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Abstract: The main objective of this work is to design a virtual sensor capable of estimating
variables that are unmeasurable on-line in the air and charging subsystem of a Diesel engine.
In order to achieve this objective, a data-driven approach is pursued. In particular, we show
that combining high-gain observers and feed-forward neural networks, it is possible to design
an observer for the air and charging system of a Diesel engine on the basis of data acquired via
a test bench. The performance of this observer is evaluated in a real experimental setting.
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1. INTRODUCTION

Diesel engines are facing an increased hardware complexity
with the aims of reducing their emissions and of improving
fuel economy (Verschaeren and Verhelst, 2018). Since this
complexity alone is not capable of improving efficiency
enough, this led to the necessity of developing sophisti-
cated control systems capable of dealing with such plants
in an optimized way. Among the various subsystems that
compose a Diesel engine, the air and charging system is
among the ones that received more interest in the lit-
erature due to the fact that classical control structures,
such as map-based PID, do not properly address the
control problem (Wahlstrom et al., 2010). Several control
architectures have been proposed for this subsystem, such
as predictive control (Ortner and Del Re, 2007), control
Lyapunov functions (Jankovic and Kolmanovsky, 2000),
sensor-based approaches (Amstutz and Del Re, 1995), and
feedback theory (Park et al., 2014; Alfieri et al., 2018). A
common aspect to some of this control structure is that
they require the current value of the state of the plant in
order to determine the current control action. However,
during normal functioning, Diesel engines are usually not
fully sensorized, i.e., some states are actually not directly
measurable. This leads to the necessity of developing vir-
tual sensors capable of determining unmeasurable state
variables from available ones. An effort in this direction has
been made in Harder et al. (2018) by using a square-root
unscented Kalman filter. The main objective of this work
is to develop a virtual sensor to achieve this goal without
relying in a model for the Diesel engine. In order to pursue
this objective, a data-driven observer has been designed
by relying on data acquired via an engine test bench and
coupling a high-gain “practical” observer with an artificial
neural network (see Section 6 for further details). In order
to evaluate the performance of this observer, it has been

tested on real experimental data (which have not been
used to train the network) acquired via a test bench.

2. PLANT DESCRIPTION

The system considered in this work is a four cylin-
ders Diesel engine with single stage variable geometry
turbocharger (VGT), equipped with a high-pressure ex-
hausted gas rejection (EGR) loop as well as a low-pressure
EGR loop. A representation of the system is in Fig. 1.
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Fig. 1. Graphical representation of the Diesel engine.

The fresh air is mixed through a three-way valve with
exhaust gases and is pressurized by the compressor, which
is powered by the turbine through a common shaft. After-
wards, the mixture of fresh air and exhaust gases is cooled
by the intercooler. In order to control the intake mass flow,
which is a mixture of the flow coming from the compressor
and the flow coming from a second high-pressure EGR (ex-
haust gas recirculation) valve, a controlled throttle valve
is present. From the intake manifold the mixture of gases
enters into the engine together with the fuel and takes part
in the combustion process. The product of the combustion
is then expelled into the exhaust manifold, where it splits
in two parts: one that is recirculated through the high-
pressure EGR valve and one that goes through the turbine.
The latter flow provides the power to drive the compressor
passing through the VGT. Finally, the gas mixture passes
through the after-treatment and splits again in two: one
part goes out of the engines and the other one is firstly
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cooled and then goes through the three-way valve to be
mixed with fresh air.

3. NOMENCLATURE

Let R and N denote the sets of real an natural numbers,
respectively. The symbol ‖ · ‖p denotes the p-norm of the
vector at argument. The symbol ⊕ denotes the direct sum,
i.e., given A ∈ Rn1×n2 , B ∈ Rn3×n4 ,

A⊕B =

[
A 0n1,n4

0n3,n2
B

]
,

where 0a,b denotes the a × b-dimensional matrix whose
entries are all 0. The symbol I denotes the identity matrix.

In order to improve readability of this work, we first intro-
duce a legend of the symbols used through the discussion:

βc: compressor pressure ratio (−),
cp: specific heat capacity at constant pressure (J/K)
ην : engine volumetric efficiency multiplier (−),
γ: ratio of specific heats (1.3946),
Ne: engine speed (rpm)
pcu: upstream compressor pressure (Pa),
pex: downstream after-treatment pressure (Pa),
pi: intake manifold pressure (Pa),
pitv: upstream ITV pressure (Pa),
ptd: downstream turbine pressure (Pa),
px: exhaust manifold (upstream turbine) pressure (Pa),
Ra: specific gas constant (287.058 J Kg K−1),
Tcu: upstream compressor temperature (K),
Thpe: high-pressure exhausted temperature (K),
Ti: intake manifold temperature (K),
Tlpe: low-pressure exhausted temperature (K),
Ttd: downstream turbine temperature (K),
Tx: exhaust manifold temperature (K),
uitv: ITV (intake throttle valve) position (%),
ulpe: LPE (low-pressure exhausted) valve position (%),
uhpe: HPE (high-pressure exhausted) valve position (%),
uvgt: position (%) of the moveable vanes in the VGT

(variable geometry turbocharger),
Wa: clean air mass flow rate (Kg/s),
Wei: engine-in mass flow rate (Kg/s),
Wex: mass flow rate that goes out the engine (Kg/s).
Wf : fuel mass flow rate (Kg/s),
Whpe: HPE valve mass flow rate (Kg/s),
Witv: ITV mass flow rate (Kg/s),
Wlpe: LPE valve mass flow rate (Kg/s),
Vcu: upstream compressor volume (m3),
Vd: engine displacement volume (m3),
Vi: intake manifold volume (m3),
Vtd: downstream turbine volume (m3),
Vx: exhaust manifold volume (m3).

4. PHYSICAL MODEL OF THE AIR & CHARGING
SYSTEM

In this section, by using the same modeling strategy em-
ployed in Alfieri et al. (2015, 2018), we derive a simplified
model to describe the dynamical behavior of the air and
charging system in the Diesel engine described in Section 2.
This model is used in the subsequent Section 6 to identify
the input, the state, and the output of the plant.

By using the standard model (Guzzella and Onder, 2009),
which is based on the ideal gas law, the principle of mass

conservation, and neglecting the contribution given by
temperature variations, the dynamics of pcu, pi, px, and
ptd are given by

ṗcu =
Ra Tcu
Vcu

(Wa +Wlpe −Witv) , (1a)

ṗi =
Ra Ti
Vi

(Witv +Whpe −Wei) , (1b)

ṗx =
Ra Tx
Vx

(Wei −Whpe −Witv) , (1c)

ṗtd =
Ra Ttd
Vtd

(Witv −Wlpe −Wa) . (1d)

The flows through the EGR valves, the throttle valve, and
the turbine can be modeled by using the orifice equation
for compressible gases (Guzzella and Onder, 2009),

Witv = CdAitv (uitv) Ξ

(
pi

βc pcu

)
βc pcu

√
1

Ra Titv
,

Whpe = CdAhpe

(
uhpe,

pi
px

)
Ξ

(
pi
px

)
px

√
1

Ra Thpe
,

Wlpe = CdAlpe (ulpe, pcu − pex) Ξ

(
pcu
pex

)
pex

√
1

Ra Tlpe
,

where the compressor pressure ratio is defined as βc =
pitv
pcu

, the flow effective areas CdAitv(·), CdAlpe(·, ·), and

CdAhpe(·, ·) can be identified from experimental data
as functions of the corresponding arguments, and Ξ(·)
denotes the pressure correction factor, that is given by

Ξ(x) =

√
2γ

γ − 1
(Π

2
γ (x)−Π

γ+1
γ (x)),

Π(x) =


(

2
γ+1

) γ
γ−1

, if x <
(

2
γ+1

) γ
γ−1

(chocked),

x, if
(

2
γ+1

) γ
γ−1

6 x 6 1 (subsonic),

1 if x > 1 (no backflow).

Since the function x 7→ Ξ(x) is continuous but not
differentiable, in the remainder of this work such a function
is substituted by its kth moving average, that is

Ξ̃(x) =

∫ x+s

x−s

∫ ξk−1+s

ξk−1−s
· · ·
∫ ξ2+s

ξ2−s
Π(ξ1) dξ1 · · · dξk,

where s is a small positive real number. Note that, since
x 7→ Ξ(x) is continuous, the function x 7→ Ξ̃(x) is Ck.

On the other hand, the engine-in mass flow rate is modeled
by using the speed-density equation Wei = ην VdNe

120Ra Ti
pi.

Finally, we need to account for the dynamics of the com-
pressor pressure ratio, which can be modeled as (Watson
and Janota, 1982)

β̇c = c (Pt − Pc), (2)

where c is a constant coefficient, Pt and Pc are the turbine
and compressor powers, respectively, which are given by

Pt = cp (Witv +Wf)Ttd ft

(
(Witv +Wf)

√
Tx

ptd
, uvgt

)
,

Pc = cpWitv Tcu fc

Witv

√
Tcu

287

pcu
, βc

 ,

where ft(·, ·) and fc(·, ·) denote the turbine and compressor
efficiencies, which can be determined using supplier maps.
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Hence, letting x = [ pcu pi px ptd βc ]> denote the state
vector, letting u = [ uitv ulpe uhpe uvgt ]> denote the
vector of control inputs, letting

w = [ Ti Tcu Tx Ttd Titv Tlpe Wa Wf Ne ]>

denote the vector of exogenous inputs, letting v =
[ u> w> ]> denote the vector of the overall inputs of the
plant (assumed to be measurable or modeled), and letting
y = pi denote the measurable output, combining (1) and
(2), the dynamics of the plant depicted in Fig. 1 can be
modeled as

ẋ = F (x, v), y = H(x). (3)

The main objective of this work is to design a virtual sensor
for the plant, i.e., a tool that, given measurements of the
input and output vectors is able to reconstruct the current
state of the system. This objective is pursued by designing
a data-driven observer for system (3).

5. REVIEW OF NONLINEAR OBSERVABILITY
CONCEPTS

Consider a system in the form

ẋ = f(x, v), y = h(x, v), (4)

where x ∈ Rn is the state vector, u ∈ R` is the input
vector, y ∈ Rm is the output vector, f(·) and h(·) are Ck

functions for some sufficiently large k ∈ N. Assume that
for each initial condition x0 ∈ Rn and any measurable,
bounded input vector v(·), the solution x(t) = φ(t, x0, v(·))
of system (4) is well-defined for all times t > 0. System (4)
is observable if, for any input v(·), there do not exist
two different initial conditions x0,1 and x0,2 such that
h(φ(t, x0,1, v(·))) = h(φ(t, x0,2, v(·)) for all times t > 0 (In-
ouye, 1977). This condition entails with the indistinguisha-
bility of two different states. Namely, another interpreta-
tion of the above definition is that, given its dynamics,
system (4) is observable if and only if its initial condition
can be reconstructed by using only measurements of the
input v(·) and of the output y(·).

Let v(i)(t) = di

dti v(t) denote the ith time derivative of the

input function and let ve,k(t) = [ (v(0)(t))> · · · (v(k)(t))> ]>

denote the vector of the time derivatives of the input.
Hence, define the observability map of order k of (4),

Ok(x, ve,k) =

L
0
fh(x, ve,k)

...
Lkfh(x, ve,k)

 ,
where the functions Ljfh(x, ve,k), j = 0, . . . , k, are given by

L0
fh(x, ve,k) = h(x), Lj+1

f (x, ve,k) =
∂Lj

f
(x,ve,k)

∂x f(x, v(0)) +∑k−1
i=0

∂Lj
f
(x,ve,k)

∂v(i)
v(i+1). The key role of the observability

map of order k is to link the current state x(t) of system (4)
and the current time derivatives of the input ve,k(t) up
to order k with the vector of the time derivatives of the
output up to order k,

ye,k(t) = [ (y(0)(t))> (y(1)(t))> · · · (y(k)(t))> ]>,

where y(i)(t) = di

dti y(t) denote the ith time derivative of y.
In fact, the following relation holds for all t > 0,

ye,k(t) = Ok(x(t), ve,k(t)).

System (4) is strongly k-differentially observable if the
suspension (x, ve,k) 7→ Ok(x, ve,k) × ve,k is an injective
immersion, i.e., it is a function that preserves distinctness
(it never maps distinct elements of its domain to the same
element of its codomain), it is differentiable, and its deriva-
tive is everywhere injective (Bishop and Crittenden, 2011).
By Aeyels (1981); Gauthier and Kupka (2001), strong k-
differential observability is a generic property, i.e., almost
all systems that can be written in the form (4) are strongly
k-differentially observable for some sufficiently large k ∈ N
(generically, for k = 2n + 1 Sontag, 2002). Furthermore,
the motivation to consider differential observability rather
than plain observability is that it can be readily used to
design observers for system (4). In fact, if system (4) is
k-differentially observable, then there is Qk(·, ·) such that

x = Qk(Ok(x, ve,k), ve,k), (5)

for all x and ve,k. Therefore, in such a case, an observer
for system (4) can be designed by coupling the function
Qk(·, ·) with any tool that is able to estimate the time
derivatives of the output, such as high-gain observers (Tor-
nambe, 1992), sliding mode differentiators (Shtessel et al.,
2014), and super-twisting algorithms (Moreno and Osorio,
2012). This is exactly the rationale used in Section 6 to
design a data-driven observer for the diesel engine.

6. DATA-DRIVEN OBSERVER DESIGN

In this section we design a data-driven observer for the
plant depicted in Fig. 1 without requiring the knowledge of
the functions CdAitv(·), CdAlpe(·, ·), CdAhpe(·, ·), fT (·, ·),
and fc(·, ·) appearing in (3). These dynamics are used to
identify the inputs, the state, and the outputs of the plant.

The rationale behind the proposed observer is the follow-
ing: estimate the vector of the time derivatives of the input
ve,k and of the output ye,k (that is the set of variables
that can be measured on-line during normal functioning)
and use a function Qk(·, ·) that satisfies (5) to obtain
an estimate of the state xk of the plant (that cannot be
measured during normal functioning).

Two problems have to be faced in order to design the
observer described above:

(P1) a system that computes exactly the time derivatives
of a signal is not causal (Kailath, 1980) and hence
there is the need of a tool capable of estimating them;

(P2) the function Qk(·, ·) is difficult to compute even
in the case that a model of the plant is available
(Gauthier and Kupka, 2001).

However, some tools in the literature can be used to ad-
dress the problems reported above. Indeed, Problem (P1)
can be faced using some tools that are able to “prac-
tically” estimate (i.e., with arbitrarily small estimation
error) the time derivative of a signal, such as high-gain ob-
servers (Carnevale et al., 2018; Astolfi et al., 2018), sliding
mode (Shtessel et al., 2014), or super-twisting algorithms
(Moreno and Osorio, 2012).

On the other hand, Problem (P2) can be addressed by
using algebraic geometry tools (Menini et al., 2016), sliding
mode approaches (Menini et al., 2018), or machine learning
methods (Friedman et al., 2001).
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Since the virtual-sensor has to be integrated in an engine
control module (ECM), we designed the observer by us-
ing the least (on-line) computationally demanding tools
among the ones that are recalled above. Namely, the time
derivatives of the vector v and of the signal y have been es-
timated by using a discretization of the high-gain observer
given in Tornambe (1992), while the function Qk(·, ·) has
been estimated from real data using feed-forward neural
networks (FFNN) (Friedman et al., 2001). Fig. 2 depicts
a representation of the resulting data-driven observer.

Measurable
variables
νk, yk

Derivative
estimator

1

Uneasurable
variables
xk

Fig. 2. Graphical representation of the data-driven ob-
server.

Note that, if the derivative estimator estimates the time
derivatives of the measurable variables up to order k =
2n+ 1 and the FFNN is suitably trained to approximate
the functionQ2n+1(·, ·) that satisfies (5), then the observer
depicted in Fig. 2 is a generic observer for plants that can
be written in the form (4) (see Aeyels, 1981; Sontag, 2002).
Therefore, it appears particularly suitable to achieve the
goal of this work.

In order to detail how the observer depicted in Fig. 2
has been designed, in Section 6.1, we review the high-gain
practical observer given in Tornambe (1992). The problem
of determining a discrete-time system that approximate
such an observer is dealt with in Section 6.2. On the other
hand, in Section 6.3, we show how to design the FFNN
that approximates the function Qk(·, ·). These tools are
coupled in Section 6.4 to design a data-drive observer for
the plant depicted in Fig. 1. Finally, Section 6.5 reports
the results of some experiments in which such an observer
has been used to estimate the state of the plant.

6.1 “Practical” high-gain observer

In this section, we review the high-gain observer proposed
in Tornambe (1992), that, under mild assumptions, is able
to estimate the time derivatives of a signal with arbitrarily
small estimation error, with arbitrarily fast transient rate,
and without any knowledge of the signal to be estimated.

Let k ∈ N be given and consider the following system

η̇ = Ak η +Bk ν, (6a)

where η ∈ Rk z is the state, ν = [ ν1 · · · νz ]> ∈ Rz is the
signal whose time derivatives have to be estimated,

Ak =

z⊕
i=1


−
µi,1
ε 1 0 ··· 0

−
µi,2

ε2
0 1 ··· 0

...
...

...
. . .

...
−
µi,k

εk
0 0 ··· 1

−
µi,k+1

εk+1 0 0 ··· 0

 , Bk =

z⊕
i=1


µi,1
ε

µi,2

ε2

...
µi,k

εk
µi,k+1

εk+1

 , (6b)

the coefficients µi,k are such that the polynomial %k+1 +
µi,1 %

k+· · ·+µi,k %+µi,k+1 is Hurwitz, i = 1, . . . , z, and ε is

a sufficiently small, positive real parameters. By Tornambe
(1992); Carnevale et al. (2018), system (6) is a “practical”
high-gain observer for the time derivatives of the input ν ∈
Rz, i.e., if there exists M > 0 such that ‖ dk+1

dtk+1 ν(t)‖∞ 6M
for all t > 0, then the norm of the estimation error η(t)−
[ ν1(t) · · · dk

dtk
ν1(t) · · · dk

dtk
νz(t) ]> can be made arbitrarily

small in an arbitrarily small amount of time by letting the
design parameter ε be sufficiently small. Thus, system (6)
can be used in the observation scheme depicted in Fig. 2
as derivative estimator. In order to mitigate the effects of
noise on the estimates of the time derivatives of ν and y,
such signals have been filtered with a low-pass filter before
being fed into system (6).

6.2 Discretization of the high-gain observer

The high-gain observer (6) is designed assuming that the
input ν (that is the signal whose time derivatives up to
order k have to be estimated) is available at continuous-
time. However, in the considered application, just discrete-
time samples of such a signal are available. Therefore, we
discretized such a system by using the blilinear method
(Franklin et al., 1998).

Let k ∈ N be given and consider the matrices Ak and Bk
defined in (6b). Hence, define

Ek =
(
I +

τ

2
Ak

)(
I − τ

2
Ak

)−1
, (7a)

Gk =
√
τ
(
I − τ

2
Ak

)−1
Bk, (7b)

Vk =
√
τ
(
I − τ

2
Ak

)−1
, (7c)

Dk =
τ

2

(
I − τ

2
Ak

)−1
Bk. (7d)

where τ is the sampling time. Thus, letting νD(κ) = v(κ τ),
κ ∈ N, the discrete-time system

χ(κ+ 1) = Ek χ(κ) +Gk νD(κ), (8a)

ηD(κ) = Vk χ(κ) +Dk νD(κ), (8b)

constitutes a discretization of the high-gain observer (6).

6.3 Approximation of the function Qk(·, ·)

In Sections 6.1 and 6.2, we proposed a tool to estimate
the time derivative of unknown signals. In this section,
such a tool is used to find an approximation of the inverse
of the suspension of the observability map by relying on
data. We performed several experiments on the engine in
different working conditions (including transient behaviors
– load steps at different constant engine speed, tip-in and
tip-out in partial and full load – so to properly analyze
the dynamics of the plant) and, in each experiment, we
collected the dataset

H = {v(κ), y(κ), x(κ)}
K
κ=0,

where v(κ), y, and x are samples of the input, output,
and state vectors, respectively, K τ is the length of the
experiment (in seconds), τ is the sampling time (the same
in all the experiments), and  is the experiment number.

In order to use the reasoning outlined at the beginning
of this section, in each experiment , we computed the
vectors ve,11(κ) and ve,11(κ) of the time derivatives up
to order 11 of the inputs v and of the output y of the plant
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via the discretized “practical” high-gain observer given in
Section 6.2. Hence, the extended datasets


eH = {(ve,11(κ), ye,11(κ), x(κ)}

K
κ=0,

have been used to train a FFNN. Indeed, in view of the
discussion reported in Section 5, if n = 5, then there
generically exists a function W11(·, ·) such that

x(κ) = W11(ve,11(κ), ye,11(κ)).

Moreover, since W11(·, ·) is differentiable, by the universal
approximation theorem (Cybenko, 1989), there exists a
FFNN that approximates it with arbitrarily small approx-
imation error over compact sets. Hence, we can attempt
at determining an approximation of such a function by
training a FFNN using the extended datasets 

eH.

In order to determine the simplest structure of the FFNN
that provides the smallest estimation error, we trained
several neural networks using different structures and eval-
uating their MSE performance via 10-fold cross validation
repeated 100 times. Fig. 3 depicts the results of such tests.

5 10 15 20 25

Number of neurons in each hidden layer

10
6

10
8

10
10

10
12

M
S

E

Mean

Min

Max

Fig. 3. Results of the cross validation.

By considering the results depicted in such a figure, a
FFNN with two hidden layers and eleven neurons in each
layer is capable of approximating with sufficiently small
approximation error the function W11(·, ·). Thus, such an
approximation can be readily used to design an observer
for the plant, as detailed in the following section.

6.4 Data-driven observer

In this section, the discretized high-gain observer given in
Section 6.2 and the FFNN trained by using the method
described in Section 6.3 are coupled to design an observer,
thus obtaining the observer depicted in Fig. 2.

Let k = 11, let E11, G11, V11, and D11 be defined as
in (7), and let Θ(ve,11, ye,11) be the input-output function
synthesized by the FFNN trained by using the method
given in Section 6.3. Thus, a data-driven observer is

χ(κ+ 1) = E11 χ(κ) +G11 νD(κ), (9a)

ηD(κ) = V11 χ(κ) +D11 νD(κ), (9b)

x̂(κ) = Θ(Π1 ηD(κ),Π2 ηD(κ)), (9c)

where x̂(κ) is an estimate of x(κ), Π1 and Π2 are projection
matrices such that

ve,11 = Π1 χ, ye,11 = Π2 χ.

Note that the observer (9) can be easily implemented in an
ECM since it is a discrete-time system with linear, time-
invariant dynamics and nonlinear output function and
hence it does not require much computational power. In
fact, in order to execute one step of (9), one has to perform
57.6 · 103 elementary operations (i.e., sums and products)
to compute χ(κ) from χ(κ − 1) and 57.6 · 103 elementary
operations to compute the vectors Π1 ηD(κ) and Π2 ηD(κ)

that are the inputs of the function Θ(·, ·). On the other
hand, the complexity of executing (9c) depends on the
structure of the FFNN (activation function, number of hid-
den layers, etc.) that is employed and can be computed by
means of the tools given in Orponen (1994). For instance,
by using x 7→ tanh(x) as activation function, two hidden
layers and eleven neurons in each hidden layer (that is the
structure of the FFNN used in the following Section 6.5),

requires 2.992 · 103 plus O(M(ℵ)ℵ 1
2 ) elementary opera-

tions, where ℵ denotes the number of digits of precision at
which the function is to be evaluated and M(ℵ) stands for
the complexity of the chosen multiplication algorithm.

6.5 Experimental results

The data-driven observer (9) designed as detailed in Sec-
tions 6.2 and 6.3 has been used on some experimental data
that have not been used to train the FFNN, but that
correspond to the same working conditions of the train-
ing dataset. Since. in these experiments, measurements
of the estimated variables were available, we compared
them with the estimates obtained by using the data-driven
observer (9) in order to verify its effectiveness.

Fig. 4 depicts the results of one of such experiments,
showing the estimation error x̂(κ)− x(κ).
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-3000

-2000

-1000
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1000

2000

3000

p̂cu − pcu

p̂x − px

p̂td − ptd

p̂itv − pitv

Fig. 4. Results of the experiment with the observer (9).

As shown by such a figure, the data-driven observer (9)
is able to “practically” reconstruct the state of the plant,
with an average error of 2.6299 KPa. This is essentially
due to two main facts: on one hand the plant depicted
in Fig. 1 is strongly 11-differentially observable (recall
that, by Aeyels (1981); Sontag (2002), this property is
generic for plants whose state dimension is n = 5), on
the other hand, the inverse Q11(·, ·) of the suspension of
observability map O11(·, ·) is a differentiable function of
its entries. This implies that Q11(·, ·) is also an absolutely
continuous function of its entries and hence if the time
derivatives of the output y and of the input v are estimated
with a sufficiently small estimation error (by decreasing
the parameter ε), then the estimate x̂ obtained by using
(9c) is close to the actual value of x.

To further corroborate the effectiveness of the proposed
observation structure, the following Table 1 reports the
estimation errors obtained by using the proposed observa-
tion scheme in 12 different experimental settings that have
not been used for training.

7. CONCLUSIONS

The tests reported in this work showed that the data-
driven observer presents good estimation capabilities, be-
ing able to estimate the state of the plant both during
normal functioning and at rest conditions. The drawbacks
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Table 1. Error on total validation data.

Max Abs. Max Rel. Mean Rel. Mean Sq. r2

pcu 2.91 0.0302 0.00106 0.0208 0.997

px 68.7 0.379 0.0165 19.5 0.995

ptd 9.08 0.0851 0.00406 0.497 0.992

pitv 19.2 1.14 0.00444 3.03 0.999

of this approach, however, are that the physical meaning
of the involved variables is somehow lost and that its
effectiveness is strongly dependent on the training set that
is used to train the FFNN. However, if the training set is
sufficiently large to take into account all the functioning
scenarios, then the considered approach seems to be a good
tool to design virtual sensors for Diesel engines.

The proposed data-driven observer presents several advan-
tages with respect to other state-of-the-art tools. Indeed,
the high-gain observer (6) requires minimal tuning (es-
sentially just the selection of the parameter ε), whereas
the FFNN can be trained by using any algorithm capable
of training static neural networks. Therefore, the training
phase is much simpler than the one that has to be carried
out to train a convolutional neural network (Schmidhuber,
2015), or, more generally, a structure accounting for the
previous input/output values, since just a static function
has to be approximated. Finally, it is worth stressing that,
in the proposed data-driven approach, the FFNN can be
substituted by any tool capable of approximating nonlin-
ear functions, such as the set membership tool given in
Milanese and Novara (2004). The choice of using a FFNN
is due to the availability of a wide number of training
algorithms specifically developed for such functions.

Future work will deal with the comparison of the pro-
posed observation scheme with others available in the
literature, such as unscented Kalman filter obtained using
FFNNs to approximate the unknown functions CdAitv(·),
CdAlpe(·, ·), CdAhpe(·, ·), fT (·, ·), and fc(·, ·).
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