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Abstract: In this paper we address the problem of identifying a static errors-in-variables system.
Our proposal is based on the Expectation-Maximization algorithm, in which we consider that the
distribution of the noise-free input is approximated by a finite Gaussian mixture. This approach
allows us to estimate the static system parameters, the input and output noise variances, and the
Gaussian mixture parameters. We show the benefits of our proposal via numerical simulations.
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1. INTRODUCTION

Errors-in-variables (EIV) models (Söderström, 2007) are
fundamental research problems of systems identification,
where both input and output are corrupted by additive
errors, see e.g. (Deistler and Anderson, 1989; Tugnait,
1990; Thil et al., 2008; Fuller, 2009; Buonaccorsi, 2010;
Söderström, 2018). EIV models arise in many applications,
such as medical, agricultural, economical, among others,
in which many variables can only be measured with
errors. (Cheng and Van Ness, 1998). Initial studies of EIV
systems go back to (Adcock, 1877, 1878) for the static
case. In the literature, the identification of static EIV
systems has been addressed by many authors utilizing
different approaches, such as the Frisch Scheme (FS)
(Guidorzi et al., 2008), Confirmatory Factor Analysis
(CFA) (Bartholomew et al., 2011), Higher Order Moments
(HOM) methods (Van Montfort et al., 1987), Maximum
Likelihood (ML) method (Cheng and Van Ness, 1998),
and Bias-Eliminated Least Square (BELS) method that
can be interpreted as a form of weighted Instrumental
Variable methods (Gilson and Van den Hof, 2001), among
others. One of the difficulties in static EIV models is that
the identifiability does not hold in general. For instance,
it is well known that if all random variables are jointly
normal, the structural model (where the noise-free input
is a stochastic process) is not, in general, identifiable from
second order properties, see e.g. (Agüero and Goodwin,
2008). On the other hand, (Reiersøl, 1950) shows that
static EIV systems are identifiable when the noise-free
input is non-Gaussian distributed.

Identification of static EIV systems with non-Gaussian
distributed noise-free input has been solved using HOM
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methods in the FS approach, in which only the linear
regression parameters are estimated (Van Montfort et al.,
1987). The limitation of this approach is that it depends
upon the availability of a large sample data set to obtain
reliable estimates, see e.g. (Agüero and Goodwin, 2008).
Another strategy to address the static EIV system identi-
fication problem has recently been presented in (Yao and
Song, 2015), in which the distribution of the output noise
is approximated by Gaussian Mixture Models (GMM) and
the noise-free input distribution is estimated by a non-
parametric deconvolution kernel method, assuming known
distribution structures for the input and output errors.

On the other hand, for the ML estimator of the static EIV
system one needs to consider prior knowledge about the
noise-free input distribution, see e.g. (Cheng and Van Ness,
1998). For instance, in the time domain, it is usually
assumed that the noise-free input is described as an Auto-
Regressive Moving Average (ARMA) process (driven by
a Gaussian noise) with known spectral density (Diversi
et al., 2007; Söderström, 2007). In the frequency domain,
it is assumed that the noise-free input is a periodic signal
(Pintelon and Schoukens, 2007; Söderström and Soverini,
2017) or it has spectra different than zero for a sufficient
number of frequencies (Carvajal et al., 2012). Nevertheless,
if we do not consider any prior knowledge about the
well-behaved but non-Gaussian noise-free input, we can
approximate its unknown distribution by GMM. Notice
that, this approach has been typically utilized in non-linear
filtering (Arasaratnam et al., 2007), Bayesian inference
(Carvajal et al., 2018; Orellana et al., 2018), dynamic
systems estimation (Orellana et al., 2019a), Astronomy
(Orellana et al., 2019b), among others.

In this paper we focus on the development of an ML
estimator for the static EIV system problem. We approxi-
mate the noise-free input distribution by a GMM, and we
estimate its unknown distribution. In our analysis we solve
the EIV problem estimation with GMM, using an identifi-
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cation technique based on the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977).

2. MAXIMUM LIKELIHOOD ESTIMATION FOR
STATIC EIV SYSTEMS USING GMM

2.1 System Model

For simplicity of the presentation, we assume that a
straight line with an intercept equal to zero should be
fitted to the available noise-corrupted data. We consider
the setup depicted in Fig. 1, where the noise-free input and
the undisturbed output, denoted by uot and yot respectively,
are linked by:

yot = Ksu
o
t , (1)

where Ks ∈ R represents a constant slope. We consider
that the observations are corrupted by additive measure-
ment noise, i.e. the following holds:

ut = uot + ũt,

yt = yot + ỹt,
(2)

where ũt and ỹt are additive zero-mean mutually uncor-
related Gaussian white noise with variance σ2

ũ and σ2
ỹ,

respectively. We will focus on the structural problem,
in which uot is a stochastic process independent of the
measurement noise sources ũt and ỹt. Then, the static
EIV system can be rewritten as a system with a two-
dimensional output vector and a three-dimensional mutu-
ally uncorrelated noise input vector (Söderström (2007))
as: [

yt
ut

]
=

[
Ks 1 0
1 0 1

]uotỹt
ũt

 . (3)

Note that the static EIV system is cast into a multivariate
system (3) with both ut and yt as outputs.

2.2 Gaussian Mixture Models

In many applications such as control, filtering, and es-
timation, it is generally necessary to estimate, from the
contaminated measurement data, the corresponding noise
distribution, see e.g. (Alspach and Sorenson, 1972; Zhuang
et al., 1996; Mengersen et al., 2011). GMM is an approach
widely used to approximate an unknown or mathemati-
cally difficult to handle probability density function (pdf).
This approach is summarized as follows:

Lemma 1. Any pdf of an n-dimensional random variable
uot , p(u

o
t ), with compact support can be approximated as

closely as desired in the space L1(Rn) by a distribution of
the form:

p(uot ) ≈
M∑
i=1

αiφ(uot ;µi,Σi), (4)

where φ(uot ;µi,Σi) represents an n-dimensional Gaussian
distribution with mean µi, covariance matrix Σi, M is the
number of elements in the sum, and αi > 0 is the i-th

mixing weight subject to
∑M
i=1 αi = 1.

uo
t

ũt ut ỹt

yot

yt

Ks

Σ Σ

Fig. 1. Basic setup of static EIV problem.

Proof. See (Lo, 1972, Theorem 3). �
Remark 2. It is well known that GMM are not indentifi-
able due to the invariance of (4) under permutation of the
indices (Mengersen et al., 2011, chapter 10), this is called
Label switching problem. This means that for an arbitrary
permutation in the ordering of the components, the result
is a perfect symmetric distribution. Usually, this problem
is solved by imposing an identifying ordering constraint on
the parameters (Richardson and Green, 1997). 5

2.3 Problem definition

Let us assume that the unknown distribution of the noise-
free input, uot , is approximated by a GMM as follows:

p(uot ) ≈
M∑
i=1

αiφ(uot ;µi, σ
2
i ), (5)

where αi is the i-th mixing weight, φ(uot ;µi, σ
2
i ) represents

a Gaussian distribution, with mean µi and variance σ2
i ,

given by:

φ(uot ;µi, σ
2
i ) =

1√
2πσ2

i

exp

{
− (uot − µi)2

2σ2
i

}
, (6)

and M is the number of the mixture components required
to approximate p(uot ). Then, the problem under study can
be formulated as follows:

From a set of noise-corrupted input and output signals, we
estimate Ks, the variances σ2

ũ and σ2
ỹ, and the parameters

that define the GMM for uot utilizing ML. Thus, the vector
of parameters of interest is given by:

β =
[
Ks, σ

2
ũ, σ

2
ỹ, α1, µ1, σ

2
1 , . . . , αM , µM , σ

2
M

]T
. (7)

Remark 3. Notice that our approach requires the existence
of the parameter vector β = β0 that defines the true
system. We also consider that only ut and yt (t = 1, . . . , N)
are available to be measured. 5

2.4 Maximum Likelihood Estimation using GMM

In Maximum Likelihood methods we maximize the pdf of
the data as a function of the unknown parameters, see e.g.
(Söderström, 2018; Agüero et al., 2012). Let us consider
that the sets y1:N and u1:N are collections of independent
and identically distributed measurements. Then, utilizing
the Bayes’s theorem we obtain:

p(y1:N , u1:N |β) =

N∏
t=1

p(yt, ut|β), (8)

where p(yt, ut|β) is the joint pdf of the random variables
yt and ut. Introducing wt = uot as a latent variable and
re-writing (3) in matrix form (V = AX) we obtain:uotỹt

ũt


︸ ︷︷ ︸
X

=

0 0 1
1 0 −Ks

0 1 −1


︸ ︷︷ ︸

A−1

ytut
wt


︸ ︷︷ ︸
V

. (9)

Notice that due to the fact that ũt and ỹt are assumed to
be independent of uot , the joint pdf, pX(x), of the noise
input vector X is given by:

pX(x) =

M∑
i=1

αiφ(uot ;µi, σ
2
i )φ(ỹt; 0, σ2

ỹ)φ(ũt; 0, σ2
ũ). (10)
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Utilizing the transformation of the random vectors theo-
rem, see e.g. (Jazwinski, 1970, Theorem 2.7), pV (v) can be
obtained as follows:

pV (v) =
1

det(A)
pX(A−1v), (11)

with det(A) = 1. Then pV (v) = pX(A−1v). In order to
obtain the log-likelihood function, we present the following
result:
Lemma 4. The likelihood function for the available data
is given by

LN (β) =

N∏
t=1

M∑
i=1

αi
2π
√
aiςi

exp

{
b2it
2ai
− cit

2

}
, (12)

where:
ςi = σ2

i σ
2
ỹσ

2
ũ, (13)

ai =
(
σ2
ỹσ

2
ũ +K2

sσ
2
i σ

2
ũ + σ2

i σ
2
ỹ

)
/ςi, (14)

bit =
(
µiσ

2
ỹσ

2
ũ +Ksytσ

2
i σ

2
ũ + utσ

2
i σ

2
ỹ

)
/ςi, (15)

cit =
(
µ2
iσ

2
ỹσ

2
ũ + y2t σ

2
i σ

2
ũ + u2tσ

2
i σ

2
ỹ

)
/ςi. (16)

Proof. See Appendix A. �

Based on Lemma 4, the log-likelihood function is given by:

`N (β) =

N∑
t=1

log

{
M∑
i=1

αi
2π
√
aiςi

exp

{
b2it
2ai
− cit

2

}}
, (17)

where the vector of parameters β is defined in (7). Then
the ML estimator is given by:

β̂ = arg max
β

`N (β), s.t. 0 ≤ αi ≤ 1,

M∑
i=1

αi = 1. (18)

3. AN EM-BASED ALGORITHM FOR STATIC EIV
SYSTEMS USING GMM

3.1 Algorithm formulation

Let us define the following:

K(zt, βi) =
αi

2π
√
aiςi

exp

{
b2it
2ai
− cit

2

}
, (19)

Vt(β) =

M∑
i=1

K(zt, βi), (20)

where zt = {yt, ut} is the observed data, see e.g. (Carvajal
et al., 2018). Then, the log-likelihood function in (17) can
be expressed as:

`N (β) =

N∑
t=1

log [Vt(β)] . (21)

In (Carvajal et al., 2018) an estimation algorithm for a
class of problems with data augmentation was proposed.
Following (Carvajal et al., 2018), we define Bt(β) =
log [Vt(β)], obtaining:

Bt(β) = Qt(β, β̂(m))−Ht(β, β̂(m)), (22)

where the functions Qt(β, β̂(m)) and Ht(β, β̂(m)) are given
by

Qt(β, β̂(m)) =

M∑
i=1

log [K(zt, βi)]
K(zt, β̂

(m)
i )

Vt(β̂(m))
, (23)

Ht(β, β̂(m)) =

M∑
i=1

log

[
K(zt, βi)

Vt(β)

]
K(zt, β̂

(m)
i )

Vt(β̂(m))
. (24)

Lemma 5. The function Ht(β, β̂(m)) is a decreasing func-
tion for any value of β and satisfies the following:

Ht(β, β̂(m))−Ht(β̂(m), β̂(m)) ≤ 0. (25)

Proof. The result is directly obtained from Jensen’s in-
equality, see e.g. (Carvajal et al. (2018) and the references
therein). �

From Lemma 5, we have that the log-likelihood function
in (21) satisfies the following:

`N (β̂(m+1)) ≥ `N (β̂(m)). (26)

Finally, we can formulate the following iterative algorithm:

Q̄(β, β̂(m)) =

N∑
t=1

Qt(β, β̂(m)), (27)

β̂(m+1) = arg max
β
Q̄(β, β̂(m)), (28)

s.t. 0 ≤ αi ≤ 1,

M∑
i=1

αi = 1. (29)

Notice that (27) and (28) correspond to the E-step and M-
step of the EM algorithm, respectively, see e.g. (Dempster
et al., 1977). On the other hand, the proposed method-
ology in (Carvajal et al., 2018) can provide closed-form
expressions for optimization problems, see e.g. (Orellana
et al., 2018, 2019b). In addition, for solving the optimiza-
tion problem in (28), the constraint 0 ≤ αi ≤ 1 is not
considered explicitly. For more details see Appendix B.

3.2 Optimization of the auxiliary function Q̄(β, β̂(m))

We consider the coordinate descent algorithm (Wright

(2015)) to optimize the auxiliary function Q̄(β, β̂(m)) with
respect to β. For the optimization of the auxiliary function
in (27) we can obtain closed-form expressions for the
estimates of the parameters {αi, µi}Mi=1. The optimization
can be carried out as follows.

Lemma 6. The parameters {α̂i, µ̂i} that optimize the aux-

iliary function Q̄(β, β̂(m)) in (27) with respect to {αi, µi}
are given by:

α̂
(m+1)
i =

(
N∑
t=1

F(zt, β̂
(m)
i )

)(
N∑
t=1

M∑
l=1

F(zt, β̂
(m)
l )

)−1

(30)

µ̂
(m+1)
i =

(
N∑
t=1

M(zt, β̂
(m)
i )

)(
N∑
t=1

P(zt, β̂
(m)
i )

)−1

(31)

with

F(zt, β̂
(m)
i ) =

K(zt, β̂
(m)
i )

Vt(β̂(m))
, (32)

P(zt, β̂
(m)
i )=

N∑
t=1

[
σ̂2(m)

ỹ σ̂2(m)

ũ

ς̂
(m)
i

−
σ̂4(m)

ỹ σ̂4(m)

ũ

(ς̂
(m)
i )2â

(m)
i

]
F(zt, β̂

(m)
i ),

(33)
and

M(zt, β̂
(m)
i )=

N∑
t=1

[(
ytK̂

(m)
s σ̂2(m)

i σ̂2(m)

ũ + utσ̂
2(m)

i σ̂2(m)

ỹ

)
(
F(zt, β̂

(m)
i )σ̂2(m)

ỹ σ̂2(m)

ũ /(ς̂
(m)
i )2â

(m)
i

)]
. (34)
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Proof. See Appendix B. �

By defining θ = {Ks, σ
2
ũ, σ

2
ỹ, {σ2

i }Mi=1}, we obtain the
estimates of the remaining parameters as follows:

θ̂(m+1) = arg max
θ
Q̄(θ, θ̂(m)).

s.t. {σ2
ũ, σ

2
ỹ, {σ2

i }Mi=1} > 0.
(35)

The optimization problem in (35) can be carried out by us-
ing Nonlinear Programming for constrained problems, see
e.g. (Coleman and Li (1996) and the references therein).
We summarize the proposed algorithm as follows:

(i) Fix the number components, M, of the GMM for uot .

(ii) Choose an initial guess β̂(0), and set m = 0.

(iii) Compute the GMM parameters {α̂(m+1)
i , µ̂

(m+1)
i }

from (30) and (31) in Lemma 6.

(iv) Compute the estimates of θ̂(m+1) by solving (35).
(v) Set m = m + 1 and go back to step (iii) until a

stopping criterion is satisfied.

4. NUMERICAL EXAMPLE

In this section we present two numerical examples to
analyze the performance of our proposal. We solve the
EIV problem in Fig. 1 considering two different noise-
free input signals. We also consider that the measurements
{u1:N , y1:N} are generated from the system model in (1)-
(2) with true values given by

Ks = 5, σ2
ũ = 1, σ2

ỹ = 1, (36)

with uot non-Gaussian distributed. In order to have an
adequate initialization of our algorithm, the initial guess
will be obtained from the HOM in (Van Montfort et al.,
1987). Thus, for comparison purposes, we compare both
estimators in terms of mean value and variance.

The simulation setup is as follows:

(1) The initial value for the static gain Ks is given by
HOM estimation.

(2) The initial guess for the GMM parameters is given
by the sample variance of ut for {σ2

i }Mi=1, and by
αi = 1/M for the mixing weights. The means of
the mixture components, denoted by µi, are evenly
spaced between the minimum and the maximum
value of the input signal ut.

(3) We consider 3 data lengths, namely N = 1000, N =
2000 and N = 5000.

(4) The number of Monte Carlo (MC) simulations is 100.
(5) The stopping criterion is chosen as∥∥∥β̂(m) − β̂(m−1)

∥∥∥/∥∥∥β̂(m)
∥∥∥ ≤ 5× 10−6,

or when 1000 iterations have been reached.

4.1 Example 1: Bimodal Noise-free input signal

In this example, we consider that the noise-free input
signal uot is drawn from a finite Gaussian mixture with
two components given by:

p(uot )
(True) = α1φ(uot ;µ1, σ

2
1) + α2φ(uot ;µ2, σ

2
2), (37)

with α1 = α2 = 0.5, σ2
1=σ2

2 = 1, µ1 = −5 and µ2 = 5.

Fig. 2(a) shows the mean pdf of the 100 estimates, with
N = 5000. The gray-shaded region represents the area in
which all estimated pdf’s lie. It can be observed that the

Table 1. Estimated parameters in Example 1.

N Method K̂s σ̂2
ỹ σ̂2

ũ

1000 HOM 5.028 ± 0.256 - -

EM 5.000 ± 0.030 1.060 ± 0.757 0.999 ± 0.060

2000 HOM 5.040 ± 0.620 - -

EM 5.002 ± 0.023 1.013 ± 0.575 0.998 ± 0.041

5000 HOM 4.985 ± 0.156 - -

EM 4.998 ± 0.007 1.018 ± 0.416 1.000 ± 0.024

Table 2. Estimated parameters in Example 2.

N Method K̂s σ̂2
ỹ σ̂2

ũ

1000 HOM 3.924 ± 2.884 - -

EM 5.046 ± 0.163 0.818 ± 0.642 1.001 ± 0.068

2000 HOM 4.197 ± 2.999 - -

EM 5.018 ± 0.128 0.959 ± 0.478 1.001 ± 0.036

5000 HOM 4.555 ± 3.469 - -

EM 4.996 ± 0.049 0.983 ± 0.255 1.001 ± 0.023

true Gaussian mixture pdf and the mean estimate pdf are
very similar.

Table. 1 shows the mean and the corresponding standard
deviations of the estimated parameters obtained with
HOM and our proposal. We observed that the estimation
is very accurate in this example for both HOM and our
technique.

4.2 Example 2: Uniformly distributed noise-free input
signal

In this example we consider that the noise-free input signal
uot is distributed as follows:

p(uot )
(True) =

1

lb − la
I[la,lb](u

o
t ), (38)

with la = −2, lb = 2, and I[la,lb] the indicator function
given by

I[la,lb](u
o
t ) =

{
1, la ≤ uot ≤ lb (39a)

0, otherwise. (39b)

To approximate the noise-free input signal distribution, we
consider M = 7 components for the GMM, see (Mengersen
et al., 2011, pág 277). Fig. 2(b) shows the estimated
average pdf for all MC realizations with N = 5000. As in
the previous example, the gray-shaded region represents
the area in which all estimated pdf’s lie. We can observe
that the estimated GMM pdf fits the uniform distribution.

In Table 2 we summarized the results of simulations, show-
ing the mean and standard deviation for the estimated
parameters. We observe that the estimated parameters are
similar to the true value and that the standard deviation
decreases while the data length N increases. In contrast,
HOM method has a poor performance and requires a large
data set to improve the estimations.

5. CONCLUSION

In this paper we proposed an identification algorithm for
static EIV systems. We used the fact that any pdf can
be approximated as closely as desired by a GMM, to
approximate the unknown distribution of the noise-free
input. We used the ML approach to estimate the static
system parameters, input and output noise variances,
and characteristic parameters of GMM. In order to deal
with easier to handle expressions, we based our work
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Fig. 2. Estimated noise-free input distribution p(uot ) using GMM.

on the EM algorithm and the work in (Carvajal et al.,
2018). We derived closed form expressions to estimate the
weights and means of the GMM. From the simulations,
we conclude that our proposal adequately handles non-
Gaussian distributions, yielding more accurate estimates
than HOM.
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Appendix A. OBTAINING THE LIKELIHOOD
FUNCTION

The joint pdf in (10) can be expressed as:

pX(x) =

M∑
i=1

αi

(2π)
3
2
√
ςi

exp

{
−
(

(uot − µi)2

2σ2
i

+
ỹ2

2σ2
ỹ

+
ũ2

2σ2
ũ

)}
,

(A.1)

Evaluating (11) in (9), the joint pdf pV (v) is given by:

pV (v) =

M∑
i=1

αi

(2π)
3
2
√
ςi

exp

{
−
(

(wt − µi)2

2σ2
i

+
(yt −Kswt)

2

2σ2
ỹ

+
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2σ2
ũ

)}
.

(A.2)

Then, we can define:

pV (v) =

M∑
i=1

αi

(2π)
3
2
√
ςi

exp

{
−aiw

2
t − 2bitwt + cit

2

}
,

(A.3)
where ςi, ai, bit and cit are given by (13)-(16). Integrating
(A.3) with respect to the latent variable wt, we obtain:

p(yt, ut) =

M∑
i=1

αi
2π
√
aiςi

exp

{
b2it
2ai
− cit

2

}
. (A.4)

Finally, the likelihood function is given by:

LN (β) =

N∏
t=1

M∑
i=1

αi
2π
√
aiςi

exp

{
b2it
2ai
− cit

2

}
. (A.5)

�

Appendix B. COMPUTING THE PARAMETERS OF
THE GMM

Using (32) we take the derivative of (27) with respect to
µi and making it equal to zero yields:

∂Q̄(β, β̂(m))

∂µi
=

N∑
t=1

[(
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ũ + ytK̂
(m)
s σ̂2(m)

i σ̂2(m)

ũ
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(m)
i ) = 0. (B.1)

Using the definition in (33) and (34) we obtain:

µ̂
(m+1)
i

N∑
t=1

(
σ̂4(m)
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(B.2)
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Then, we obtain:

µ̂
(m+1)
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)(
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.

For the parameter αi we define R(αi) as follows:

R(αi) =

N∑
t=1

M∑
i=1

log[αi]

{
K(zt, β̂

(m)
i )

Vt(β̂(m))

}
, (B.3)

subject to
∑M
i=1 αi = 1. Notice that, we initially do not

consider the constraint 0 ≤ αi ≤ 1.

Then, using a Lagrange multiplier to deal with the con-
straint on αi we define:

J (αi, γ) =

N∑
t=1

M∑
i=1

log[αi]F(zt, β̂
(m)
i )− γ

(
M∑
i=1
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)
.

(B.4)
Taking the derivative of (B.4) with respect to αi and γ,
then equating to zero we obtain:

∂J (αi, γ)

∂αi
=

1
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i
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∂J (αi, γ)
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Then,

α̂
(m+1)
i =

N∑
t=1

F(zt, β̂
(m)
i )/γ. (B.7)

Taking a summation over i = 1, . . . ,M in (B.7) and use
(B.6) we have:

M∑
i=1
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(m)
i )/γ = 1, (B.8)

γ =

M∑
i=1

N∑
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i ). (B.9)

Finally, we obtain:
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l=1

F(zt, β̂
(m)
l )

)−1

Notice that 0 ≤ α̂(m+1)
i ≤ 1 holds, even though we did not

explicitly consider it in (B.4). �
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