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Abstract: A self-tuning proportional-integral control law prescribing motor torques was tested
in experiment on a three degree-of-freedom wave energy converter. The control objective was to
maximize electrical power. The control law relied upon an identified model of device intrinsic
impedance to generate a frequency-domain estimate of the wave-induced excitation force and
measurements of device velocities. The control law was tested in irregular sea-states that evolved
over hours (a rapid, but realistic time-scale) and that changed instantly (an unrealistic scenario
to evaluate controller response). For both cases, the controller converges to gains that closely
approximate the post-calculated optimal gains for all degrees of freedom. Convergence to near-
optimal gains occurred reliably over a sufficiently short time for realistic sea states. In addition,
electrical power was found to be relatively insensitive to gain tuning over a broad range of gains,
implying that an imperfectly tuned controller does not result in a large penalty to electrical
power capture. An extension of this control law that allows for adaptation to a changing device
impedance model over time is proposed for long-term deployments, as well as an approach to
explicitly handle constraints within this architecture.
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1. INTRODUCTION

Harvesting energy from ocean waves presents a number of
technical and practical challenges that must be overcome
for this source of renewable energy to be economical. Intel-
ligent control of a wave energy converter (WEC) can sig-
nificantly enhance power capture and reduce overall cost
of energy. Theoretically optimal control of a WEC requires
advanced knowledge of the affecting wave (Falnes (2007)).
While there is significant focus on accurate future-state
wave prediction and prediction-based WEC control strate-
gies (Abdelkhalik et al. (2015), Babarit et al. (2004), Fusco
et al. (2010), Coe et al. (2018a)), this architecture remains
difficult to implement in practice. The prediction is needed
in real-time, which requires either a displaced or remote
measurement of incoming waves and an accurate model
of wave propagation, or a state-estimation procedure that
can be computationally intensive. Both approaches can be
confounded in short-crested wave fields, a commonly oc-
curring sea state for which plane-wave approximations are
poor wave propagation models (Kimmoun et al. (1999)).
Alternatively, approximations of theoretically optimal con-
trol that do not require prediction of future waves, but a
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frequency-domain estimate of the current sea-state have
been pursued (Nguyen and Tona (2017), Bacelli and Coe
(2020)). Regardless of architecture, an ideal controller will
optimize WEC performance over the changing sea-states
to which the device will be subjected. This implies that a
control law relying on a spectral estimate of the sea-state
must update this estimate over time.

The present work investigates the performance of a pro-
posed simple self-tuning control law in laboratory experi-
ments that adjusts the motor torques of a three degree-of-
freedom point absorber in changing sea-states to maximize
electrical power capture. The control law uses a spectral
estimation of the wave excitation forces that relies on
an identified model of device intrinsic impedance. The
performance of the control law is considered by compar-
ing the gains resulting from the self-tuning approach to
post-calculated optimal gains for a given sea-state. The
accuracy of the spectral estimation is considered as well.

2. METHOD

2.1 WaveBot Device

The WaveBot is an axi-symmetric three degree-of-freedom
(DOF) point absorber actuated in heave, pitch, and
surge (Figure 1). It has identical independent rotary mo-
tor/generators on each DOF connected to a common 300V
DC bus in the PTO tower. This allows a control force to be
applied to the WEC via a belt transmission system (heave
and surge) or a driveshaft and a float-contained gearhead
(pitch) based upon measurements of velocities in each
degree of freedom from shaft-mounted motor encoders
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Fig. 1. Simplified diagram of the 3-DOF WaveBot device,
axi-symmetric about the z (heave) axis (Bacelli et al.
(2019)).

(heave and surge) or an inertial motion unit in the float
(pitch). The control system is connected via an EtherCAT
network to a Simulink Real-time target computer, so that
sensing and control is handled in a Simulink model. The
device was tested in the Naval Surface Warfare Center
Carderock Maneuvering and Sea-Keeping basin (MASK).
Further details regarding device design and testing facility
are given in Bacelli et al. (2017), Coe et al. (2018b) and
Coe et al. (2019).

2.2 Control Approach

The theoretically optimal power-maximizing control law
for an ideal WEC device uses a compensator that is the
complex conjugate of the WEC intrinsic impedance, that
is, the complex ratio of the device velocity to imposed force
at each frequency. The non-causal nature of this controller
implies that an estimate of the future input to the device
is necessary for implementation on a real system (Falnes
(2002)). However, complex conjugate control behavior
can be approximated by a feedback controller over a
specific range of frequencies (Nevarez et al. (2018)). Since
realistic sea-states show excitation over relatively narrow
bandwidths, this approximation has practical application.
Sea-states also evolve in time: this suggests that the
approximated controller must be able to adapt to the given
sea state, ideally with no additional sensing. This study
proposes a control law that requires only an estimate of
device intrinsic impedance and measurements of WEC
velocities to maximize device electrical power over all
DOFs in changing sea states.

The intrinsic impedance of a WEC follows from the general
frequency-domain equations of motion (Falnes (2002)).
By simply rearranging and collecting terms, the WEC
intrinsic impedance can be defined

Zi(ω) = iω(M +m(ω)) +Bv +R(ω) +
S
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Fig. 2. Multi-Port representation on the WaveBot.

where M and m are the static and added inertia matrices
for the device, Bv is the viscous damping matrix, R
is the radiation damping matrix, S is the hydrostatic
stiffness matrix, and ω is the radian wave frequency. If
the device geometry and basic mass properties are known,
an estimate of Zi for a WEC can be estimated from the
outputs of a boundary-element method code, excluding
viscous damping. In this way, a model of device impedance
suitable for initial controller development is available early
in the design process.

Development of Device Model Beginning from a high-
level model of power flow in the system, the WEC can
be modeled as a two-block multi-port circuit (Figure 2)
(Coe et al. (2019)). The buoy block captures the hydro-
dynamic interactions between the device and the wave
(forces/torques F , and velocities v), and the power-take-off
(PTO) describes the generators. In this model, the electri-
cal power (to be maximized through controller design), is
the sum of the powers dissipated on the electrical loads ZhL,
ZsL, and ZpL (the product of voltages across V and currents
I through each load), where the superscripts h, s, and p
indicate the heave, surge and pitch DOFs, respectively.
Because each DOF has an independent and identical PTO
the six-port model of the PTO becomes diagonal and
can be represented as 3 two-port elements between motor
force/velocity and quadrature voltage/current,[

Iiq
V iq

]
=

[
0 (kit n
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] [
vi
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where i is an index specifying the DOF (h, s, or p)
and the parameters kit, kie, ni and r are the torque
constant (Nm/A), electrical constant (Vs/rad), gear ratio,
and winding resistance (Ohm) respectively. Due to the
identical PTOs, kt = 6.17, ke = 4.12, and r = 0.50 for
all DOF, while nh,s = 12.47 but np = 3.00 due to the
inclusion of the gearhead on the pitch DOF.

A diagonal proportional-integral controller form was se-
lected due to its broad familiarity,

C =
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i

s
0 0

0 Ks
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s
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s

 . (3)

where s (non-superscript) is the Laplace transform vari-
able. Note that the absence of off-diagonal terms implies
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that the controller does not respond to coupling between
the surge and pitch degrees of freedom. As shown in Figure
3, the controller uses a measurement of velocity in heave,
surge, and pitch to prescribe a force to the motor on
each DOF. (A model of the transfer function H relating
wave height to excitation force is not needed for controller
tuning.)

It can be shown (see Coe et al. (2019) for details), that
the electrical power absorbed by the WEC is

Pabs =
3

4
R
(
(NKt)

−1CΩ
)∗ ((

KeN +R(NKt)
−1C

)
Ω
)
(4)

where Ω = [vh, vs, vp]T , the frequency-domain closed-loop
model of WEC velocity, and Kt, Ke, R, and N are 3 x 3

diagonal matrices of parameters kh,s,pt , kh,s,pe , rh,s,p, and
nh,s,p respectively. In (4), ∗ implies the complex conjugate
transpose and script R implies the real part. By the sign
convention of C, Pabs < 0 for power absorbed by the
WEC (that is, power capture is optimized when Pabs is
as negative as possible).

By simple manipulation of the block diagram (Figure 3),
it can further be shown that

Ω = (Zi − C)−1Fe. (5)

Thus, for a given excitation force spectra Fe, and device
intrinsic impedance model Zi (a 3 x 3 model), the mini-
mum absorbed power Pabs is attained for an optimal set
of controller gains ηopt = {Kh

p ,K
h
i ,K

s
p ,K

s
i ,K

p
p ,K

p
i }, the

result of the optimization

ηopt = arg min
η
Pabs(η, Fe). (6)

Using (4) this is solved iteratively in MATLAB via ’fmin-
search’, recalling that, by sign convention, a minimum of
Pabs maximizes captured power. With the exception of
the first calculation (for which rough order-of-magnitude
initial guesses were used), optimal gain estimates from the
previous time step are used as the initial guess at the
current time step.

Estimation of Excitation Force Equation 6 requires a
frequency-domain estimate of the excitation force spectra
and a model of device intrinsic impedance. To obtain the
latter, the device was subject to multisine excitation in
all DOFs, with different phase realizations in each, such
that motions in each DOF were approximately uncorre-
lated. The system identification procedure of Bacelli et al.
(2017) was then employed to generate a non-parametric
frequency-domain estimate of intrinsic device impedance
Zi, over the frequencies of interest (0.05 to 2 Hz). Consider-
ing the simplified linear model (Figure 3), where inv(Zi) is
the inverse of the impedance model, measured WEC veloc-
ity spectra, V (ω), and controller force spectra, Fcontrol(ω),
can be used to estimate the excitation force spectra Fe

Fe(ω) = Zi(ω)V (ω)− Fcontrol(ω) (7)

Fig. 3. Block diagram of the linear system model assumed
for controller self-tuning. The inverse of the WEC
intrinsic impedance Zi is used as the plant model.

Table 1. Selection of wave ID codes.

Wave ID Type T or TP (s) H or Hs (m)

2A JONSWAP 1.58 0.127
10A JONSWAP 3.5 0.254
CDIP Data Varies Varies

for each DOF. Frequency domain estimates of V (ω) and
Fcontrol(ω) were obtained from real-time experimental
time-domain measurements of WEC velocity, v(t), and
controller force, fcontrol(t). First, time-domain measure-
ments were down-sampled from 1 kHz to 4 Hz and then a
Hamming window was applied to a buffer of 1024 points
(i.e., 256 seconds). The Discrete Fourier transform was
then applied to this window. Subsequent windows over-
lap by 1020 points, implying that a Fourier transform is
computed each second. Frequencies between 0.15 and 2 Hz
are considered in Equation 7, known a priori to bound the
energy spectra of all selected wave cases (Table 1), such
that high-frequency noise or DC-offsets are not included
in Fe(ω) estimations. Spectral estimates were found to be
largely insensitive to the extent of down-sampling, over-
lap, and window length, provided that windows were long
enough to estimate the excited frequencies and numerous
enough to provide adequate smoothing when averaged.

2.3 Changing Sea-States

The self-tuning control law was tested in variety of chang-
ing sea-states. In this work, we focus on two: an approxi-
mation of an ‘instantaneous’ change in sea-state created by
abutting two wave time series from distinct irregular sea-
states, and a 1/9th Froude-scaled time-series developed
from Coastal Data Information Program (CDIP) ocean
buoy 225 at the Wave Energy Test site in Kanehoeh Bay,
Hawaii. This buoy data was selected as it captures the sea-
state evolution during an approaching storm, representing
a rapid, though realistic, rate of change. Irregular waves
are defined by a JONSWAP spectra with γ = 3.3 (Hassel-
mann et al. (1973)), and the shorthand wave ID codes are
explained in Table 1.

To evaluate controller performance, each wave case was
run a minimum of 2 times. During one of these runs, the
WEC was removed from the water. Wave height sensors at
the nominal device location were used to characterize the
exciting wave field without the influence of device-initiated
wave reflections or radiations. This measured wave state
can be compared to that estimated (7) to evaluate the
performance of the spectral estimator.

3. RESULTS

A comparison between estimated excitation force spectra
(7) and excitation force spectra calculated from measured
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Fig. 4. Self-tuning controller gains for the CDIP225 wave
state. Heave, surge, and pitch line styles are consistent
across subplots.

wave height spectra at WEC location during the calibra-
tion study is calculated as

Fe,actual(ω) = H(ω)η(ω) (8)

where H is the identified 1 x 1 transfer function between
input wave height to output excitation force in heave. Of
the 3 DOF, heave was selected for this calculation because
it consistently showed the largest dynamic responses, re-
sulting in a large signal-to-noise ratio across all sea-states.
This estimate from measured wave height is compared to
the heave DOF estimate used by the self-tuning controller
from (7), which does not use a measurement of wave height
or estimate of the excitation model.

To evaluate controller performance, an estimate of excita-
tion force spectra (7) was used to calculate Pabs (4) over a
dense grid of Kp and Ki gains for each DOF. This allowed
a Pabs surface to be post-calculated for each sea state. The
gains to which the self-tuning controller converged can be
compared against the minima of these surfaces to consider
the optimality of controller performance for that sea-state.

3.1 CDIP Buoy Sea-State

The spectrogram of wave spectra is shown with time series
of controller gains in heave, surge, and pitch to show
the adaptation over time (Figure 4). Contrasting wave
states at times 7000 s (wave state 1, relatively calm water)
and 24600 s (wave state 2, a storm condition) are then
examined in detail.

A comparison of the estimated spectra (7) to the actual
spectra (8) is given as Figure 5. Estimates for both wave
states agree closely: the elevation in spectral energy at the
decreased frequency for the second wave state is clearly
seen in the estimate, although (7) tends to slightly over-
predict excitation force at higher frequencies (0.8 to 1 Hz),
where the signal to noise ratios of the terms used in (7)
are reduced. The reduced accuracy of the estimation in this
range implies in turn that the WEC is less able to absorb
power at these higher frequencies, but given the ∼ 20 db

Fig. 5. Estimates of excitation force spectra from wave
height measurements (solid lines) and as estimated
by the self-tuning controller (dotted lines) for two
contrasting wave states in the CDIP225 wave series.
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Fig. 6. The WEC power surface as a function of gain
tuning for each degree of freedom and wave state for
the CDIP 225 wave. Optimal absorbed power is the
brightest yellow.

reduction in magnitude at these frequencies, there is little
power available.

Figure 6 shows the location of the self-tuning controller
gain as the black dot on the post-calculated power surface,
and the optimal value of the post-calculated surface as the
cross. Because heave is nearly independent from surge and
pitch, the heave power surface is described as a function
of Kh

p and Kh
i . However, due to the coupling of surge

and pitch DOFs, their power surface is four-dimensional
(two gains for each DOF). For visualization, a 2D slice
was taken of this surface at the optimal surge gains
(for the pitch subplot) and the optimal pitch gains (for
the surge subplot) such that the self-tuning and optimal
controller gains also appear on this slice. Self-tuning gains
are near the optimum of the power surface, which indicates
a maximized WEC power production, for all degrees of
freedom for both wave states. Note that the surface has
small gradients near the optimum: this implies both that
an optimizer may not reliably converge precisely to the
minimum, and that system electrical power is not sensitive
to gain selection within this region.
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Fig. 7. Self-tuning controller gains for changing 2A-10A
wave state. Heave, surge, and pitch line styles are
consistent across subplots.

3.2 Concatenated Sea-states

As an example of concatenated wave series, the spectro-
gram of wave spectra is shown for an alternating wave
state 2A to 10A over 5 minute intervals, with time series
of controller gains in heave, surge, and pitch to show the
adaptation over time (Figure 7). Contrasting wave states
at time 250 s and 1200 s are then examined in detail.

Note that in this case, the peak wave period of state 2A
is 1.58 s (0.63 Hz), which is nearly the WEC resonant
frequency in heave (∼ 0.62 Hz). As expected, the Kh

i is
near zero during this wave state (at resonance, the optimal
Ki gain is zero, (Nguyen and Tona (2017))). The explicitly
known transition time of a concatenated wave series allows
consideration of the gain adaptation time. The wave state
transition is implemented at multiples of 300 s, and the
gain adjustment begins approximately 200 s after this.
The delay is due to two factors. Firstly, inspection of the
spectrogram indicates that the commanded wave transi-
tion takes approximately 60 s to manifest in the basin.
Second and more significantly, the window length of 256 s
will only fully reflect the next sea state after this length of
time, and the interim gain will be calculated based upon
an average of the two wave states. Accounting for these
delay contributions, the gain adapts fairly quickly.

The estimated excitation spectra (not shown) predict
excited frequencies well, but again slightly over-estimate
amplitudes of higher frequencies (f > 0.7 Hz).

The power surfaces for this wave series (Figure 8) indicate
that the self-tuning controller gains (dots) are again near
the maximum of the post-calculated surface (crosses),
which is again flat in the surrounding region, for each wave
state and degree of freedom. The largest deviation from the
minimum occurs for heave in the first wave state: however,
power captured by the self-tuning gains are within 1% of
the maximum post-calculated power. The minima location
changes more significantly for heave than for surge and
pitch, indicating the latter modes to be less sensitive to
this changing sea state.
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Fig. 8. The WEC power surface as a function of gain tuning
for each degree of freedom and wave state for the 2A-
10A concatenated wave. Optimum absorbed power is
the brightest yellow.

4. DISCUSSION

A six-parameter self-tuning controller was implemented
successfully in real-time with 1 KHz sampling on a real-
time target machine with two 1.4 GHz processors with a
mean execution time of 8.53e-5 seconds: an execution time
> 10 times faster than necessary to execute this sampling
rate in real time on the small-scale device, which requires
faster sampling than an equivalent full-scale device. Gains
converged quickly once the buffer from which the spectral
estimate was calculated well-approximated the current
wave state: particularly for concatenated wave states, the
256 s buffer window appears to significantly delay gain
tuning. While it is likely possible to reduce this window
time, it is not likely to be necessary in a realistic sea.
The present spectral estimate is robust and accurate, and
convergence to optimal gains is on the order of minutes.
While this is an unallowable delay for sea-states changing
on the order of minutes, as in the concatenated wave
tests, this is more than adequate for sea states changing
over realistic time scales (hours to days), as evidenced
particularly by the CDIP225 sea-state investigated in
Section 3.

Negative values of Ki provide optimum power capture
for sea-states where excitation frequencies are lower than
WEC resonance by acting as a negative spring, counter-
acting hydrostatic restoring stiffness and reducing system
resonant frequency. Provided these negative gains do not
overcome the hydrostatic stiffness of the device, the system
can remain closed-loop stable. This stability bound was
not explicitly enforced in the described optimization, and
while the tuning procedure never approached instability,
incorporating limits on gain values would increase the
robustness of the self-tuning controller.

Converged self-tuning gains consistently find the optimal
gains for each degree of freedom and wave state. Thus, the
performance of the self-tuning controller is commensurate
with the PI controllers investigated in Cho et al. (2019a),
which attain nearly theoretical limits on performance over
a narrow bandwidth, resulting in ∼ 90% power capture
compared to optimal complex conjugate control. The flat-
ness of the electrical power surface near the optimal gain
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selection in all examined wave cases suggests that this may
be a robust feature of this device that is not likely to
vary significantly with wave state, and the electrical power
production is not particularly sensitive to gain selection.
Further, electrical power may be somewhat insensitive to
minor modeling errors.

With regard to software implementation, in order to run
in real-time, the optimization must converge before the
spectra are updated. This somewhat limits the potential
gain adjustment time. Further, if the optimization problem
is not convex, convergence over any reasonable interval
may not be ensured in real-time. In this instance, a look-
up table correlating pre-calculated gains to the estimated
sea-state could instead be employed. While selected gains
cannot be proven to be globally optimal, they can be
selected to deliver good performance and be attainable on
WEC hardware.

While the PI controller relies on feedback, the fminsearch
gain-tuning procedures (and the suggested table look-
up) are open-loop, using the model of device intrinsic
impedance. Any inaccuracy in this model, or a change
in the system over a long deployment will reduce the
efficacy of this method. Assuming the gain optimization
problem remains sufficiently convex, this limitation could
be addressed by incorporating an extremum-seeking con-
troller using power feedback to adjust model-informed
gains to account for modeling error or a change in system
impedance over time.

Finally, this control law is fundamentally single-objective
and does not explicitly handle constraints. For longer
deployments, it is necessary to also limit the structural
loads experienced by the device. The magnitude of the
loads experienced by the device can be related to the
magnitude of the excitation spectra through identifiable
transfer functions. This self-tuning control law can be
generalized to any convex cost function. For this case,
incorporating load-related terms in (6) would broaden
control objectives, although the relative weighting between
load-mitigating and power-maximizing objectives would
likely be determined on a case-by-case basis. With re-
gard to constraints, it has been shown previously (Cho
et al. (2019b)) that a “predictionless” model-predictive
controller can be tuned to approximate PI control per-
formance while also explicitly handling constraints. While
it may be too computationally intensive to be reasonably
implemented in real-time, this suggests an additional step
to the proposed control law that would use the identified
PI control gains to subsequently derive a model-predictive
controller that handles relevant constraints.
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