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Abstract: With no doubt, modeling and simulation are powerful tools improving the perfor-
mance of current optimisation and control strategies. At least in the mineral processing field,
however, one of the major gaps in literature is that authors frequently skip specific details on
the model calibration methodologies, mainly those concerning data acquisition and processing,
calibration sequence, cost function formulation (including constraints), optimisation problem
solution, parameter uncertainty, etc. As a contribution to that matter, this paper presents a
detailed calibration procedure for a grinding circuit model from plant and laboratory data.
The methodology integrates both a global search routine to avoid cost function local minima,
and a Jack-knife resampling and recalibration technique to estimate the parameter confidence.
The simulator will serve in future work for the coupling of separation processes, and thus the
development of plant-wide model-based optimisation and control strategies.

Keywords: Identification and modelling; process observation and parameter estimation;
advanced process control.

1. INTRODUCTION

Computer simulation of grinding circuits has multiple in-
dustrial purposes, e.g. equipment design, personnel train-
ing, and obviously optimisation and control. According to
a review conducted by Rogers et al. (2019), automation is
improving the value chain of the mineral industry (from ex-
ploration to refining) as never before. Most strategies rely
currently on simple PID controllers that achieve accept-
able performances. However, model-based approaches have
already demonstrated considerable advantages in terms of
throughput, fluctuations in the key variables, recovery, and
product quality, to name a few (Bouffard, 2015).

Although model calibration is key for the success of the
mentioned purposes, this stage still faces several obstacles
hindering the development of standardised methodologies.
The main gap in the literature is not the lack of data or
dynamic models, but rather to a shortfall of specific infor-
mation detailing data acquisition and processing, calibra-
tion sequence, cost function formulation and constraints,
optimisation problem solution, parameter uncertainty, etc.

Using both plant and laboratory data, Légaré et al.
(2016a) developed an approach that initialises the dy-
namic calibration with a steady-state solution. Inspired
by their work, this paper details the step-by-step calibra-
tion of a grinding circuit model with a special emphasis
on aforementioned specific technical information. Section
2 presents the actual circuit and the derived mathematical
models. The methodology proposed in Section 3 integrates
a global search optimisation routine to avoid cost function
local minima. Additionally, a Jack-knife resampling strat-

egy was adapted to provide an estimate of the parameter
uncertainty. The results and discussion in Section 4 give
the model parameters as well as the comparison between
simulated and measured data.

2. CIRCUIT AND MODEL

IAMGOLD Corporation operates Westwood mine located
in northwestern Quebec, Canada. The grinding circuit,
represented in Figure 1, comprises a semi-autogenous
(SAG) mill and a ball mill (BM). Both mills operate in
closed circuit with separate hydrocyclone clusters. Water
is added independently to each mill as well as to each pump
box for level control. The final product undergoes a gold
leaching process. The following subsections introduce the
different models used to build the plant simulator.

Fig. 1. Westwood grinding circuit.

2.1 Semi-autogenous mill model

The grinding process in a SAG mill as described by
Sbárbaro (2010) is
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dwh

dt
= ẇf − ẇp +

WP

wh

(−Swh +BSwh) (1)

where wh is the hold-up vector sorted by size classes,
ẇf and ẇp are the feed and product flow rate vectors
respectively, wh is the total ore hold-up and WP is the mill
power draw. S is the selection function, a diagonal matrix
providing the fragmentation rates for every particle size.
The breakage matrix B is a lower triangular matrix where
each column is the fractional distribution of the generated
fragments into size classes. The ore discharge rate is

ẇp = kpC
wh√
wh

(2)

where kp is a calibration constant, and C is a classification
diagonal matrix dependent of the mill grate design and the
charge solids fraction Φ. The water discharge rate

Q̇f =

(

kw0 +
kw1

w4

h

)

ww (3)

features two calibration parameters kw0 and kw1, and
depends on both the ore hold-up and water hold-up ww.

Due to a square aspect ratio, i.e. L ≈ D, and ball charge of
19% V/V, the mill exhibits a hybrid behaviour combining
both SAG and ball mills characteristics. The power draw

WP = WE + kMWM + kA1D
2.5L (1− kA2ν) f(Nc)ρh (4)

is thus better captured when combing two models, as each
one associates to a specific feature. WE is the no-load
power (i.e. the theoretical consumption when the mill is
empty) and WM obeys to a highly detailed description of
the charge movement and shape inside the mill (Morrell,
1993). The remaining terms come from a SAG mill specific
model (Austin, 1990) depending on the mill length L
and diameter D, filling fraction ν, a function of the mill
critical speed (i.e. the speed at which no grinding occurs)
ratio Nc and density of the charge ρh. Only the empirical
parameters kM , kA1 and kA2 require calibration.

The diagonal of S comes from interpolating the size
classes vector dp within the cubic spline fitting (dp,1, s0),
(dp,min, smin), (dp,max, smax) and (dp,n, sn) where dp,1 >
dp,min > dp,max > dp,n. The curve displays a rotated-s
trend characteristic of this type of mill, so the subindexes
max and min refer to the interior maximum and minimum
of the spline, respectively. The coefficients s0, smin, smax,
sn, dp,min and dp,max need calibration while dp,1 and dp,n
are simply the first and last elements in dp. Pérez-García
et al. (2019) detail the relationship between the curve
shape, calibration parameters and physical process. As for
the B matrix, the cumulative fraction of mass going to size
class i when a particle of size j breaks is

bi,j =















ϕi

(

dp,i
dp,j

)βB

+ (1− ϕi)

(

dp,i
dp,j

)γB

if i > j

0 if i ≤ j

(5)

with

ϕi = ϕ
0

(

dp,i
dp,1

)δB

(6)

and ore-specific calibration parameters βB , γB , δB and ϕ0,
assumed independent of the grinding environment.

2.2 Ball mill model

The ball mill model, as described by Légaré et al. (2016b),
supposes grinding to be independent of WP and wh, i.e.

dwh

dt
= ẇf − ẇp − Swh +BSwh (7)

with the same breakage function in (5). The S matrix
differs though, and the elements on the diagonal are

si,i =
S0d

αs

p,i

1 + (dp,i/xm)
σs

(8)

with

xm = 0.2971 exp(0.0346Db) (9)

where S0, αs and σs are calibration parameters, and Db is
the grinding media top size.

The material flows through as a series of continuously
stirred tank reactors with independent behaviour, break-
age, and internal classification functions. The slurry trans-
port depends of two volume parameters Vd and Vf , and a
rheology factor Ω requiring calibration. The power model
is (4) with kA1 = 0, i.e. only the ball mill component.

2.3 Hydroclyclones

Along with geometry and number of active units, the
hydrocyclone model (Plitt, 1976) includes four calibration
parameters Ch1, Ch2, Ch3, and Ch4, influencing the

• d50, i.e. the size of a particle having the same proba-
bility of going to the underflow or the overflow;

• pressure drop P that depends on the inlet flow rate;
• volumetric flow rate distribution between the under-

flow and overflow; and
• classification efficiency, respectively.

2.4 Auxiliary equipment

A conveyor belt delivers the fresh ore following a first
order dynamics for speed variations. The time constant is
adjusted prior to circuit calibration to match the measured
feed rate. The ore properties are delayed based on length
and speed to account for the material that remains on
the belt after any alteration in the feed. Pipes connecting
the pump boxes with the hydrocyclones also delay the
ore properties based on the internal volume and the pulp
volumetric flow rate, which is always the same in the inlet
and outlet (assumed incompressible). The pump boxes
are modeled as perfectly mixed tanks, and water addition
controls the level. Constant pump speed and perfect level
control (i.e. water addition reacts to pulp flow variations
instantaneously so the level remains constant) are assumed
for model calibration.
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3. CALIBRATION PROCEDURE

3.1 Plant sampling and laboratory test work

For the mill discharges, and the hydrocyclone underflow
and overflow streams, an initial pulp sample was cut as-
suming steady state at nominal operating conditions. The
solids fraction was measured with on-site Marcy scales.
The ore feed rate to the SAG mill was increased from
108 t/h to 123 t/h, and the streams resampled every fifteen
minutes approximately. Afterwards, the water feed rate
was changed from 38 m3/h to 45 m3/h and the sampling
repeated. Personnel availability and circuit configuration
limited the sampling rate. The 15-min period may seem
long to assess the transient responses, but the purpose here
is essentially to calibrate the size of the mill model reactors
and the S matrices. Online data from to the testing period
was extracted from the historical log, including the SAG
mill feed rates, power draw, bearings pressure, water addi-
tion to the first pump box, and the pressure drop in both
hydrocyclone clusters. An empirical relationship based on
the personnel experience is established between the SAG
mill bearings pressure and filling level. This power draw
and mill filling are not available online for the ball mill,
so they are only compared to nominal values. Collecting
validation data and samples was not possible.

All the pulp samples were filtered and dried. Particle size
distribution (PSD) was measured by dry sieving except for
the −38 µm fraction, which was screened in wet. Sampling
the SAG mill feed was not possible, so size distribution was
determined from historical measurements. Additionally,
five dry samples from the crusher product were prepared
for single-size batch grinding tests (Austin et al., 1984),
namely −6.73/+4.76 mm, −2.38/+1.68 mm, −1.68/+1.19
mm, −850/+600 µm, and −300/+212 µm. Every sample
was dry ground in three cycles of five minutes each inside
a 9000 cm3 square mill filled with 3.8 cm diameter steel
balls at 19% V/V. PSD was measured after each cycle. For
the last two samples, only the remaining particles of top
size were weighted for practicality, as they are considerably
fine already with a narrow distribution.

3.2 Breakage function calibration

The consumption rate was calculated for the top size
of the five samples fitting the remaining mass to a first
order kinetic expression. A matrix S as in (8) was then
calibrated with the parameters S0, αs, and σs. Using
(7) with ẇf = ẇp = 0, the ore breakage parameters
{βB , γB , δB , ϕ0} ∈ θB in (5) were calibrated to fit the
measured size distribution curves. The parameters were
estimated through unconstrained iterative nonlinear least
squares, and the uncertainties σθB extracted from the
covariance matrix of the cost function

JB =

3
∑

t=1

ns
∑

s=1

1

ni

ni
∑

i=1

(

Fi,s,5t − F̂i,s,5t

)2

(10)

where the measured and predicted cumulative size dis-
tributions Fi,s,5t and F̂i,s,5t are compared for every five
minute grinding cycle of the sample s. For dynamic calibra-
tion, θB remains fixed as it is ore-dependent. Contrarily,

the laboratory-determined S is only valid for the batch
mill, so it must be discarded then recalibrated.

3.3 Dynamic model calibration

The cost function for the SAG and ball mill sections is

J =
1

nk

nk
∑

k=1

[

(

W ∗

P,k − Ŵ ∗

P,k

)2

+
(

ν∗k−ν̂∗k

)2

+
(

P ∗

k − P̂ ∗

k

)2
]

+

nf
∑

f=1

{

1

ns

ns
∑

s=1

[

(

Φ∗

s,f−Φ̂
∗

s,f

)2

+
1

ni

ni
∑

i=1

(

F ∗

i,s,f − F̂ ∗

i,s,f

)2

]}

(11)

where nk, nf , and ns are the number of online obser-
vations, streams, and samples per stream, respectively.
The superscript ∗ denotes normalisation between 0 and 1
accordingly to the highest and lowest measured values. In
this way, model calibration relies in an iterative nonlinear
least squares minimisation routine to solve

θ = arg min J s.t.

{

AJθ ≤ bJ

θmin ≤ θ ≤ θmax

(12)

where AJ and bJ define constraints concerning the SAG
mill S matrix while θmin and θmax are the parameter lower
and upper bounds, respectively. These were chosen empir-
ically so the behaviour of the model remained realistic.

The procedure was divided in three stages. Firstly, the
circuit was separated in the SAG mill and ball mill sections
and they were independently calibrated in steady-state to
produce an initial estimate of the calibration parameters
θ0. Secondly, the complete circuit was calibrated consider-
ing dynamics and initialised with θ0, resulting the solution
θ (see Section 4.2). Lastly, the parameter uncertainty was
estimated. Due to the problem constraints, the covariance
matrix could not be suitable to estimate parameter un-
certainties in some situations, e.g. when the solution is
near the imposed bounds. Jack-knife resampling offers an
alternative to get an estimate of the parameter uncertainty
in dynamic models (Duchesne and MacGregor, 2001). The
optimisation problem is solved ns additional times using
“jack-knifed” data sets, i.e. simulating the effect of missing
one sample each time. The online data in the vicinity
of the corresponding sampling instant is also omitted.
This technique generates biased replicates of the calibra-
tion parameters and thereby the possibility to calculate a
standard deviation σθ. Figure 2 summarises the proposed
procedure, including the laboratory test work. Section 4
discusses the outcomes of this approach, comprising the
calibrated parameters and uncertainties, as well as the
comparison between measured and simulated variables.

Fig. 2. Model calibration procedure.
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4. RESULTS AND DISCUSSION

Laboratory results are first introduced. Then follows the
parameter calibration results, and a discussion about pa-
rameter uncertainties, and the comparison between mea-
sured and simulated variables.

4.1 Breakage function calibration

Table 1 gathers the parameters determined after the grind-
ing tests. As discussed before, the selection function pa-
rameters depend on the mill, while the breakage func-
tion ones are ore-characteristic dependent. Although all of
them are statistically significant according to the standard
deviations, the mill parameters are less precise. This can
be explained after analysing the measurements and predic-
tions, but it must be emphasised again that the simulation
model only uses the ore parameters.

Table 1. Laboratory-determined grinding pa-
rameters.

Mill Ore

Par. Value S.D. [%] Par. Value S.D. [%]

S0 0.1477 8.12 βB 0.1991 4.42
αS 1.1370 34.18 γB 5.9019 9.53
σS 1.1490 29.58 δB 0.3429 6.79

ϕB 0.4258 3.33

Note: S.D. is given in percentage of the estimated value.

For the five samples ground in laboratory, Figure 3.a
follows the mass consumption of the top size particles.
These curves allowed in turn to determine consumption
rates, which correspond to the measured points in Figure
3.b. As expected, the finer particles are likely to consume
at lower rates due to several phenomena, such as the
probability of impact inside the mill, and fewer available
microfractures. This graph also shows that the calibrated
selection function represents the fragmentation kinetics

Fig. 3. Laboratory test work results.

adequately. The relatively high uncertainties in Table 1
may be a consequence of the lack of measurements for the
very fine sizes, allowing this portion of the curve to vary
(as the parameters do so) without any significant effect
on the right-hand side of the curve. Figure 3.c illustrates
how the size distribution evolves as the grinding cycles
progress. For practicality, only the three samples with
larger particles, and thus a more dispersed distribution,
were sieved. As the top size decreases, the size distribution
varies less with each cycle. This is a consequence of the
slower consumption rates of smaller particles. The grinding
model captures progression satisfactorily over the entire
range of particle sizes.

4.2 Dynamic model calibration

Table 2 lists the calibration parameters θ in two columns,
the left one corresponds to the SAG mill section, and
the right one to the ball mill section. Global search
ensures that this is not a local minimum solution, as
it initialises the problem multiple times with different
parameter combinations. Moreover, all the parameters
are statistically significant according to their uncertainty,
adding to the confidence in the validity of the solution.
Note again that deviations are estimated by Jack-knife
resampling and recalibration. In general, the SAG mill
section parameters have smaller uncertainties, probably
because the grinding dynamics is dependent of power
consumption and charge, having thus less freedom to vary
as several variables are touched simultaneously.

Figure 4.a shows the mill ore and water feed changes
applied. The ore feed rate does not follow a step,
it increases and decreases before it settles to the fi-
nal value, only after more water is added to the mill.
The mill charge initially follows the feed rate fluctua-
tions, as seen in Figure 4.b, it recovers following the
feed water increase, which promotes mass transport.
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Table 2. Model calibration parameters θ.

SAG flow BM flow

Par. Value S.D. [%] Par. Value S.D. [%]

kp 37.1571 1.0375 Vd 15.9650 16.4494
kw0 9.2604 1.9301 Vf 10.0320 12.8323
kw1 0.2883 ×106 7.1177 Ω 8.3689 19.3695

SAG grinding BM grinding

Par. Value S.D. [%] Par. Value S.D. [%]

s0 0.0536 6.4174 S0 0.7923 14.0377
smax 0.8452 1.3885
smin 0.6985 1.3308 αs 0.6260 12.9674
sn 6.9720 0.7958

dmax 3.2225 3.4358 σs 2.8653 9.7820
dmin 27.6926 0.6312

SAG power BM power

Par. Value S.D. [%] Par. Value S.D. [%]

kM 0.5093 0.2774
kA1 38.8987 0.1524 kM 0.7728 1.2277
kA2 3.8784 0.1526

Hydrocyclone cluster 1 Hydrocyclone cluster 2

Par. Value S.D. [%] Par. Value S.D. [%]

Ch1 0.4733 13.0228 Ch1 1.6067 14.6164
Ch2 0.0322 2.9456 Ch2 0.0196 9.2036
Ch3 0.2553 5.2004 Ch3 0.2299 1.7863
Ch4 0.4214 3.1861 Ch4 0.5698 5.5437

Note: S.D. is given in percentage of the estimated value.

Figure 4.c depicts an acceptable fit between measured
and simulated power consumption, capturing the negative
correlation with the feed rate. It drops as the mass in the
mill builds up and vice versa. In the actual operation, this
may occur when the hold-up level is such that the mill
cannot lift the slurry efficiently, affecting the centre of mass
and consequently the rotational inertia.

Fig. 4. Fit of the model SAG section after calibration.

Figure 4.d displays the PSD of the different streams
for this section of the circuit. Each curve of the same
stream corresponds to a different sampling time. The
P80 (i.e. the sieve size through which 80% of the mass
can pass), P60 and P50 indexes are reproduced in Figure
4.e. Except for the underflow P80, the calibrated model
reproduces size distributions. Lastly, the solids fraction of
the underflow stream also present some discrepancies, as
seen in Figure 4.f. Sampling some streams, including this
one, was challenging due to the physical configuration,
thus increasing the sampling error. As mentioned before,
the size distribution of the SAG mill feed was determined
from historical measurements, and remained constant for
calibration. Knowing the actual size distribution and its
variations during tests would certainly improve the fit.

For the ball mill section, Figures 5.a, 5.b, and 5.c report the
size distributions, P80 and P50 indexes, and solids fraction,
respectively. The ball mill section displays less measured
data, i.e. power draw and filling missing, and tighter
size distributions as the material is finer. The general
trends are well captured but there are some discrepancies
between the measured and simulated values. As the circuit
is dynamically calibrated as a whole, the errors in the
SAG mill section propagate through the stream connecting
the system. Furthermore, measurement errors are more
likely to occur with smaller particle sizes, especially for
dry manipulations as it is the case here.

In the light of these results, the simulated grinding circuit
appears to be able to reproduce the behaviour of the actual
one. Note that for process control applications, the overall
trends are more important than the precise prediction of
given variables. The presented calibration methodology
therefore seems to be adequate to develop a comprehensive
model for such developments. Unfortunately, collecting a
second data set to reinforce this conclusion was impossible
due to logistic and manpower issues.
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Fig. 5. Fit of the model ball mill section after calibration.

5. CONCLUSION

This paper presented a calibration procedure for a grinding
circuit model, integrating global search and Jack-knife
recalibration approaches to ensure the solution confidence.
The results and discussion lead to the following conclu-
sions: 1) the grinding circuit simulator can reproduce the
behaviour of the actual plant with acceptable precision,
allowing its future use in developing model-based optimi-
sation and control strategies; 2) the Jack-knife resampling
and recalibration approach provides estimates of the pa-
rameter precision; 3) the calibration parameter uncertain-
ties, along with the use of a global search approach, add
to the confidence in the validity of the solution, and; 4)
providing the details of the whole calibration procedure
contributes to fill the gap in the literature.

The quality of the fit, and thus the reproducibility of
the model, can only improve as more measurements with
higher precision are available, including online data and
laboratory test work. Implementing dedicated sampling
accesses and equipment and installing properly calibrated
sensors for all key variables in the actual plant, would
ensure the collection of more reliable data. Moreover, this
would contribute to the task of efficiently updating the
model parameters periodically, thus preserving its validity
over time. Regarding laboratory work, wet grinding and
sieving could also enhance the precision when assessing size
distributions, however, substantially more time is required
as a result of the drying periods. The number and size of
the samples, as well as the available laboratory equipment,
are aspects to be equally taken into account.

As the main goal of grinding is the separation of valu-
able minerals, future work will address the coupling of

separation processes to the grinding circuit model for the
development and testing of plant-wide optimisation and
control strategies in simulation. The authors recall that
the primary focus of this paper is the thoroughness of
the calibration procedure itself rather than that of data
collection, but if the commissioning of such strategies in
the actual plant was considered, measuring the circuit feed
PSD would be unavoidable to ensure representativeness.
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