxui (3)

where ui ∈ {0, 1} and Tmax is the thrust when the actuator
is on. In the present case of cold-gas thrusters, high-speed
electromagnetic valves (like the Festo TMMHJ-9-QS-6-
HF) are controlling the airflow by only switching their
input between on and off.

The wrench matrix Wa ∈ Rn×na , as a function of the
vector u = [u1, . . . , una ] of the binary inputs, becomes:[

gFa
gNa

]
= TmaxWa(x) u (4)

2.2 CDPR dynamics

Using Newton-Euler formulation, the dynamic equations
of the CDPR driven by thrusters, elastic cables and
submitted to gravity g expressed in Fg are given by:[

m I 0
0 Ig

] [
p̈
ω̇ωω

]
+

[
0

ωωω × Igωωω

]
+

[
−mg

0

]
=

[
gF
gN

]
(5)

with p the coordinates of G and ωωω the angular velocity
of the platform. The platform is characterized by its mass
m and its inertia matrix Ig(x) expressed in the inertial
frame. Fc and Nc are the forces and moments respectively
exerted on the platform by the cables.

The wrench matrix Wc ∈ Rn×nc maps the cable tensions
τττ to the force Fc and moment Nc applied to the platform:[

gFc
gNc

]
= Wc(x)τττ (6)

with

Wc = −
[

guc1 ... gucnc
gbc1 ×g uc1 ... gbcnc

×g ucnc

]
where guci is the coordinates in Fg of the ith cable unit
direction vector and gbci

the coordinates of the vector
between G and the cable attachment point Bi (see Fig. 1).

The cables and embedded actuators apply on the platform
a total force F and moment N:[

gF
gN

]
=

[
gFc
gNc

]
+

[
gFa
gNa

]
= [Wc TmaxWa ]

[
τττ
u

]
(7)

where τττ is the cable tensions and u the UFGs binary in-
puts. Let S(θθθ) be the matrix that links the time derivative
of the angular coordinates θθθ to the angular velocity ωωω.

ωωω = S(θθθ)θ̇θθ (8)

Thereby, the dynamic equation of the CDPR can be
expressed as (Begey et al. (2018)):

M(x)ẍ + C(x, ẋ)ẋ + G(x) = W(x)

[
τττ
u

]
(9)

• the mass matrix or kinetic energy matrix:

M(x) =

[
mI 0
0 ST IfS

]
(10)
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• the matrix of centrifugal and Coriolis forces:

C(x, ẋ) =

[
0

ST (If Ṡθ̇θθ + S θ̇θθ × IfS θ̇θθ)

]
(11)

• the wrench matrix W ∈ Rn×(na+nc):

W(x) = [Wcx Wax ] (x) (12)

with Wcx =

[
I 0
0 ST

]
Wc, Wax = Tmax

[
I 0
0 ST

]
Wa

• the gravity matrix: G =

[
−mg

0

]
The cable under tension is considered as a straight line
between its attachment points, as depicted in Fig. 1. The
cable length vector is l1(x), the distance between the
attachment points. Let l2 = [l21, . . . , l2nc

]T be the vector
of cable free lengths when the cable tension is zero. The
vector of the cable elongations is [l1(x)− l2]. The cable
tension is thus described by the relation:

τττ = Kc(l2)[l1(x)− l2] + Fc[l̇1 − l̇2] (13)

where Fc = diag(fc, . . . , fc), with fc the cable friction
coefficient, and Kc = diag( ksl21

, . . . , ks
l2nc

), with ks the cable

specific stiffness, are diagonal matrices.

Using the winch actuators to roll and unroll the cables,
the free cable length l2 and therefore the cable tension can
be modified. However, as the paper is focused on active
damping of oscillations using UFG embedded actuators,
winch actuation is not considered for the remainder of the
paper. Thus l2 is considered as a constant vector.

3. CONTROL DESIGN

As a wrench disturbance is exerted on the robot platform,
it oscillates around its equilibrium state. The objective
of the controller is to bring back the CDPR position to
its resting position by allocating the UFG thrusts. This
section presents two approaches of disturbance rejection
for the CDPR (9), that will be compared in the sequel.

3.1 Two-stage control strategy

The first method is a two-stage control design (speed
control and control allocation), as previously proposed
in Sellet et al. (2019) and illustrated in Fig. 2. For the
first stage, a velocity feedback is introduced to damp the
oscillations. This strategy emulates a friction wrench in
opposition to the velocity of the platform oscillations. The
second stage is a thrust allocation method. It assigns the
forces of the embedded thrusters, taking into account their
saturation, in order to generate the desired friction wrench
and to ensure positivity of the thrusts.

FEEDBACK
VELOCITY

t ẋu

0|1

f

−+
CONTROL
ALLOCATION

CDPRACTUATORS SENSORS

External wrench
disturbance

Controller System

0

Fig. 2. Two-stage control strategy with velocity feedback
and control allocation.

Control design: The friction wrench created by the on-
board UFGs is in the opposite direction of the oscillation
velocity ẋ thanks to a velocity feedback:

f = −Kf ẋ (14)

where Kf = diag(k1, . . . , kn) is a positive definite and
constant diagonal matrix of tunable gains. They allow for
fine-tuning of the damping force along the main vibration
modes.

Thrust allocation: The desired wrench f ∈ Rn is mapped
to the thrust vector t ∈ Rna of the cold-gas thruster by
the wrench matrix Wax ∈ Rn×na defined in (12):

Waxt = f (15)

If Wa is full rank, the problem is under-determined and
has an infinity number of solutions of the form :

t = (Wax)+f +Nλλλ (16)

where ()+ is the Moore-Penrose pseudo-inverse and N ∈
Rna×r is a basis of ker{Wax} with r = na − n, the degree
of redundancy of the actuation. The vector λλλ ∈ Rr can be
freely chosen to select a particular solution, such that the
actuator constraints 0 ≤ ti ≤ Tmax are verified.

Let illustrate the thrust allocation on a planar 3-DOF
CDPR with a symmetrical configuration of four thrusters
as in Fig. 1. The degree of redundancy is r = 1 and
N = I4×1 = [1 1 1 1]T is a basis of the wrench matrix null
space. It means that when all the thrusters are generating
the same force, the resulting wrench on the platform is
null due to the symmetrical configuration. To ensure the
positivity of the thrust (ti ≥ 0), λ is chosen as:

λ = −min
i

(
(Wax)+f

)
i

(17)

such that

t = (Wax)+f −min
i

(
(Wax)+f

)
i
I4×1 (18)

However, if ∃i, such that ti > Tmax in the solution of (18),
the desired wrench f is out of reach for the thrusters. The
vector t, and therefore wrench f , is then scaled down by a
factor β to meet the saturation limit of all the thrusters:

t′ = β t with β = sat

(
Tmax

maxi(ti)

)
(19)

Finally, the continuous thrust t is converted in a binary
on-off control signal u for the thruster valves. A PWM
modulation of a high frequency carrier is one classic
solution to generate an equivalent average thrust with a
binary signal:

u = PWM(t) (20)

Another one is to send the thrust signal t in a Schmitt
trigger as detailed later in section 4.

The stability of this two-stage control has been proved in
Sellet et al. (2019) based on Lyapunov stability theory.

3.2 Predictive control strategy

The second approach consists of a single stage which di-
rectly allocates the thrusters to damp the disturbances.
It combines both the control design and thrust allocation
of the previous approach in a predictive framework (see
Fig. 3). One of the main features of MPC is handling ac-
tuator constraints explicitly in the optimization problem.
Therefore, the limitations of the UFGs can be expressed
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as binary constraints. These discrete or binary constraints
are handled through a so-called Mixed-Integer (MI) MPC.

MPCA
t x

0|1

uxe

−+ CDPRACTUATORS SENSORS

External wrench
disturbance

SystemController

∆x

Fig. 3. MIQP-based MPCA strategy.

Linear plant: In order to compute the MPC controller,
the CDPR dynamics are first linearized around an equi-
librium point [xT , ẋT , τττ ,u]T = [xe

T ,0T , τττe,0
T ]T . The re-

sulting linear model is equivalent to a n-DOF mass-spring
system, that is convenient for analysing and modeling the
vibration modes. Let the pose of the platform relative to its
static position around the equilibrium point xe be defined
by the deviation ∆x such as:

∆x = x− xe (21)

Then, the system (9) becomes:

M(xe) ∆ẍ + Kx(xe, τττe) ∆x = Wax(xe)u (22)

where Wax is the wrench matrix of the on-off thrusters, M
is the mass matrix of the platform and the cable friction
is neglected. The stiffness matrix of the platform is Kx,
which is a function of the cable stiffness matrix Kc and
the antagonist cable tensions τττe. The stiffness matrix is
computed through differentiating the cable wrench with
respect to the pose x of the end effector. The derivation
of the stiffness matrix for CDPR and its expression can be
found in Behzadipour and Khajepour (2006).

Let the state vector for the linearized system be:

x = [∆xT ,∆ẋT ]T (23)

Then, a linearized state-space representation is:{
ẋ = Ax +Bu
y = ∆x = Cx

(24)

with A =

[
0 I

−M−1Kx 0

]
, B =

[
0

M−1Wax

]
and C =

[
I
0

]
.

Finally, a discrete-time model can be calculated assuming
zero-order hold: {

xk+1 = Adxk +Bduk
yk = ∆xk = Cxk

(25)

MIQP-based MPC: The predictive controller runs an
optimization over a number of time samples N called
prediction horizon (Maciejowski (2002)). Based on the
prediction model (25), the predictive controller computes a
nearly optimal control sequence U = [u0, . . . ,uN−1] with
respect to the actuator constraints:

∀i, uki ∈ {0, 1} in uk = [uk1, . . . ukna
]T (26)

The first control signal sample u0 of the sequence U
is applied to the system and the optimization problem
is solved again at the next sample time. The goal of
the optimization problem is to find the sequence U that
minimizes the quadratic cost function J defined as :

J = min
U

N−1∑
k=0

‖yk − yref‖
2

Q︸ ︷︷ ︸
V∆x

+ ‖uk‖2R︸ ︷︷ ︸
Vu

+ ‖xN‖
2
P︸ ︷︷ ︸

Vf

(27)

Table 1. Parameters and constraints.

Parameter Symbol Value Unit

Platform mass mp 3.195 kg
Platform inertia Ip 0.066 kgm2

Cable specific stiffness ks 504 N
Damping coefficient fc 7 N m−1 s
Maximum thrust limit Tmax 2 N

where ‖v‖2X = vTXv, R > 0 and Q ≥ 0 are weight
matrices that penalize respectively the control energy (Vu)
and the quadratic error with respect to its reference pose
(V∆x). The term Vf in the cost function (27) is a terminal
cost introduced to ensure the closed-loop stability with an
appropriate choice of the weight matrix P ≥ 0 (Bemporad
and Morari (1999), Allan et al. (2016)).

The predictive control problem to solve at each sampling
time is defined by:

i) the cost function (27);
ii) the system model (25) with its initial state x0;
iii) the input constraints (26).

This problem is equivalent to a Mixed-Integer Quadratic
Programming (MIQP) problem, as stated by Bemporad
and Naik (2018).

4. SIMULATION RESULTS: APPLICATION TO A
3-DOF PLANAR ELASTIC CDPR

To validate the control strategy and without loss of gen-
erality, a planar CDPR suspended by 3 cables with em-
bedded air thrusters is studied here. Although only sim-
ulations are presented in this paper, the experimental
validation of the model and the two-stage control strategy
have been carried out by Sellet et al. (2019) on this same
CDPR.

The nonlinear model (9) of this CDPR is simulated with
Simulink’s Simscape MultibodyTM toolbox to reproduce
the behaviour of the real system. Parameters and thruster
constraints are defined in Table 1. The pose of the platform
in the world frame Fg is described by the vector x =
[y z θ]T ∈ R3. Around a static equilibrium pose xe =
[ye ze θe]

T , the system behavior is similar to a 3-DoF
coupled oscillator with low frequency and low-damped
modes. This results from the low stiffness and small inner
friction of the long cables used here made of polyamide
(CapperlanTM Line clear 0.55 mm).

In this section, both control strategies (introduced in
Section 3) are implemented on MATLAB/Simulink and
the performance of vibration rejection is compared.

4.1 Two-stage control strategy

The platform velocity ẋ is used to compute a friction
wrench in order to dissipate all the vibration energy. The
best damping is achieved when KF is tuned close to I3×3.
The wrench is sent to the control allocation block to
generate the equivalent on-off thrusts to be applied by the
actuators (see Fig. 2). Two versions of the input signal
modulation are implemented, derived from Sellet et al.
(2019):

(1) Pulse Width Modulation (PWM): The 100 Hz carrier
frequency of the PWM is selected in accordance with
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the opening and closing time of the high-speed valve
(2 ms). To avoid chattering of the control signal, a
dead zone is added to the wrench. Thus, if f ≤
[0.05 N, 0.05 N, 0.05 N m]T , the control signal of the
thrusters is ti = 0.

(2) Schmitt Trigger (ST): The binary signal sent to the
thrusters is modulated by using a Schmitt trigger
after the control allocation block with the same dead
zone on the wrench than PWM. The upper and lower
thresholds are fixed respectively to 0.3 N and 0.1 N.
When ti > 0.3 N, the output of the Schmitt Trigger
is 1, and so the valve is open. When ti < 0.1 N, the
output is zero and the valve is closed.

4.2 MIQP-based MPCA strategy

For the MPC approach, the model is linearized around its
equilibrium position x0, as in (24):{

ẋ = Ax +Bu
y = ∆x = Cx

(28)

where x = [∆xT ,∆ẋT ]T = [∆y,∆z,∆θ,∆ẏ,∆ż,∆θ̇]T .
Matrices A and B depend on the inertia matrix of the
platform M and the stiffness matrix Kx:

M = diag(mp,mp, Ip) Kx = diag(k1, k2, k3) (29)

where mp and Ip are mass and inertia of the platform
respectively, ki is ith cable stiffness, and Wc is the cable
wrench matrix defined in section 2.

Note that in the planar case, S = 1 in (8). The wrench
matrix Wax is given by:[
Fy
Fz
Nx

]
= Wax(xe)

u1

u2

u3

u4

 , with (30)

Wax = Tmax

[· · · cos(αi + θ0) · · ·
· · · sin(αi + θ0) · · ·
· · · bayi sin(αi + θ0)− bazi cos(αi + θ0) · · ·

]
(31)

where αi is the orientation of the ith thruster and
[0, bayi , bazi ]

T , the vector of its attachment point coordi-
nates bai in the body frame.

Then, the system (28) is discretized assuming zero-order
hold at a sampling period Ts yielding the prediction model
(25). Based on this discrete-time linear model, a predictive
controller is synthesized in order to damp the oscillations.
Here, the reference is zero, i.e. a null deviation from the
equilibrium pose. This yields yref = ∆xref = 0 and the
quadratic cost (27) becomes:

J = min
U

N−1∑
k=0

∥∥∥∥∥∆yk
∆zk
∆θk

∥∥∥∥∥
2

Q

+ ‖uk‖2R + ‖xN‖
2
P (32)

with the weighting matrices:

Q = diag(qy, qz, qθ), R = rI4, and P = diag(Q,0) (33)

where qy, qz, qθ and r are the tuning parameters of the
MPC controller.

The controller is implemented using Yalmip created by
Löfberg (2004) and using the Gurobi solver based on a
branch-and-bound algorithm. Extensive simulations were
performed to tune the parameters in order to achieve the

best performance. The resulting parameters are listed in
Table 2.

Table 2. MPC parameters.

Parameter Value Parameter Value

r 0.1 Ts 0.01 s
{qy , qz , qθ} {10, 40, 10} N 40

4.3 Evaluation and comparison of the controllers

Performance of the MIQP-based MPCA is compared to
the two-stage controller with both PWM and ST modula-
tion. Simulations are carried out by disturbing the initial
pose of the nonlinear simulation model of the CDPR, away
from its equilibrium position.

The performance criteria are:
∫
|ui| the air consumed

during the rejection, Ns the number of switchings of the
UFGs, the damping time Td and the improvement ratio of
the rejection. The damping time Td is defined as the time
required for the vibration amplitude to reach and settle
within the ±1 mm or ±5 mrad range. The improvement
ratios are computed with RMS (in %) with respect to the
open-loop response for each component x of the deviation
vector ∆x. The results are summed up in Table 3.

Table 3. Comparison of the different methods.

Ns
Td [s] ∫

|ui|
Improvement

y z θ y z θ

PWM 386 3.944 1.844 2.418 2360 36% 58% 25%
ST 364 4.069 1.577 2.534 2664 35% 54% 26%
MPC 40 1.104 1.081 0.797 348 40% 60% 38%

The predictive controller (MPC) has the fastest damping
time in the three directions, as highlighted in Fig. 4. Fur-
thermore, the MPC dampens the system while consuming
7 times less gas than the other strategies (comparing

∫
|ui|

results in Table 3). This criterion is very important when
the air tank is embedded on the robot end-effector. In
addition, the number of switchings is reduced (9 times
less) compared to PWM and ST approaches thus yielding
a quieter behavior (see Ns in Table 3). The on-off control
signals of the four cold-gas thrusters are depicted in Fig. 5
for the three strategies.

5. CONCLUSION

In this paper, two approaches are compared in order to
damp the vibrations of a elastic CDPR using on-off actua-
tors: a two-stage control strategy (with PWM and Schmitt
trigger modulation) and a MIQP-based MPCA strategy.
Both methods are validated in simulation. The proposed
predictive strategy handles explicitly the actuator binary
constraints and clearly yields better results on different
aspects: faster rejection, least number of switchings of
the binary actuators, reduced energy consumption and
smallest position error.

Experimental results have been conducted for the first
approach in Sellet et al. (2019). The predictive approach
has not been evaluated experimentally for now, but is
planned as future work. We are working on the real-time
implementation of the MIQP problem, since the current
implementation used in the simulation is not real-time
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Fig. 4. Simulation results: measurement signals.
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Fig. 5. Simulation results: control signals.

compatible. We are also evaluating the ACADO toolkit
(Quirynen et al. (2015)) that generates C code of fast
solvers for nonlinear MPC problem with constraints.
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