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Abstract: Trajectory optimization methods for motion planning attempt to generate trajecto-
ries that minimize a suitable objective function. While such methods efficiently find solutions in
static environments, they need to be ran from scratch multiple times in the presence of moving
obstacles, which incurs unnecessary computation and slows down execution. In this paper, we
propose a trajectory optimization algorithm that anticipates the movement of obstacles and
solves the planning problem in an iterative manner. We employ continuous-time Gaussian
processes as trajectory representations both for the mobile robot and moving obstacles for
which future locations are predicted according to a given model. We formulate the simultaneous
moving obstacles tracking and mobile robot motion planning problem as probabilistic inference
on a factor graph. Since trajectories of moving obstacles are optimized concurrently to motion
planning, the proposed approach works in a predictive manner. After computing the initial
solution, we use incremental inference for online replanning after an estimate of the moving
obstacle position is provided. Our experimental evaluation demonstrates that the proposed
approach supports online motion generation in the presence of moving obstacles.

Keywords: motion planning, trajectory optimization, gaussian processes, factor graphs,
incremental inference

1. INTRODUCTION

Motion planning algorithms are necessary for robots that
try to navigate through an environment without collisions.
They generate trajectories through the robot’s configu-
ration space that are feasible and optimal according to
some performance criterion, which depends on the robot,
task, or environment. Motion planning algorithms that
can be executed in real time are of high importance in
dynamic environments for fast replanning in response to
environment changes.

A significant amount of recent work has focused on tra-
jectory optimization for motion planning. Trajectory op-
timization methods start with some initial trajectory and
then minimize an objective function in order to optimize
the trajectory. The CHOMP algorithm by Zucker et al.
(2013), utilizes a precomputed signed distance field for
fast collision checking and employs covariant gradient
descent to minimize obstacle and smoothness costs. An
key shortcoming of CHOMP is the need for many tra-
jectory states for reasoning about fine resolution obstacle
representations and finding feasible solutions when there
are many constraints. Similarly, Schulman et al. (2013)
proposed TrajOpt, an algorithm that formulates motion
planning as sequential quadratic programming. The key
feature of TrajOpt is the ability to solve complex motion
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planning problems with few states since swept volumes
are considered to ensure continuous-time safety. However,
if smoothness is required in the output trajectory, post-
processing of the trajectory might still be needed thus
increasing computation time. In order to overcome the
computational cost incurred by using large number of
states, Mukadam et al. (2016) and Dong et al. (2016) pro-
pose employing Gaussian processes (GP) as continuous-
time trajectory representations. The proposed Gaussian
process motion planning (GPMP2) algorithm formulates
the planning problem as probabilistic inference, generating
fast solutions by exploiting the sparsity of the underlying
linear system. A useful property of GPMP2 is its extensi-
bility and applicability for wide range of problems (Rana
et al., 2017; Marić et al., 2019) and in this paper we also
rely on the aforementioned framework.

While all of the aforementioned methods efficiently find
solutions in static environments, they need to be ran from
scratch multiple times in the presence of moving obstacles,
which incurs unnecessary computation and slows down the
execution. ITOMP, an algorithm that employs incremental
trajectory optimization for replanning in dynamic envi-
ronments, was proposed by Park et al. (2012). ITOMP
computes a conservative local bound on the position of
each obstacle over a short time and uses that bound to
compute a collision-free trajectory for the robot in an
incremental manner. However, ITOMP does not predict
the motion of dynamic obstacles, thus working in reactive
manner.
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In this paper, we propose a trajectory optimization algo-
rithm that anticipates the movement of the obstacles and
solves the planning problem in an iterative manner. We
employ continuous-time Gaussian processes as trajectory
representations both for the mobile robot and moving
obstacles for which future whereabouts are predicted ac-
cording to a given model. We formulate the simultane-
ous moving obstacles tracking and mobile robot motion
planning problem as probabilistic inference on a factor
graph. By leveraging tools from the SLAM community,
we exploit the structure of the pertaining GPs to find
the solution efficiently using numerical optimization. Since
moving obstacles trajectories are optimized concurrently
to motion planning, the proposed approach works in a
predictive manner. After computing the initial solution,
we use incremental inference for online replanning after
an estimate of the moving obstacle position is provided.
We evaluated our method in simulations and compared
it to GPMP2 a state-of-the-art trajectory optimization
method. A supplementary video of the conducted simu-
lations is available 1 . The results demonstrate that the
proposed approach supports online motion generation in
the presence of moving obstacles while generating shorter
paths and having an order of magnitude faster computa-
tion time than GPMP2.

2. TRAJECTORY OPTIMIZATION AS
PROBABILISTIC INFERENCE

Following previous work on Gaussian process motion plan-
ning and simultaneous trajectory estimation and planning
by Dong et al. (2016) and Mukadam et al. (2017), we
view the trajectory estimation and planning problems as
probabilistic inference. We seek the maximum a posteriori
(MAP) continuous-time trajectory given a prior distribu-
tion on the space of trajectories and an arbitrary likelihood
function.

More formally, we try to find a trajectory x given a
collection of events e. The posterior density of x given
events e can be computed via Bayes’ rule from a prior and
a likelihood

p(x|e) = p(x)p(e|x)/p(e) ∝ p(x)p(e|x), (1)

where p(x) represents the prior on x which encourages
smoothness of the trajectory, while p(e|x) represents the
probability of the events e occurring given x. In the
following subsections, we define a prior distribution on
the space of trajectories and a likelihood function in the
context of estimation and planning problems.

2.1 Gaussian process trajectory prior

Consider a continuous-time trajectory as a sample from a
vector-valued continuous-time Gaussian process (GP)

x(t) ∼ GP(µ(t),K(t, t′)) (2)

that is parameterized with N support states at discrete
time instants, xi ∈ RD, i ∈ N , where D is the state
dimensionality. We employ a structured kernel belonging
to a special class of GP priors generated by a linear time-
varying stochastic differential equation (LTV-SDE)

ẋ(t) = A(t)x(t) + u(t) + F (t)w(t), (3)

1 youtu.be/1l5ErKT1hmc

where A and F are system matrices and u is a known
exogenous input. The white noise process w(t) is itself a
GP with zero mean value

w(t) ∼ GP(0,Qcδ(t− t′)), (4)

where Qc(t) is an isotropic power-spectral density matrix,
Qc = QcI. A similar dynamical system has been utilized
in estimation (Barfoot et al., 2014; Anderson et al., 2015),
calibration (Persic et al., 2019) and planning (Mukadam
et al., 2018). The mean and the covariance of the GP
generated by the LTV-SDE given in (3) evaluate to

µ(t) = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, s)u(s) ds, (5)

K(t, t′) = Φ(t, t0)K0Φ(t′, t0)T +∫ min(t,t′)

t0

Φ(t, s)F (s)Qc(s)F (s)TΦ(t′, s)T ds, (6)

where µ0 and K0 are the initial mean and covariance of
the first state, and Φ(t, s) is the state transition matrix
(Barfoot et al., 2014).

The GP prior distribution is then given in terms of its
mean µ and covariance K

p(x) ∝ exp{−1

2
‖x− µ‖2K}. (7)

Due to the Markov property of the LTV-SDE in (3), the
inverse kernel matrix K−1 is exactly sparse block tridiago-
nal (Barfoot et al., 2014). A major benefit of modelling
continuous-time trajectory in estimation and planning
with GPs is the possibility to query the planned state
x(τ) at any time of interest τ , and not only at discrete
time instants. In estimation problems, the ability to query
the trajectory at any time of interest in a principled way
can support seamless integration of asynchronous sensors
(Anderson et al., 2015). In planning problems, efficient
GP interpolation can be employed for reasoning about
small obstacles while keeping a relatively small number of
support states which reduces the incurred computational
burden (Mukadam et al., 2018). It can also be utilized
for providing a dense output trajectory that a robot can
execute without any post-processing.

2.2 The likelihood function

The likelihood function encodes information about a par-
ticular probabilistic inference problem instance. In esti-
mation problems, the likelihood function encourages pos-
terior trajectories that are in correspondence with mea-
surements, while in planning problems the likelihood func-
tion encourages posterior trajectories that are collision-free
(Mukadam et al., 2019).

The likelihood function is the conditional distribution
L(x; e) ∝ p(e|x) which specifies the likelihood of an event
e given trajectory x. In the context of motion planning,
a binary event corresponds to trajectory state xi being
collision-free, while in the context of estimation an event
corresponds to receiving a sensor reading. The likelihood is
defined as a distribution in the exponential family (Dong
et al., 2016)

L(x; e) ∝ exp

{
−1

2
‖h(x, e)‖2Σ

}
(8)
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where h(x, e) is an arbitrary vector-valued cost function
with covariance matrix Σ.

2.3 Computing the MAP trajectory

The optimal trajectory x is found by maximizing the
posterior p(x|e) given in (1), using the MAP estimator

x∗ = arg max
x

{
p(x)p(e|x)

}
= arg min

x

{
-log

(
p(x)p(e|x)

)}
.

(9)

After substituting (7) and (20), the optimal trajectory is

x∗ = arg max
x

{
1

2
‖x− µ‖2K +

1

2
‖h(x, e)‖2Σ

}
. (10)

The MAP estimation problem can be reduced further to a
nonlinear least squares problem which can be solved with
iterative optimization approaches such as Gauss-Newton
or Levenberg-Marquardt.

3. ITERATIVE INCREMENTAL INFERENCE FOR
DYNAMIC MOTION PLANNING

3.1 Probabilistic inference as a factor graph

After solving for the optimal trajectory in (10), we en-
counter new information during online execution which
changes the pertaining likelihood. For example, in esti-
mation problems we encounter new measurements, while
in planning problems the environment of the robot can
change. A straightforward approach to incorporate this
new information would be to resolve the MAP problem
repeatedly. However, this can be inefficient and computa-
tionally infeasible for an online setting. Mukadam et al.
(2019) therefore formulate the probabilistic inference as a
factor graph (Kschischang et al., 2001), which is a graphi-
cal model that allows exploiting the underlying sparsity of
the problem. Afterwards, an incremental inference tech-
nique that supports iterative updating of the solution is
employed thus increasing computational efficiency.

More formally, the prior and the likelihood functions can
be represented as a product of functions that are organized
as a bipartite factor graph G = {X,F , E} (Kschischang
et al., 2001)

p(x)p(e|x) ∝
∏
i

fi (Xi) , (11)

where variablesX = {x0, . . . ,xN} are a set of robot states
along the trajectory, the factors F = {f0, . . . , fM} are
functions on variable subsets and E are edges connected
to the two types of nodes. Thus the posterior distribution
can be written as a product of the factors that collectively
represent the prior and the likelihood

p(x|e) ∝ fprior(X)f like(X). (12)

Barfoot et al. (2014) and Anderson et al. (2015) addressed
trajectory estimation problems where the trajectory is
represented as a continuous-time GP. The GP representa-
tion allows extrapolation thus providing the prediction of
future obstacle states, along with estimation. The prior is
a joint distribution on the full trajectory fprior = fgp(X),
while the likelihood represents the probability of all sensor
measurements, which factors to fmeas =

∏
i f

meas
i (Xi).

This approach yields a factorization

p
(
xest|e

)
∝ fgpfmeas. (13)

xplan xest

f gp,plan f gp,est

f static fmeas

f fix

fdynamic

t1 t2 t3

Fig. 1. A simple illustration of a factor graph for si-
multaneous tracking of a single moving obstacle and
mobile robot motion planning with trajectories of
three states. The red part of this graph corresponds to
the GPMP2 graph given in (16), while the blue part
corresponds to the estimation graph given in (13).
These two graphs are coupled with a dynamic obstacle
factor which allows for predictive motion planning.

Mukadam et al. (2018) proposed a probabilistic inference
framework for solving motion planning problems. Their
algorithm, dubbed GPMP2, also utilizes the GP trajectory
representation, while the likelihood corresponds to the
probability of trajectory being collision-free with obstacles.
The likelihood of being collision-free can be factored as

fobs =
∏
i

fobsi (xi) . (14)

In motion planning problems, there exist a fixed start and
goal states which also have to be incorporated into the
likelihood. Factors to fix start and goal configurations are
therefore employed

ffix = fstart (x0) fgoal (xN ) . (15)

The full factor graph of GPMP2 is, therefore

p
(
xplan|e

)
∝ fgpfobsffix. (16)

3.2 Simultaneous moving obstacles tracking and motion
planning

In real world applications, both estimation and planning
problems need to be solved. For example, in dynamic
environments, we want to track the moving obstacles
and plan the robot’s trajectory accordingly. The factor
graph of a tracking problem for a single tracked obstacle
corresponds to (13), while the factor graph of a planning
problem corresponds to (16). The obstacle factor can be
split into two factors, one for static and one for dynamic
obstacles

fobs = fstaticfdynamic. (17)

While the probabilistic inference frameworks presented in
Sec. 3.1 can be utilized for solving the moving obstacles
trajectory estimation and the robot motion planning in-
dependently, we propose solving them concurrently. We
formally define the simultaneous moving obstacles tracking
and motion planning problem on a factor. The novelty of
our method lies in performing inference on a larger factor
graph at once, instead of splitting the factor graph into
multiple graphs for planning and single obstacle tracking.
The full factor graph of the proposed method is
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Fig. 2. An example of simultaneous moving obstacle tracking and mobile robot motion planning. The red line represents
the robot, with the red circle marking its position, the bold line being the executed trajectory and the thin line
representing the currently planned future trajectory. The blue line represents the moving obstacle, with other blue
elements corresponding to those in red. Blue shading depicts the covariance of estimation and prediction. The
obstacle’s trajectory is predicted with uncertainty, and replanning is performed at every timestamp.

p
(
xplan,x

1
est, . . . ,x

M
est|e

)
= p(xplan|e)

M∏
m=1

p(xm
est|e)

(18)

∝ fgp,planfstaticffix
M∏

m=1

fgp,estm fmeas
m fdynamic

m ,

(19)

where M is the total number of tracked moving obstacles,
fgp,plan the GP prior of the robot’s trajectory and fgp,est

the GP prior of obstacle’s trajectory. We solve for the full
trajectories of the robot and the moving obstacles simulta-
neously; the robot’s trajectory is planned, while obstacles’
past trajectories are estimated and future trajectories pre-
dicted. A simple illustration of the proposed factor graph
is depicted in Fig. 1. The major advantage of simultaneous
optimization is that it allows information flow between
the sub-graphs of tracking and planning, which increases
performance in both estimation and planning. It gives our
planning algorithm its predictive property.

The Gaussian process prior factor is given in (7). We
employ measurement, start and goal factors as defined by
Mukadam et al. (2019). Dong et al. (2016) define the static
obstacles factor which is evaluated using a precomputed
signed distance field. Dynamic obstacle factor relies on
a hinge loss function of distance between a robot and a
tracked dynamic obstacle, similarly to (Petrović et al.,
2018), but with covariance of the tracked obstacle used
as a parameter

fdynamic
m = exp

{
−1

2
‖g(xplan,x

m
est)‖2Km

}
. (20)

3.3 Iterative incremental inference

As we discussed in Section 3.1, a major drawback of using
nonlinear least squares to solve the MAP inference is
that with every update the problem must be completely
resolved which is redundant and inefficient. Even if the
factor graph is mostly unaltered, the cost on every factor
will be evaluated and every variable updated from scratch.

To contend with this problem, Kaess et al. (2012) proposed
efficient updates utilizing the Bayes tree data structure,
thus we first convert the factor graph into a Bayes tree
(Mukadam et al., 2019). When changes in only a few
variables or factors are introduced, only the parts of the
Bayes tree related with the changes will be updated, while
most of the solution will remain the same. Similarly to
(Mukadam et al., 2017), we propose incrementally updat-
ing the solution of a factor graph in (19) which significantly
improves the efficiency of inference and achieves real-time
performance, as we demonstrate in our experiments. The
proposed algorithm is summarized in Algorithm 1, while
an example of its execution is presented in Fig. 2.

4. EXPERIMENTAL RESULTS

We tested the proposed method on two simulation bench-
marks and compared it with the state-of-the-art trajectory
optimization technique GPMP2. In Section 4.1, we quan-
titatively demonstrate the improvement of the proposed
method over GPMP2 in scenarios where two dynamic
obstacles cross the space between the robot and the goal.
In Section 4.2, we demonstrate the improvement of the
proposed method over GPMP2 in finding a collision-free
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Algorithm 1 Simultaneous moving obstacles tracking and
motion planning

1: Initialize trajectories xplan,x
1...M
est

2: Create factor graph p
(
xplan,x

1
est, . . . ,x

M
est|e

)
3: Perform probabilistic inference to obtain MAP trajec-

tories x∗plan,x
∗1...M
est

4: Convert factor graph to a Bayes tree
5:

6: for i = 0 . . .N − 1 do
7: if xplan,i:i+1 is collision-free then
8: Execute xplan,i:i+1

9: Get moving obstacles’ measurements fmeas

10: Incremental inference update x∗plan,x
∗1...M
est

11: else return failure
12: end if
13: end for return success

trajectory in highly cluttered environment. Both experi-
ments aim to show benefits of the proposed simultaneous
optimization for better anticipation of dynamic obstacles
and iterative inference for faster replanning.

In our experiments we use the GPMP2 C++ library (Dong
et al., 2016, 2017), and its respective MATLAB toolbox,
which is based on the GTSAM C++ library (Kaess et al.,
2012). Experiments are performed on a system with an
Intel Core i7-7700HQ processor and 16 GB of RAM.
Both the proposed method and GPMP2 were always
initialized with a constant-velocity straight line trajectory.
To keep our comparisons fair, in both experiments we
used the default parameters from the GPMP2 toolbox
both for GPMP2 and for our method. We set the total
time for every trajectory as ttotal = 10 s and discretize
every trajectory with N = 100 states, meaning that the
trajectory is replanned every 100 ms. For GPMP2, we
incorporate information about dynamic obstacles inside
its signed distance field; future trajectory of obstacles is
not predicted. For our approach, in both experiments we
assume that we measure the positions of obstacles with
covariance Σmeas = 0.1. While our algorithm employs
iterative incremental inference, we rerun GPMP2 from
scratch at each time step.

4.1 Monte Carlo simulation of crossing agents

The Monte Carlo simulation of crossing agents consisted of
200 synthetic scenarios with randomized initial conditions
of moving obstacles. The robot moves from left to right;
it starts at position xstart = [−10, 0] m and its goal lies at
xgoal = [10, 0] m. Two dynamic obstacles cross the space
between the robot and the goal, with one obstacle moving
from north to south and the other from south to north. The
obstacles move at constant velocity and do not react to the
robot’s presence. The x coordinates of obstacles’ start and
goal positions were drawn from a uniform distribution on
interval [−10, 10] m, while the y coordinates were fixed at
5 m and −5 m.

The proposed approach was successful at every scenario
and generated paths had the average length of 21.71 m,
while GPMP2 was successful in 91.5% of scenarios with
the average path length 23.32 m. The histograms of the
executed path lengths shown in Fig. 3 demonstrate that
our method more often finds direct paths to the goal than

Fig. 3. Histogram of executed path lengths for the pro-
posed approach and GPMP2.

the GPMP2. Due to its predictive property, the proposed
approach is better able to navigate tight spaces and
replanned paths do not induce significant direction change
as is sometimes the case with GPMP2. Each replanning
of the trajectory took 5.1 ms with our approach, while it
took GPMP2 35.2 ms. An order of magnitude change in
computational efficiency is consistent with prior work on
incremental inference in similar setting (Mukadam et al.,
2017; Yan et al., 2017). The results demonstrate that
iterative incremental inference is suitable for a real-time
application, and it can be utilized at significantly higher
frequencies compared to running probabilistic inference
from scratch at each time step.

4.2 Highly cluttered environment

The highly cluttered environment that we designed for
qualitative examination of our algorithm consisted of six
static and three dynamic obstacles. The robot’s position
is again initialized as xstart = [−10, 0] m with its goal at
xgoal = [10, 0] m. Every static obstacle is a square with
side length a = 2 m. The static obstacles were initial-
ized at [5,−1] m, [0, 8] m, [−7, 4] m, [−4,−2] m, [4, 4] m,
[−8,−9] m, respectively. The three dynamic obstacles were
initialized at [10, 7] m, [−5, 8] m and [9,−6] m.

The proposed approach successfully navigated the robot
through this complex environment, as shown in Fig. 4.
The executed path length for our approach was 28.48 m,
while for GPMP2, which also successfully solved the plan-
ning problem, the path length was 34.85 m. Near the
first encountered dynamic obstacle, GPMP2 redundantly
replanned the trajectory since it had information about
robot’s path being blocked by an obstacle. This resulted
in significantly longer executed path for GPMP2, again
demonstrating the benefits of the predictive property of
our approach. Each replanning of the trajectory with our
approach took 4.6 ms on average, while it took GPMP2
46.8 ms, again showing the computational efficiency of
iterative incremental inference compared to recomputing
probabilistic inference from scratch.

5. CONCLUSION AND FUTURE WORK

In this paper we have presented a fast trajectory optimiza-
tion method for motion planning in the presence of moving

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9723



Fig. 4. The resulting trajectory in the highly cluttered environment experiment. Red line represents the robot, where
bold line marks executed trajectory and thin line currently planned future trajectory. Blue lines represents the
moving obstacles, bold lines mark estimated trajectories and thin lines predicted future trajectories. Blue shading
depicts covariance of estimation and prediction.

obstacles. We considered each trajectory as a sample from
a continuous-time Gaussian process. We formulated the
simultaneous moving obstacles tracking and robot motion
planning problem as probabilistic inference on a factor
graph. Since moving obstacles’ trajectories are optimized
concurrently to motion planning, the proposed approach
works in a predictive manner. We employed iterative incre-
mental inference for fast replanning suitable for real-time
application. We tested our approach in simulation and
compared it to GPMP2, a state of the art trajectory op-
timization algorithm, demonstrating significant improve-
ment in both path lengths and computational efficiency.

In future work, it would be interesting to test the proposed
approach in real environments coupling it with a mov-
ing obstacles detection and tracking framework. Further-
more, the proposed approach could be extended for higher
degree-of-freedom robots, such as mobile manipulators.
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