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Abstract: This paper considers stabilizability of switched differential algebraic equations
(DAEs). We first introduce the notion of interval stabilizability and show that under a certain
uniformity assumption, stabilizability can be concluded from interval stabilizability. A geometric
approach is taken to find necessary and sufficient conditions for interval stabilizability. This
geometric approach can also be utilized to derive a novel characterization of controllability.
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1. INTRODUCTION

In this note we consider switched differential algebraic
equations (switched DAEs) of the following form:

Eσẋ = Aσx+Bσu, (1)

where σ : R → N is the switching signal and Ep, Ap ∈
Rn×n, Bp ∈ Rn×m, for p, n,m ∈ N. In general, trajectories
of switched DAEs exhibit jumps (or even impulses), which
may exclude classical solutions from existence. There-
fore, we adopt the piecewise-smooth distributional solution
framework introduced in Trenn (2009).

Differential algebraic equations (DAEs) arise naturally
when modeling physical systems with certain algebraic
constraints on the state variables. Examples of applica-
tions of DAEs in electrical circuits (with distributional
solutions) can be found e.g. in Tolsa and Salichs (1993).
The algebraic constraints are often eliminated such that
the system is described by ordinary differential equations
(ODEs). However, in the case of switched systems, the
elimination process of the constraints is in general differ-
ent for each individual mode. Therefore, in general, there
does not exist a description as a switched ODE with a
common state variable for every mode. This problem can
be overcome by studying switched DAEs directly.

We study stabilizability of (1), i.e. the property that for
all consistent initial values there exists an input such that
the state x converges to zero as time goes to infinity. Apart
from the obvious relevance to investigate stabilizability in
its own right, it is also important in the context of optimal
control, where in the non-switched case, stabilizability is
necessary for the existence of a finite quadratic cost (Cobb
(1983); Bender and Laub (1985); Reis and Voigt (2012)).

We would like to highlight, that we assume the switching
signal to be fixed and known, i.e. (1) is viewed as a time-
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varying linear system. In particular, the switching signal
is not considered to be an (additional) control input.

Several other structural properties of (switched) DAEs
have been studied recently. Among those are controllabil-
ity (Küsters et al., 2015), stability (Liberzon and Trenn,
2009) and observability (Küsters et al., 2017). However,
stabilizability has thus far only been studied in the non-
switched case in Cobb (1984); Lewis (1992); Berger and
Reis (2013) and, to the best of the authors knowledge,
there are no results yet for the switched case.

An obvious sufficient condition for stabilizability is to
demand the last mode to be stabilizable. However, de-
termining what the last mode is of a switched system
poses a problem as time tends to infinity. To overcome
this problem, we define a notion of stabilizability of a
switched system on a bounded interval. Then under certain
uniformity assumptions (which are automatically satisfied
e.g. for periodic systems) we can prove that the system is
stabilizable if there exists a partition of the time axis such
that on each subinterval the system is interval stabilizable.
Furthermore, we present necessary and sufficient condi-
tions for a DAE to be interval stabilizable. The approach
for obtaining these results is then utilized to derive novel
results on controllability as well.

The outline of the paper is as follows: notations and results
for non-switched DAEs are presented in Section II. The
main results on stabilizability and interval stabilizability
are presented in Section III, followed by a brief discus-
sion on the interpretation of the results. Conclusions and
discussions on future work are given in Section IV.

2. MATHEMATICAL PRELIMINARIES

2.1 Properties and definitions for regular matrix pairs

In the following, we consider regular matrix pairs (E,A),
i.e. for which the polynomial det(sE − A) is not the
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zero polynomial. Recall the following result on the quasi-
Weierstrass form (Berger et al., 2012).

Proposition 1. A matrix pair (E,A) ∈ Rn×n × Rn×n is
regular if, and only if, there exists invertible matrices
S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (2)

where J ∈ Rn1×n1 , 0 6 n1 6 n, is some matrix and
N ∈ Rn2×n2 , n2 := n− n1, is a nilpotent matrix.

The matrices S and T can be calculated by using the so-
called Wong sequences (Berger et al., 2012; Wong, 1974):

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, ...
W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, ...

(3)

The Wong sequences are nested and get stationary after
finitely many iterations. The limiting subspaces are defined
as follows:

V∗ :=
⋂
i

Vi, W∗ :=
⋃
i

Wi. (4)

If (E,A) is regular, then V∗ ⊕ W∗ = Rn and EV∗ ⊕
AW∗ = Rn (see Berger et al. (2012)); in particular, for any
full rank matrices V,W with imV = V∗ and imW =W∗,
the matrices T := [V,W ] and S := [EV,AW ]−1 are
invertible and (2) holds.

Based on the Wong sequences we define the following
projectors and selectors.

Definition 2. Consider the regular matrix pair (E,A) with
corresponding quasi-Weierstrass form (2). The consistency
projector of (E,A) is given by

Π(E,A) := T

[
I 0
0 0

]
T−1,

the differential selector is given by

Πdiff
(E,A) := T

[
I 0
0 0

]
S,

and the impulse selector is given by

Πimp
(E,A) := T

[
0 0
0 I

]
S.

In all three cases the block structure corresponds to the
block structure of the quasi-Weierstrass form. Furthermore
we define

Adiff := Πdiff
(E,A)A, Eimp := Πimp

(E,A)E,

Bdiff := Πdiff
(E,A)B, Bimp := Πimp

(E,A)B.

Note that all the above defined matrices do not depend
on the specifically chosen transformation matrices S and
T ; they are uniquely determined by the original regular
matrix pair (E,A). An important feature for DAEs is the
so called consistency space, defined as follows for the DAE

Eẋ = Ax+Bu. (5)

Definition 3. Consider the DAE (5), then the consistency
space is defined as

V(E,A) :=
{
x0 ∈ Rn

∣∣∣ ∃ smooth solution x of (5)
with u = 0 and x(0) = x0

}
,

and the augmented consistency space is defined as

V(E,A,B) :=
{
x0 ∈ Rn

∣∣∣ ∃ smooth solutions (x, u) of (5)
with x(0) = x0

}
.

In order to express (augmented) consistency spaces in
terms of the Wong limits we introduce the following
notation for matrices A, B of conformable sizes:

〈A | B〉 := im[B,AB, . . . , An−1B].

Proposition 4. (Berger and Trenn (2014)). Consider the
regular DAE (5), then V(E,A) = V∗ = im Π(E,A) =

im Πdiff
(E,A) and

V(E,A,B) = V(E,A) ⊕ 〈Eimp | Bimp〉.

For studying impulsive solutions of (5), we consider the
space of piecewise-smooth distributions DpwC∞ from Trenn
(2009) as the solution space. That is, we seek a solution
(x, u) ∈ (DpwC∞)n+m to the following initial-trajectory
problem (ITP) associated to (5):

x(−∞,0) = x0
(−∞,0), (6a)

(Eẋ)[0,∞) = (Ax)[0,∞) + (Bu)[0,∞), (6b)

where x0 ∈ (DpwC∞)n is some initial trajectory, and fI
denotes the restriction of a piecewise-smooth distribution
f to an interval I. In Trenn (2009) it is shown that the
ITP (6) has a unique solution for any initial trajectory
if, and only if, the matrix pair (E,A) is regular. As a
direct consequence, the switched DAE (1) with regular
matrix pairs is also uniquely solvable (with piecewise-
smooth distributional solutions) for any switching signal
with locally finitely many switches.

Recall the following definitions and characterization of
(impulse) controllability (Berger and Trenn, 2014).

Proposition 5. The reachable space of the regular DAE (5),
defined as

R :=
{
xT ∈ Rn

∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (5)
with x(0) = 0 and x(T ) = xT

}
,

satisfies R = 〈Adiff | Bdiff〉 ⊕ 〈Eimp | Bimp〉.

It is easily seen that the reachable space for (5) coincides
with the (null-)controllable space, i.e.

R =
{
x0 ∈ Rn

∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (5)
with x(0) = x0 and x(T ) = 0

}
.

Corollary 6. The augmented consistency space of (5) sat-
isfies V(E,A,B) = V(E,A) +R = V(E,A) ⊕ 〈Eimp, Bimp〉.

According to Trenn (2012) if the input u(·) is sufficiently
smooth, trajectories of (5) on (0,∞) are continuous and
given by

x(t) = xu(t, t0;x0) = eA
diff(t−t0)Π(E,A)x0

+

∫ t

t0

eA
diff(t−s)Bdiffu(s) ds−

n−1∑
i=0

(Eimp)iBimpu(i)(t). (7)

In particular, all trajectories can be written as the sum of

an autonomous part xaut(t, t0;x0) = eA
diff(t−t0)Π(E,A)x0 ∈

V(E,A) and a controllable part xu(t, t0) ∈ R as follows:

xu(t, t0;x0) = xaut(t, t0;x0) + xu(t, t0).

With some adjustment in notation, this decomposition
remains valid also for switched DAEs, in particular, x0

is the (possible inconsistent) initial value at t−0 .
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2.2 Stabilizability notions

The concepts introduced in the previous section are now
utilized to investigate stabilizability of switched DAEs. In
order to use the piecewise-smooth distributional solution
framework and to avoid technical difficulties in general, we
only consider switching signals from the following class

Σ :=

{
σ : R→ N

∣∣∣∣∣ σ is right continuous with a
locally finite number of jumps
and constant in the past

}
.

Since we are concerned with a single switching signal,
we can assume (by relabeling the corresponding matrices
accordingly) that at time tk we switch to mode k, i.e.

σ(t) = k, for tk 6 t < tk+1. (8)

Since we do not allow infinitely many switches in the past
we may assume for the first switching instant t1 that
t1 > t0 := 0. Denote with τk := tk+1 − tk the duration
of mode k.

Roughly speaking, in classical literature on non-switched
systems, a control system is called stabilizable if every
trajectory can be steered towards zero as time tends to
infinity. We will define stabilizability for switched DAEs
in a similar fashion as follows.

Definition 7. (Stabilizability). The switched DAE (1) with
switching signal (8) is stabilizable if the corresponding
solution behavior Bσ is stabilizable in the behavioral sense
on the interval [0,∞), i.e.

∀(x, u) ∈ Bσ ∃(x∗, u∗) ∈ Bσ :

(x∗, u∗)(−∞,0) = (x, u)(−∞,0),

and lim
t→∞

(x∗(t+), u∗(t+)) = 0.

In constrast to previous works on stability of switched
DAEs (Liberzon and Trenn, 2009, 2012) we adopt the
viewpoint as in Tanwani and Trenn (2015) (cf. Def. 6 and
Prop. 7 therein) and do not require impulse-free solutions
for asymptotic stability. Simultaneously stabilizing and
eliminating impulses is a topic of future research.

Since stabilizability is an asymptotic property, i.e. t→∞,
it is reasonable to assume that there are an infinite amount
of switching instances. This poses a problem when it
comes to verifying conditions for stabilizability in a finite
amount of steps. To overcome this problem, we investigate
stabilizability on a bounded interval. To that extent we
introduce the following definition of interval stabilizability
(cf. Def. 5 in Tanwani and Trenn (2017)).

Definition 8. (Interval-stabilizabilty). Consider the
switched DAE (1) with a switching signal given by (8).
Then (1) is called interval-stabilizable on the finite inteval
[t, t) ⊆ [0,∞), if there exists a class KL function 1 β :
R>0 × R>0 → R>0 with

β(r, t− t) < r, ∀r > 0,

and for any (possibly inconsistent) initial value x0 ∈ Rn
there exist a local solution (x, u) of (1) on [t, t) with
x(t−) = x0 such that

|x(t+)| 6 β(|x0|, t− t), ∀t ∈ [t, t),

where | · | denotes the Euclidian norm on Rn.

1 A function β : R>0 × R>0 → R>0 is called a class KL function
if 1) for each t > 0, β(·, t) is continuous, strictly increasing, with
β(0, t) = 0; 2) for each r > 0, β(r, ·) is decreasing and converging to
zero as t→∞.

One should note that a solution on some interval is not
necessarily a part of a solution on a larger interval. Conse-
quently, stabilizability does not always imply interval sta-
bilizability. The switched system 0 = x on [0, t1) and ẋ = 0
on [t1,∞) is obviously stabilizable, since the only global
solution is the zero solution. However, on the interval [t1, s)
there are nonzero solutions which do not converge towards
zero. Furthermore, we would like to emphasize that in
general the interval [t, t) contains multiple switches, i.e. it
is not assumed that the individual modes of the switched
system are stabilizable.

We need some uniformity assumption to conclude that
interval stabilizability on each interval of a partition of
[0,∞) implies stabilizability.

Assumption 1. (Uniform interval-stabilizability). Consider
the switched system (1) with switching signal σ and
switching times tk, k ∈ N. Assume that there exists a
strictly increasing sequence (qi)

∞
i=0 with q0 > 0 =: q−1

such that for pi = qi−1 the system is [tpi , tqi)-stabilizable
with KL function βi for which additionally it holds that

βi(r, tqi − tpi) 6 αr, ∀r > 0,∀i ∈ N
βi(r, 0) 6Mr, ∀r > 0,∀i ∈ N,

for some uniform α ∈ (0, 1) and M > 1.

We now present the following result.

Proposition 9. If the switched system (1) is uniformly
interval-stabilizable in the sense of Assumption 1 then (1)
is stabilizable.

The proof of Proposition 9 is along the same lines as the
proof of Proposition 8 in Tanwani and Trenn (2019) and
therefore omitted.

3. INTERVAL STABILIZABILITY FOR (1)

In the following we will derive conditions under which a
switched system (1) is interval stabilizable. Without loss of
generality, we consider the switched DAE on the interval
[0, tf ) for some tf > 0 and a switching signal of the form
(8). By assumption, there are only finitely many switching
instants in (0, tf ), say t1 < t2 < . . . < tn for some n ∈ N;
for notational convenience we let t0 := 0 and tn+1 := tf .
Furthermore, we denote in the following with Πi, A

diff
i ,

Bdiff
i , Eimp

i , Bimp
i the corresponding matrices related to

(Ei, Ai) for i = 0, 1, . . . , n.

In order to verify whether the system is interval stabiliz-
able, we need to compute the minimum norm of the state
at the end of the interval. To do so, we first consider the
(orthogonal) projector ΠR⊥

i
onto the orthogonal comple-

ment of the reachable space Ri of mode i. An important
property of these projectors is that their restriction to
the corresponding augmented consistency space is well
defined:

Lemma 10. Consider the DAE (1) with switching signal
(8). For any i ∈ {0, 1, . . . , n} let ξ ∈ V(Ei,Ai,Bi), then

ΠR⊥
i
ξ ∈ V(Ei,Ai,Bi).

Proof. From ξ ∈ V(Ei,Ai,Bi) and ΠR⊥
i

+ (I − ΠR⊥
i

) = I,

it follows that

ΠR⊥
i
ξ + (I −ΠR⊥

i
)ξ ∈ V(Ei,Ai,Bi).
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Since im(I −ΠR⊥
i

) = Ri and Ri ⊆ V(Ei,Ai,Bi) we obtain

ΠR⊥
i
ξ ∈ V(Ei,Ai,Bi) − (I −ΠR⊥

i
)ξ ⊆ V(Ei,Ai,Bi).

as was to be shown. �

Given Lemma 10 we are ready to conclude the following
lemma.

Lemma 11. Consider the system (1) with switching signal
(8). Then we have that

min
u
|xu(t−i+1, t0;x0)| = min

u
|ΠR⊥

i
xu(t−i+1, t0;x0)|.

Furthermore, the minimization on the right hand side does
not depend on the choice of u on [ti, ti+1).

Proof. It follows that for any input u

xu(t−i+1, t0;x0) = (ΠR⊥
i

+ (I −ΠR⊥
i

))xu(t−i+1, t0;x0)

and since im(I − ΠR⊥
i

) and im ΠR⊥
i

are orthogonal sub-

spaces, we have by Pythagoras’ Theorem

|xu(t−i+1, t0;x0)|2 = |ΠR⊥
i
xu(t−i+1, t0;x0)|2

+ |(I −ΠR⊥
i

)xu(t−i+1, t0;x0)|2.

Invoking (I−ΠR⊥
i

)xu(t−i+1, t0;x0) ∈ Ri we can choose our

input on [ti, ti+1) such that |(I−ΠR⊥
i

)xu(t−i+1, t0;x0)| = 0,

regardless of the input on [0, ti). What remains to minimize
is |ΠR⊥

i
xu(t−i+1, t0;x0)|. This component is however not

dependent on u on [ti, ti+1
), because any effect of a non-

zero input will evolve in Ri and is therefore annihilated
by ΠR⊥

i
. �

In order to investigate the state at the end of an interval
[0, tf ) we introduce the following sequence of subspaces
and show that they correspond to the reachable spaces at
the end of the corresponding switching intervals.

Proposition 12. Consider the system (1) with switching
signal (8) and let

S0 = R0,

Si = eA
diff
i τiΠiSi−1 +Ri, i = 1, 2, . . . , n.

Then Si is the reachable space of (1) at ti+1, i.e.

Si =

{
ξ ∈ Rn

∣∣∣∣ ∃ solution (x, u) of (1) on [0, ti+1)

with x(0−) = 0 and x(t−i+1) = ξ

}
.

Proof. Since no switch occurs in the interval (0, t1) the
statement is true by definition for i = 0.

We now show the statement by induction and therefore
assume that the statement holds for some i − 1 > 0. Let
(x, u) be a solution of (1) with x(0−) = 0 and x(t−i+1) = ξi.
Utilizing (7) on the interval (ti, ti+1) we have

ξi = eA
diff
i τiΠix(t−i ) + xu(t−i+1, ti)

with xu(t−i+1, ti) ∈ Ri and, by induction, x(t−i ) ∈ Si−1.
This shows that ξi ∈ Si.
Conversely, assume that ξi ∈ Si, then there exists ξi−1 ∈
Si−1 and ηi ∈ Ri such that

ξi = eA
diff
i τiΠiξi−1 + ηi.

By induction, there exist a solution (x, u) on [0, ti) with
x(t−i ) = ξi−1. Furthermore, by the definition of the

reachable space Ri, the input u can be extended on the
interval [ti, ti+1) such that xu(t−i+1, ti) = ηi. Hence (7)
considered on (ti, ti+1) implies that ξi is reachable by (1)
on the interval [0, ti+1). �

Due to Lemma 11, we are interested on how we can
influence ΠR⊥

i
xu(t−i+1, t0;x0) and therefore we define the

following subspace.

Definition 13. Consider the system (1) with switching
signal (8). The reachable mode-i-uncontrollable space is
defined by

S̃i := (Ri)⊥ ∩ Si.
Lemma 14. Consider the system (1) with switching signal

(8). Then S̃i = ΠR⊥
i
Si.

Proof. The inclusion S̃i ⊆ ΠR⊥
i
Si holds trivially.

Conversely, consider ζ ∈ ΠR⊥
i
Si, then ζ = ΠR⊥

i
θ for

some θ ∈ Si. Invoking Proposition 12 choose u0 such that
xu0(t−i+1, t0; 0) = θ. Then since im(I − ΠR⊥

i
) ⊆ Ri there

exists a u1 such that

ζ = ΠR⊥
i
θ = θ − (I −ΠR⊥

i
)θ,

= θ − xu1
(ti+1, ti).

By linearity of solutions there thus exists an input ū such
that xū(t−i+1, t0; 0) = xu0

(t−i+1, t0; 0)−xu1
(ti+1, ti) = ζ and

thus ζ ∈ S̃i. Hence ΠR⊥
i
Si ⊆ S̃i. �

As will turn out, the state projected to R⊥i at t = ti+1 can
be decomposed into a reachable component and a compo-
nent resulting from the initial condition. To that extent
we define the x0-uncontrollable orthogonal component.

Definition 15. Consider the system (1) with switching
signal (8). The x0-uncontrollable orthogonal component
ξi(x0) is defined by the following sequence

ξ0(x0) = ΠR⊥
0
eA

diff
0 (t1−t0)Π0x0,

ξi+1(x0) = ΠR⊥
i+1
eA

diff
i+1(ti+2−ti+1)Πi+1ξi(x0).

Lemma 16. Consider the switched system (1) with switch-
ing signal (8). Then for all i ∈ {0, ..., n} we have

ΠR⊥
i
xu(t−i+1, t0;x0)− ξi(x0) ∈ S̃i.

Furthermore, for all intitial values x0 and any ξ̃i ∈ S̃i,
there exists an input u such that

ΠR⊥
i
xu(t−i+1, t0;x0)− ξi(x0) = ξ̃i. (9)

Proof. Let (x, u) be a solution of (1) with x(0−) = x0.
Then for i = 0 we have that

ΠR⊥
0
x(t−1 ) = ΠR⊥

0
(eA

diff
0 τ1Π0x0 + xu(t−1 , t0))

= ΠR⊥
0
eA

diff
0 τ1Π0x0

= ξ0(x0),

hence the statement holds, because S̃0 = {0}.
We will now proceed inductively from i to i+ 1. Similarly
as for i = 0 we first observe that

ΠR⊥
i+1
x(t−i+2) = ΠR⊥

i+1
eA

diff
i+1τi+1Πi+1x(t−i+1).
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According to the induction hypothesis we have ξ̃i :=

ΠR⊥
i
x(t−i+1)− ξi(x0) ∈ S̃i and hence

x(t−i+1) = ΠR⊥
i
x(t−i+1)+(I−ΠR⊥

i
)x(t−i+1) = ξi(x0)+ξ̃i+ηi,

where ηi := (I −ΠR⊥
i

)x(t−i+1) ∈ Ri. Consequently,

ΠR⊥
i+1
x(t−i+2) = ξi+1(x0) + ΠR⊥

i+1
eA

diff
i+1τi+1Πi+1ξ̂i,

where ξ̂i := ξ̃i + ηi ∈ Si (because S̃i ⊆ Si and Ri ⊆ Si).
Invoking Lemma 14, this concludes the proof of the first
part because

ΠR⊥
i+1
x(t−i+2)− ξi+1(x0) = ΠR⊥

i+1
ξ̂i+1

with ξ̂i+1 := eA
diff
i+1τi+1Πi+1ξ̂i ∈ Si+1.

It remains to be shown, that for each ξ̃i+1 ∈ S̃i+1

there exists an input u such that ΠR⊥
i+1
xu(t−i+2, t0;x0) −

ξi+1(x0) = ξ̃i+1. For given ξ̃i+1 we can (by invoking

Lemma 14) choose ξ̂i+1 ∈ Si+1 as well as ξ̂i ∈ Si and
ηi+1 ∈ Ri+1 such that

ξ̃i+1 = ΠR⊥
i+1
ξ̂i+1 = ΠR⊥

i+1
(eA

diff
i+1τi+1Πi+1ξ̂i + ηi+1)

= ΠR⊥
i+1
eA

diff
i+1τi+1Πi+1(ξ̃i + ηi),

where ξ̃i := ΠR⊥
i
ξ̂i ∈ S̃i and ηi := (I − ΠR⊥

i
)ξ̂i ∈ Ri.

By the induction hypothesis we can now choose an input
such that (9) holds. Due to the projection the value of
ΠR⊥

i
xu(t−i+1, t0;x0) does not depend on the choice of u

on [ti, ti+1) and we can alter u on this interval such that

xu(t−i+1, ti) = ηi. Consequently, xu(t−i+1, t0;x0) = ξ̃i +
ξ(x0) + ηi. With this input (arbitrarily extended on the
interval [ti+1, ti+1) we now have

ΠR⊥
i+1
xu(t−i+2, t0;x0)− ξi+1(x0)

= ΠR⊥
i+1

(
eA

diff
i+1τi+1Πi+1xu(t−i+1, t0;x0) + xu(t−i+2, ti+1)

)
−ΠR⊥

i+1
eA

diff
i+1τi+1Πi+1ξi(x0)

= ΠR⊥
i+1
eA

diff
i+1τi+1Πi+1

(
xu(t−i+1, t0;x0)− ξi(x0)

)
= ΠR⊥

i+1
eA

diff
i+1τi+1Πi+1

(
ξ̃i + ξ(x0) + ηi − ξi(x0)

)
= ξ̃i+1.

�

Lemma 17. Consider the system (1) with switching signal
(8). Then for all x0 ∈ Rn we have that for all i ∈ {0, ..., n}

min
u
|xu(t−i+1, t0;x0)| = dist(ξi(x0), S̃i). (10)

Proof. We have

min
u
|xu(t−i+1, t0;x0)|2 Lem. 11

= min
u
|ΠR⊥

i
xu(t−i+1, t0;x0)|2

Lem. 16
= min

ηi∈S̃i
|ξi(x0) + ηi|2 = dist(ξi(x0), S̃i)2

�

This leads us to the main theorem on interval stabilizabil-
ity of switched DAEs.

Theorem 18. Consider the switched DAE (1) with switch-
ing signal (8) having n ∈ N switches in the finite interval
[0, tf ). For x0 ∈ Rn let ξn(x0) be given as in Definition 15

and let S̃n be given as in Definition 13. Then (1) is interval
stabilizable on [0, tf ) if and only if for all x0 ∈ Rn

dist(ξn(x0), S̃n) < |x0|.

Proof. Assume that the system is interval stabilizable and
that interval stabilizability is achieved by ũ. Then it follows
that

dist(ξn(x0), S̃n) = min
u
|(xu(t−f , t0;x0)|

6 |xũ(t−f , t0;x0)|,
6 β(|x0|, tf ) < |x0|

Conversely if dist(ξn(x0)) = minu |(xu(t−f , t0;x0)| < |x0|
then obviously for the u that attains this minimum there
exists a class KL function β such that β(r, tf ) < r and
|xu(t+, 0;x0)| 6 β(|xu(t+, 0;x0)|, t) for all t ∈ [0, tf ). �

Remark 19. The conditions stated in Theorem 18 need
to be valid for an infinite amount of points, however, it
is sufficient to just check it for any orthogonal basis of
Rn. This is a consequence of ξn(x0) being linear in x0 to-
gether with the semi-norm property of the distance-from-
a-subspace functions and Pythagoras’ Theorem. In fact, let
x0 =

∑n
i=1 αibi for some orthogonal basis b1, . . . , bn ∈ Rn

and some coordinates α1, . . . , αn ∈ R, then (under the
assumption that (11) holds for each of the n basis vectors
b1, . . . , bn)

dist(ξn(x0), S̃n)2 6

(
n∑
i=1

|αi|dist(bi, S̃i)

)2

6
n∑
i=1

|αibi|2 = |x0|2

Example 20. Consider the following switched DAE defined
on the interval [0, tf ) with tf := 2 ln(2) and a switch at
t1 = ln(2).

Σσ


[

1 0 0
0 1 0
0 0 0

]
ẋ(t) =

[
1 0 0
0 −2 0
1 −1 1

]
x(t) +

[
1
0
0

]
u(t), 0 6 t < t1,[

0 0 1
0 1 0
0 0 0

]
ẋ(t) =

[
1 1 1
0 1 0
1 0 0

]
x(t) t1 6 t 6 tf .

Note that neither of the two modes of the switched system
is stabilizable. In order to show that the system is interval
stabilizable, use the Wong sequences to compute Adiff

0 , Adiff
1

and Π0 and Π1. We have that

im Π0 = im
[

1 1 0
0 2 0
−1 1 0

]
= V(E0,A0). (11)

Furthermore, we compute

R0 = span
{[

1
0
−1

]}
, ΠR⊥

0
=

1

2

[
1 0 1
0 2 0
1 0 1

]
, ΠR⊥

1
= I,

In view of Remark 19, we only need to verify the conditions
of Lemma 18 for set of orthogonal base vectors of R3.
Hence we consider the basis

v1 =
[

1
0
0

]
, v2 =

[
0
1
0

]
, v3 =

[
0
0
1

]
.

It follows that

ξ1(v1) = 0, ξ1(v2) = [ 0 1
2

3
5 ]
>
, ξ1(v3) = 0.

Computing the time t1 reachable uncontrollable space

yields that S̃1 = span{[ 0 0 1 ]
>} from which we calculate

that

dist(ξ1(v1), S̃1) = 0 < 1 = |v1|,

dist(ξ1(v2), S̃1) =
1

2
< 1 = |v2|,

dist(ξ1(v3), S̃1) = 0 < 1 = |v3|.
Hence we can conclude that the system is interval stabi-
lizable. Note that a nontrivial input on [0, t1) is necessary
for achieving interval stability.
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3.1 Controllability of switched DAEs

The approach taken in the previous section does not only
lead to results on stabilizability, but can also be used to
find conditions for controllability of switched DAEs. To
see this, we first state the following lemma.

Lemma 21. Consider the switched DAE (1) with switching
signal (8). The initial condition x0 ∈ Rn of the switched

system is controllable if and only if dist(ξn(x0), S̃n) = 0.

Proof. (⇒) Assume that x0 is a controllable initial value.
Then there exists an input u such that xu(t−f , t0;x0) = 0

and hence minu |xu(tf , t0;x0)| = 0. Then it follows from

Lemma 17 that dist(ξn(x0), S̃n) = 0.

(⇐) Assume that dist(ξn(x0), S̃n) = 0. Then by Lemma 17
we have that minu |xu(tf , t0;x0)| = 0. The input attaining
this minimum controls the initial value to 0 and hence x0

is controllable. �

Defining the following subspaces

Ψ0 = im ΠR⊥
0
eA

diff
0 (t1−t0)Π0,

Ψi+1 = im ΠR⊥
i+1
eA

diff
i+1(ti+1−ti)Πi+1Ψi.

we can utilize Lemma 21 and Remark 19 to arrive at
the following novel controllability characterization for
switched DAEs.

Corollary 22. Consider the switched DAE (1) with switch-
ing signal (8). The system is controllable if and only if

Ψn ⊆ S̃n.
Remark 23. The result of Corollary 22 gives a condition
for controllability that only require computations that run
forward in time. This is in contrast to the result of Küsters
et al. (2015), where the last mode is considered first and
the computation runs backwards in time.

Remark 24. All results in this paper can be applied to
switched ordinary differential equations (ODEs) without
difficulty. In the case of an ODE we have E = I, Π = I,
Bdiff = B and Adiff = A. Plugging this into the conditions
in this paper yields the result for switched ODEs.

4. CONCLUSION

This paper considered stabilizability of switched DAEs.
We introduced the notion of interval stabilizability. More-
over, we showed that –under a uniformity assumption– in-
terval stabilizability implies stabilizability. Necessary and
sufficient conditions for interval stabilizability of switched
DAEs are given. In addition, the method to analyse the
interval stabilizability was used to obtain a necessary and
sufficient condition for controllability.

As a future direction of research, a natural extension is
to obtain results on impulse free stabilization. However,
already simple examples show that impulse controllability
together with stabilizability is not sufficient for impulse-
free stabilizability in general and investigating this behav-
iors is ongoing research.
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