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Abstract: In this paper chattering mitigated sliding mode control of uncertain nonlinear
systems is considered. Concrete knowledge about the system parameters or uncertainty bounds
is assumed to be unavailable. A combined sliding mode and data-driven model-free predictive
control strategy is proposed. Calculation of the predictive control input is based on a linearized
system description. The parameters of the linearized model are estimated online using a Kalman
filter and input-output data. The sliding mode controller guarantees boundedness of the tracking
error. The switching gain adapts online which avoids the uncertainty bounds of the system to be
known. Overestimation of the bounds is avoided by the use of the predictive controller, leading
to mitigation of the chattering effect. The effectiveness of the proposed strategy is confirmed by
a simulation example.
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1. INTRODUCTION

Sliding mode control (SMC) is well established in the
field of robust control. It guarantees convergence although
modeling inaccuracies with known bounds may be present.
Conventional SMC is based on a first order realtionship
between the sliding variable and the input. Using a dis-
continuous control law the sliding variable can be driven
to zero, and the state trajectory approaches the sliding
surface. Dependent on the definition of the surface the
states or tracking error of the system converge to zero
(Slotine and Li (1991)). The disadvantage of conventional
SMC is the generation of high frequently switching inputs
(chattering) which may lead to infeasibility. A boundary
layer has been introduced in Slotine (1984) to establish
a compromise between precision and chattering attenua-
tion. Higher order SMCs (HSMC), which drive the sliding
variable and its derivatives of corresponding order to zero,
can improve precision in case of digital control and achieve
chattering mitigation. If the order of the SMC is higher
than the relative degree of the system the discontinuity in
the control law can be avoided (Levant (2003)). However
the HSMC approaches require the derivatives of the sliding
variables to be known. The derivatives may be estimated
by a sliding differentiator as suggest in Levant (2003), but
the accuracy of the estimations is affected by measurement
noise. Additionally, the HSMC approach of Levant (2003)
is restricted to the SISO case, and requires tuning of
a gain parameter. Another option to reduce chattering
is the usage of exponential power reaching laws. These
reaching laws reduce the switching gain in the near of
the sliding surface leading to mitigation of the chattering
effect. The idea has been introduced in Gao and Hung
(1993) and improved regarding reaching time in Fallaha
et al. (2010). As the swichting gain depends on the bounds
of the uncertainties the chattering effects can increase if

the bounds are overestimated. Therefore adaptive SMC
approaches (Huang et al. (2008), Plestan et al. (2010),
Edwards and Shtessel (2016)) were proposed capable to
estimate the uncertainty bounds online.

As SMC guarantees robustness and predictive control is
known to be efficient and chattering free, combinations of
both approaches have been considered in previous studies.
In Garcia-Gabin et al. (2009) a minimization problem
based on the sliding variable and its prediction over sev-
eral time steps is formulated. The minimizing solution of
the problem is considered to be the predictive controller
which keeps the states on the sliding surface. In order
to guarantee that the sliding surface will be reached a
conventional SMC with saturation function is added. The
approach is applicable to SISO systems. Approaches that
use the predictive controller in the reaching phase are
presented in Xiao et al. (2007), Xu and Li (2011), and Xu
(2015). These approaches avoid the chattering problem as
the reaching is achieved based on the optimal predictive
control instead of a discontinuous swichting control. Ro-
bustness with respect to disturbances can be achieved if
the rate of change of the disturbance is known. However
the approaches are only applicable to linear systems and
only additive disturbances are considered. In Rubagotti
et al. (2010) predictive control and SMC are combined
based on the framework of integral SMC (I-SMC). Using
I-SMC matched uncertainties can be eliminated which
simplifies the design of the predictive controller in case
of nonlinear systems.

Note that the aforementioned combinations of sliding
mode and predictive control assume the system model
to be known and do not considered the switching gain
to be adaptive which means that knowledge about the
uncertainty bounds is required.
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In this paper robust control of nonlinear systems with
slow dynamics is considered. A combined sliding mode
and predictive control approach is proposed. Robustness is
achieved through SMC, whereas the predictive controller
mitigates the chattering effect and minimizes the input
energy. The main advantage of the proposed method is
that concrete knowledge about the parameters or the
uncertainty bounds is not required. The predictive control
input is calculated based on a linear model, which is
trained and updated online using a Kalman filter. The
combined sliding mode and predictive control approach
uses adaption techniques which avoids the uncertainty
bounds to be known.

The paper is organized as follows. In Section 2 require-
ments and the considered class of nonlinear systems are
described. System identification based on Kalman filtering
is explained in Section 3. Design of the optimal predictive
controller is considered in Section 4. The combined slid-
ing mode and predictive control approach is described in
Section 5. A numerical example is considered in Section 6.

2. REQUIREMENTS

A nonlinear system

ẋ(t) = f(x(t),u(t), t), y(t) = h(y(t), t), (1)

with states x(t) ∈ R
l, measurements y(t) ∈ R

r, and inputs
u(t) ∈ R

m is considered. The control variable z(t) ∈ R
m,

and the tracking error e(t) ∈ R
m are defined as

z(t) = Ly(t), e(t) = zr(t)− z(t). (2)

where zr(t) denotes the reference value. Three assump-
tions about the behavior of (1) have to be made. First, it
is assumed that the discrete-time input-output behavior
of (1) can be described by the NARX model

yk+1 = qk(sk),

sk =
[

yT
k . . . yT

k−ny+1 uT
k . . . uT

k−nu+1

]T

, (3)

with sk ∈ R
(rny+mnu)×1. Second, the Taylor series expan-

sion of the i-th component of yk+1 given as

y
(i)
k+1 = y

(i)
k + (sk − sk−1)

TDq
(i)
k (sk−1)

+
1

2
(sk − sk−1)

TD2q
(i)
k (sk−1)(sk − sk−1) + . . . , (4)

is considered. The gradient and Hessian of the i-th compo-

nent of qk(•) are denoted asDq
(i)
k andD2q

(i)
k . It is assumed

that (1) has slow dynamics and qk(•) can be approximated
well around yk by considering only linear terms in (4).
Third, consider a sliding variable σ(t) ∈ R

m to be defined
by

σ(i)(t) = a(i)nσ

∂n(i)
σ

(∂t)n
(i)
σ

e(i)(t)

+ a
(i)
nσ−1

∂n(i)
σ −1

(∂t)n
(i)
σ −1

e(i)(t) + · · ·+ a
(i)
0 e(i)(t), (5)

for i = 1 . . .m. System (5) is designed so that it is BIBO
stable related to the input σ(t) and the output e(t). The
dynamics of the sliding variable resulting from (1), and (5)
are assumed to be of the form

σ̇(t) = v
(
x(t), t

)
+W

(
x(t), t

)
u(t), (6)

where W
(
x(t), t

)
is a diagonal matrix

W
(
x(t), t

)
=









w(1) (•) 0 . . . 0

0 w(2) (•) . . . 0
...

...
. . .

...

0 0 . . . w(m) (•)









, (7)

with known sign(w(i)(•)). It is assumed that finite but
unknown uncertainty bounds

|v(i) (•) | ≤ v
(i)
M , 0 < w(i)

m ≤ |w(i) (•) |, (8)

exist.

3. SYSTEM IDENTIFICATION BASED ON
ADAPTIVE LINEAR NETWORKS

Considering only the linear parts in (4) a linearization of
(3) is obtained as

yk+1 ≈ A
(1)
k yk + · · ·+A

(ny+1)
k yk−ny

+Nkuk

+B
(1)
k uk−1 + · · ·+B

(nu)
k uk−nu

. (9)

The matrices A
(i)
k ,B

(j)
k ,Nk in (9) define the transfer

function matrix of a linear MIMO system (Isermann and
Münchhof (2010)). Based on input-output data the linear
system of (9) can be identified by means of e. g. regression
(Stenman (1999)), subspace identification (Favoreel et al.
(1999)), neural networks (Prasad et al. (1998)). In this
work it is suggested to use a linear neural network. The
linear system (9) can be rewritten as a neural network

yk+1 ≈ Akȳk +Nkuk +Bkūk−1 + bk,

= Zkpk =
[
Ak Nk Bk bk

] [

ȳT
k uT

k ūT
k−1 1

]T

, (10)

with inputs

ȳk =
[

yT
k . . . yT

k−ny

]T

, ūk−1 =
[

uT
k−1 . . . uT

k−nu

]T

,

and uk, weighting matrices Ak,Bk, and Nk, and bias
vector bk. Input vector pk ∈ R

n is of dimension n = r(ny+
1)+m(nu +1)+ 1. The considered network is adaptive as
the parameters

ζk = vec(Zk), (11)

can be estimated and adapted online by means of a
Kalman filter so that an updated approximation of the
nonlinear system (3) for time step k is available. A well-
known Kalman filter based estimation of the network
parameters

ζ̂k|k = vec(Ẑk|k), (12)

is given as (Singhal and Wu (1989))

ζ̂k+1|k = ζ̂k|k, (13)

Pk+1|k = Pk|k +Q, (14)

ζ̂k+1|k+1 = ζ̂k+1|k +Kk+1(yk+1 −Hk+1ζ̂k+1|k), (15)

Kk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1 +R)−1, (16)

Pk+1|k+1 = Kk+1RKT
k+1+ (17)

(Inr −Kk+1Hk+1)Pk+1|k(Inr −Kk+1Hk+1)
T . (18)

The output matrix

Hk+1 = pT
k ⊗ Ir, (19)
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is obtained by applying the vector operator on (10). The
input-output data is assumed to be noise-free

[
ȳk

ūk−1

]

=

[
ȳk

ūk−1

]

+ rk, (20)

with rk = 0, as rk 6= 0 would affect the output matrix
in (19). As Kalman filtering is related to weighted least-
squares estimation (Sorenson (1970)) algorithm (13-18)
minimizes

a = argmin
(ζ⋆

i
)k
i=0

‖ζ0 − ζ⋆0‖
2
P

−1
0

+

k∑

i=0

‖yk −Hkζ
⋆
k‖

2
R−1 +

k−1∑

i=0

∥
∥ζ⋆k+1 − ζ⋆k

∥
∥
2

Q−1 , (21)

where a = (ζ̂i|i)
k
i=0 are the Kalman filter estimations. The

weighting matrices Q = αInr , R = βIr , α ≥ 0, β > 0
are design values. Matrix R determines how exact the
estimated network parameters should be fitted to the
input-output data, and Q influences the learning rate of
the network. Based on the estimated network parameters
a linear state space realization is obtained as





ȳk+1

ūk

b̂k+1





︸ ︷︷ ︸
x̄k+1

=





Ā11 Ā12 Ā13

0 Ā22 0
0 0 Ir





︸ ︷︷ ︸

Ā





ȳk

ūk−1

b̂k





︸ ︷︷ ︸
x̄k

+





N̄1

N̄2

0





︸ ︷︷ ︸

N̄

uk,

ŷk+1 ≈
[
Ir 0 . . . 0

]
ȳk+1, (22)

with

Ā11 =

[

Âk

T

]

, Ā12 =

[

B̂k

0

]

, Ā13 =

[
Ir
0

]

,

N̄1 =

[

N̂k

0

]

, Ā22 =

[
0
S

]

, N̄2 =

[
Im
0

]

,

T =








Ir 0 . . . 0 0
0 Ir . . . 0 0
...

...
. . .

...
...

0 0 . . . Ir 0







, S =








Im 0 . . . 0 0
0 Im . . . 0 0
...

...
. . .

...
...

0 0 . . . Im 0







,

where T is a rny × r(ny + 1) matrix, and S is a m(nu −
1)×mnu matrix.

4. MODEL-FREE PREDICTIVE CONTROL

In the following predictive control i. e. minimization of

argmin
→

u

1

2





k+np−1
∑

i=k

eTi Q
PC
i ei +

k+nc−1∑

i=k

uT
i R

PC
i ui



 ,

s. t Ac
→
u ≤ bc,

→
u =

[
uk . . . uk+nc−2

]T
, (23)

with tracking error ek, symmetric weighting matrices
QPC ≥ 0,RPC > 0, prediction horizon np, control horizon
nc, with np > nc, and constraints (Ac,bc), is considered.
As the linear state space description (22) is available the
problem reduces to the well-known linear state space based
model predictive control (MPC) problem. A brief solution
of this problem is given as follows based on Mikuláš (2013),
Wang (2009). The state space model (22) is augmented by
the reference value leading to

[

x̄k+1

z
ref
k+1

]

︸ ︷︷ ︸

x̃k+1

=

[

Ā 0
0 Il

]

︸ ︷︷ ︸

Ã

[
x̄k

zrk

]

︸ ︷︷ ︸

x̃k

+

[

N̄
0

]

︸︷︷︸

Ñ

uk,

ek = Cx̃k =
[
L 0 . . . 0 −Il

]
x̃k. (24)

Based on (24) the prediction equation of the tracking error







ek
ek+1

...
ek+np−1








︸ ︷︷ ︸
→

e

=









C

CÃ
...

CÃnp−1









︸ ︷︷ ︸

Ψ

x̃k

+









0 0 . . .

CÑ 0 . . .
...

...
. . .

CÃnp−2Ñ CÃnp−3Ñ . . .









︸ ︷︷ ︸

Ω






uk

...
uk+np−2






︸ ︷︷ ︸
→,np

u

, (25)

is obtained. Using (25) problem (23) can be written as a
quadratic programm

→
u

⋆
= argmin

→

u

1

2

→
u

T
G

→
u + fT

→
u, s. t. Ac

→
u ≤ bc, (26)

with

G = MTΩT Q̃PCΩM+ R̃PC , fT = x̃T
k Ψ

T Q̃HM,

Q̃PC = Inp
⊗QPC , R̃PC = Inc

⊗RPC ,
→,np

u = M
→
u,

where M is the move blocking matrix keeping uk+k∗ =
uk+nc

fixed for all predictions k∗ > nc. Based onQPC ≥ 0,

RPC > 0, leading to Q̃PC ≥ 0, R̃PC > 0, it followsG > 0,
so problem (26) is convex (Nocedal and Wright (2006)).
Finally, the optimal predictive control input of the next

time step is the first entry in
→
u

⋆
which is denoted as u⋆

k.

5. CHATTERING MITIGATED SLIDING MODE
CONTROL

The SMC controller is designed in continuous time space.
Consequently, the optimal predicitive control input u⋆

k is
transformed into a time-continuous signal

u⋆(t) = u⋆
k, kTs ≤ t < (k + 1)Ts, (27)

where Ts denotes the sample time. The proposed combined
control input u(i)(t) for i = 1 . . .m is

u(i)(t) = η(i)
(

σ(i)(t)
)

u⋆(i)

(t)

−
µ(i)

(

σ(i)(t)
)

sign
(

w(i)
(
x(t), t

)) sign
(

σ(i)(t)
)

, (28)

with

η(i)
(

σ(i)(t)
)

> 0, µ(i)
(

σ(i)(t)
)

> 0, (29)

where η(i)(•), and µ(i)(•) are weighting functions chosen
as

• If |σ(i)| > t
(i)
σ

η(i)(σ(i)) = 0, µ(i)(σ(i)) = k
(i)
SMC, (30)

with

k̇
(i)
SMC(t) = k

(i)
1 |σ(i)(t)|, k

(i)
1 > 0, (31)
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Fig. 1. Continuous stirred tank reactor (CSTR)

• If |σ(i)| ≤ t
(i)
σ

η(i)(σ(i)) = η̃(i)(|σ(i)|), µ(i)(σ(i)) = µ̃(i)(|σ(i)|),

k
(i)
SMC = µ̃(i)(t(i)σ ). (32)

The weighting functions η̃(i)(•), µ̃(i)(•) are selected so that
the properties

lim
|σ(i)|→0

η̃(i)(|σ(i)|) = 1,
dη̃(i)(|σ(i)|)

d|σ(i)|
< 0, (33)

lim
|σ(i)|→0

µ̃(i)(|σ(i)|) = 0,
dµ̃(i)(|σ(i)|)

d|σ(i)|
> 0, (34)

hold. Consequently the control is dominated by the MPC
solution in the near of the sliding surface, whereas the
switching gain increases if it is required to drive the states
back to the surface. If the sliding variable exceeds the

threshold t
(i)
σ only the SMC is used for control and the

switching gain is adapted based on (31). The adaption of
the switching gain follows the adaption law proposed in
Huang et al. (2008) which guarantees finite-time stability

of |σ(i)| with respect to the domain t
(i)
σ (proven in e. g.

Plestan et al. (2010) Corollary 1). Additional to the
adaption law of Huang et al. (2008) the resetting (32) is
considered to allow the switching gain to decrease to the

fixed value µ̃(i)(|σ(i)|) with |σ(i)| = t
(i)
σ .

6. EXAMPLE

The performance of the proposed controller is evaluated
based on a simulation example. A chemical reaction of a
species A in a continuous stirred tank reactor (Fig. 1) is
considered. As shown in Seborg et al. (2010), Magni et al.
(2001) the dynamics of the effluent flow concentration
CA(t) = x1(t) and the reactor temperature T (t) = x2(t)
can be described by

[
ẋ1(t)
ẋ2(t)

]

︸ ︷︷ ︸

ẋ(t)

=

[
a(t)

b(t) + c(t)

]

︸ ︷︷ ︸

d(x(t))

+





0
UA

V ρCp





︸ ︷︷ ︸

g(x(t))

u(t), (35)

a(t) =
q

V
(CAf − x1(t))− k0x1(t)exp

(

−
E

Rx2(t)

)

,

b(t) =
q

V
(Tf − x2(t)) +

−∆Hk0x1(t)

ρCp

exp

(

−
E

Rx2(t)

)

,

c(t) =
UA

V ρCp

(T eq
c − x2(t)),

with measurements y(t), and control variable z(t) defined
as

y(t) = h
(
x(t)

)
=

[
x1(t)
x2(t),

]

, z(t) = κ
(
x(t)

)
= x1(t).

The parameters of the system are shown in Table 1. The
input of the system is the change of the coolant stream
temperature u(t) = ∆Tc related to the nominal value T eq

c .
The input saturation is

∣
∣u(t)

∣
∣ ≤ 50K = umax. The system

is known to have slow dynamics (Magni et al. (2001)).
As all states are measured, and the first order derivatives
correspond to shifts of one time step in the discrete-time
domain, equation (35) can be transformed into the NARX
model (3). The relative degree and the Lie derivatives of
the system are determined to show that the dynamics of
the sliding variable can have the form (6). Based on the
Lie derivatives

L2
dκ

(
x(t)

)
=

q2

V 2
(CAf − x1(t))

+ x1(t)k0exp

(

−
E

Rx2(t)

)

×

[

q

V
+ k0exp

(

−
E

Rx2(t)

)

−
q

V x1(t)

(
CAf − x1(t)

)
−

Eq

Rx2(t)2V
(Tf − x2(t))

−x1(t)
−∆HEk0
ρCpRx2(t)2

exp

(

−
E

Rx2(t)

)

−
UAE

V ρCpRx2(t)2
(T eq

c − x2(t))

]

,

LgLdκ
(
x(t)

)
= −k0x1(t)

UAE

V ρCpRx2(t)2
exp

(

−
E

Rx2(t)

)

,

the input-output behavior

z̈(t) = L2
dκ

(
x(t)

)
+ LgLdκ

(
x(t)

)
u(t), (36)

is achieved. The relative degree of the system is two.
Consider the sliding variable to be defined as

σ(t) = ė(t) + λe(t), λ > 0, (37)

then the dynamics of the sliding variable are

σ̇(t) = ë(t) + λė(t) = v
(
x(t), t

)
+ w

(
x(t), t

)
u(t), (38)

with

v
(
x(t), t

)
= z̈r(t)− L2

dκ
(
x(t)

)
+ λżr(t)

− λ
q

V
(CAf − x1(t)) + λk0x1(t)exp

(

−
E

Rx2(t)

)

,

w
(
x(t), t

)
= −LgLdκ

(
x(t)

)
.

In order to achieve the control law sign
(
−LgLdκ(•)

)
must

be determined. Considering LgLdκ(•) and interpreting the
physical meaning of the parameters based on Table 1 it
turns out that sign

(
−LgLdκ(•)

)
equals one. This result

can be obtained without knowing concrete values of the
parameters. Alternatively, it would also be possible to try
to use sign

(
−LgLdκ(•)

)
= −1 or sign

(
−LgLdκ(•)

)
= 1 in

combination with the controller. One option will work for
sure as x1(t) > 0 holds true, and sign

(
−LgLdκ(•)

)
can

not change dependent on the states. Finally, the control
law can be stated as

u(t) = η
(
σ(t)

)
u⋆(t)− µ

(
σ(t)

)
sign

(
σ(t)

)
, (39)
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Table 1. CSTR process parameters (Magni
et al. (2001))

Parameter Symbol Value

Tank volume V 100 l

Feed flow rate q 100 l/min

Feed concentration CAf 1 mol/l

Feed temperature Tf 350 K

Density ρ 1000 g/l

Enthalpy −∆H 5× 104 J/mol

Exponential factor E
R

8750 K

Frequency factor k0 7.2× 1010 min−1

Heat transfer characteristic UA 5× 104 J/minK

Specific heat Cp 0.239 J/gK

Coolant flow temperature T eq
c 300 K

where the weighting functions

• If
∣
∣σ(t)

∣
∣ > 1 then

η
(
σ(t)

)
= 0, µ

(
σ(t)

)
= kSMC, (40)

k̇SMC(t) = 10
∣
∣σ(t)

∣
∣ , (41)

• If
∣
∣σ(t)

∣
∣ ≤ 1 then

η
(
σ(t)

)
=

1
∣
∣σ(t)

∣
∣+ 1

, (42)

µ
(
σ(t)

)
= 10

∣
∣σ(t)

∣
∣ , kSMC(t) = 10, (43)

with kSMC(t0) = 20 have been determined by trial and
error. Process (35) is discretized based on Euler method
using a sampling time of 1 s. The simulation has a duration
of Tsim = 15 min. For the initialization of the states
x1(t0) = 0.875 mol/l, and x2(t0) = 325 K is considered.
The number of delayed inputs and outputs in the network
are selected as ny = 3, nu = 2. The network weights
are initialized with x̂0 = Inr×1, P0|0 = Inr×nr × 1010.
The learning rate is considered to be α = 0.01, and β
is chosen as β = 0.001. The network is initially trained
based on the system outputs generated by u(t⋆) = At(t

⋆)×
cos

(
ωt(t

⋆)t⋆
)
, t⋆ = 0...20min, where ωt(t

⋆) varies between
2π
50 and 2π

3000 , and At(t
⋆) varies between 0.5 and 2.5. The

weighting matrices considered for the model-free predictive
control approach are QPC = 1 × Il×l,R

PC = 0.001 ×
Im×m. Matrix L is L =

[
1 0

]
. The prediction and control

horizon are chosen as np = 10, nc = 9. For the sliding
dynamics λ = 0.05 is considered. The reference values for
tracking are

zr(t) =







0.8mol/l if t ≤ 4min,

0.75mol/l if 4min < t ≤ 8min,

0.7mol/l if 8min < t ≤ 12min,

0.85mol/l if 12min < t ≤ 15min.

(44)

The proposed chattering mitigated SMC (CM-SMC) ap-
proach (39) is compared to the adaptive SMC (A-SMC)
approach of Plestan et al. (2010), and the pure model-free
predictive control (MF-PC) approach (26). According to
“algorithm 1” in Plestan et al. (2010) the A-SMC approach
is given as

uA-SVSF(t) = −kA-SMC(t)× sign
(
σ(t)

)
, (45)

• If
∣
∣σ(t)

∣
∣ > 1 then

Table 2. Performance evaluation

CM-SMC A-SMC MF-PC
∫
(e(t)2/Tsim)dt 584.7 623.6 606.1

∫
(u(t)2/Tsim)dt 331.8 742.5 565.0

k̇A-SMC(t) = 10
∣
∣σ(t)

∣
∣ , (46)

• If
∣
∣σ(t)

∣
∣ ≤ 1 then

kA-SMC(t) = k̄A-SMC

∣
∣γ(t)

∣
∣+ 2, (47)

100γ̇(t) + γ(t) = sign
(
σ(t)

)
, (48)

with kA-SMC(t0) = 20, γ(t0) = 0, k̄A-SMC = kA-SMC(t
⋆),

where kA-SMC(t
⋆) denotes the last value of kA-SMC(t)

before
∣
∣σ(t)

∣
∣ is switching from

∣
∣σ(t)

∣
∣ > 1 to

∣
∣σ(t)

∣
∣ ≤ 1.

The output trajectories of the controlling approaches are
visualized in Fig. 2. Performance values are given in
Table 2. The A-SMC approach is slow, shows chattering
effects, and is more inaccurate in comparison to CM-
SMC. The PC approach is stationary accurate but shows
overshooting behavior in case of switching reference. The
proposed CF-SMC approach can reject the overshooting
and is stationary accurate. The generated inputs of the
controllers are visualized in Fig. 3. The A-SMC approach
shows strong chattering effects. The proposed CM-SMC
approach only shows chattering during the rejection of
the overshooting. In Fig. 4 the values of the weighting
functions during the rejection of the overshooting are
shown. When the reference signal changes the value of the
swichting gain increases and forces the states back on the
sliding surface. Near the surface the values of the swichting
gain are scaled down so that chattering is avoided.
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Fig. 2. Output trajectories of the control approaches

7. CONCLUSION

In this paper chattering mitigated sliding mode control of
nonlinear systems with slow dynamics is considered. An
approach that attenuates the chattering effects without
the requirement of knowing concrete parameter values or
uncertainty bounds is proposed. In the numerical simula-
tion the suggested approach shows superior performance in
comparison to a conventional adaptive sliding mode con-
troller and a pure model-free predictive control approach.
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Fig. 3. Inputs generated by the control approaches
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