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Abstract: For high-performance distributed parameter motion systems, the dynamics introduced by
structural flexibilities need to be considered. Especially at the low frequency region, where most of the
energy of the commonly used reference setpoint is concentrated. The contribution of non-rigid body
modes at low frequencies is called the compliance function of the system. It is representative for the
quasi-static behaviour of the whole non-rigid body modes. This work proposes a new method for the
calculation of the compliance function. It is based on employing the differential equation representation
for the flexible structure. The approach is validated for a standard damped second order ODE and a one-
dimensional flexible model, i.e., the Euler-Bernoulli beam. We show that we get a major reduction in
calculation in comparison with the zero frequency response calculation. The extension of this approach
to the general PDE’s will be the scope of the future works.

Keywords: Compliance function, Partial differential equations, distributed parameter systems, flexible
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1. INTRODUCTION

High performance motion systems are designed to achieve
nano-positioning performance. A typical example of these
reference-tracking systems is wafer scanners in semiconductor
industry. Wafer scanners are used to produce integrated circuits
(ICs). As demanded, the system performs at high acceleration
in order to obtain higher throughput, and thus high positioning
accuracy becomes challenging.

Perfect tracking of desired trajectories can often be achieved
by the use of feedforward control. A comprehensive review
of feedforward control design can be found in Lunenburg et
al. (2009). Feedforward control can be designed by either
model-based or data-based approaches. Since, the major part
of system dynamics and the desired output trajectory is known
a priori, the model-based feedforward is responsible for 99.7%
of the control forces and associated performance (Heertjes et al.
(2010)). The feedback controller controls the disturbance of the
system.

A common model-based feedforward control design is based
on the inversion of the system dynamics as shown in Fig.
1. The feedforward control performance is strictly dependent
on the description of system dynamics. The more detailed
of the system dynamics are involved, the higher performance
of the feedforward controller is achieved. Furthermore, the
existence of the system inversion needs to be checked. For
example, due to the presence of non-minimum phase (NMP)
? The authors are members of the ITN network ConFlex. This research
has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No.
765579.

zeros, the inverse plant may become unstable. Hence, the use
of model-based feedforward control can often be obtained in
some approximate sense.

The most straightforward model-based feedforward controller
is the acceleration/mass feedforward control, which is the in-
version of only the rigid body mode of the system. Hence,
it cannot compensate for the behaviour of the flexibility of
the structural dynamics. Neglecting the flexible structures as
well as the time-independent structure, makes this conventional
feedforward control often insufficient for a time-varying system
to obtain sufficiently high accuracy.

In order to increase tracking accuracy, higher order derivatives
of the reference profile is usually added to the acceleration term
(Lambrechts et al. (2004); Boerlage et al. (2004)). Snap feed-
forward control considers the fourth-order approximation of the
plant inversion (Boerlage (2006)). It adds a jerk derivative to
the traditional acceleration feedforward control structure which
compensates for the entire flexible dynamics at low frequencies.
The drawback of this feedforward control approach is that it
only deals with the linear-time-invariant (LTI) systems since it
cannot deal with time-varying dynamics.

Recent approaches deal with linear-time-varying (LTV) feature
of flexible positioning systems. Two recent approaches toward
feedforward control design for LTV and linear parameter vary-
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Fig. 1. Model-based feedforward control scheme
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ing (LPV) systems are studied in Kasemsinsup et al. (2016) and
Kasemsinsup et al. (2017). Kasemsinsup et al. (2016) provides
an algebraic analysis along with conditions to construct an
exact model-based feedforward control for LTV/LPV systems.
Kasemsinsup et al. (2017) investigates the optimal feedforward
control design for LTV/LPV systems. The feedforward control
signal is constructed by a linear combination of basis functions
which have optimal coefficients computed by a quadratic opti-
mization process.

Different from previous approaches, for an efficient formulation
of the flexible dynamics, the term compliance is introduced
as a deformation of the system due to the externally applied
force (Huston (1981)). In Kontaras et al. (2016), compliance
compensation control scheme is discussed as feedforward con-
trol technique for time-varying motion systems. This method
adds the compliance function of flexible structures as a correc-
tion block to the control structure. Mathematically spoken, the
compliance function is calculated as zero frequency response of
the flexible part of the transfer function of the system. Hence,
by adding the compliance feedforward correction block, at low
frequencies, the feedforward controller can take the full flexible
structure into account.

The main contribution of this work is to derive the compliance
function of a dynamic system using a direct time domain ap-
proach rather than using the frequency response. The approach
significantly facilitates the derivation of compliance function
especially for systems described by irrational transfer function.
In a later stage, the model is aimed to be extended to 2-D cases,
which resembles much better the flexible scanning system.

The outline of this work is as follows, in Section 2 the mathe-
matical representation of the flexible system is introduced and
the expected time domain solution of the system is explained.
Section 3 presents the class of model to be investigated and
its solution. Next, in section 4 two examples are studied as a
benchmark of the approach. Two mass-spring-damper system
and damped Euler Bernoulli beam are studied as flexible sys-
tems with one and infinite number of non-rigid body (NRB)
modes, respectively. The derivation of the model solution and
correspondingly the compliance function show major reduction
in calculation process in comparison with the frequency domain
approach. Concluding remarks are given in section 5.

2. SYSTEM DYNAMICS

Flexible systems, in a simplified representation, are double-
integrator-based systems including one RB mode and an
(in)finite number of NRB modes. The transfer function of these
systems is given by

G(s) =
1

ms2 +G f lex(s), (1)

where G f lex is representative for flexible structures. It is a
strictly proper transfer function including the entire flexible
structures. G f lex can be divided into the compliant and the
(damped) resonant dynamics as

G f lex(s) = G0 +Gst(s), (2)
where G0 is the compliance function of the system which
equals the quasi-static behaviour of the entire flexible structures
until the occurrence of the first resonance. In other words,
G0 is the zero-frequency response of the structural dynamics,
i.e., G0 = G f lex(0). Gst(s) is the stable resonant dynamics.
Flexible motion systems mostly perform in the low frequency

range where the resonant dynamics are less excited. Thus, the
plant can be approximated by the low frequency contribution
of flexible structures of the system. In other words, the need
to incorporate many NRB modes at low frequencies can be
relaxed by only taking into account the compliance function
of the system.

Gappr(s) =
1

ms2 +G0. (3)

Gappr(s) is used in the model-based feedforward control design,
where the full system dynamics is taken into account in the ac-
cepted frequency content. Thus, once the compliance function
G0 is calculated, the low frequency dynamics of the flexible
motion system is fully determined. One way to determine G0(s)
is first to determine the transfer function of the system, next
to subtract the rigid-body (RB) mode and finally determining
G f lex(0). However, this is non-trivial, certainly for complicated
models, such those described by partial differential equations.
Therefore we take a different route.

If we consider the step function as an actuator input of our
mechanical system, then for zero initial conditions the Laplace
transform of the output is given by (see (1) and (2))

Y (s) =
(

1
ms2 +G0 +Gst(s)

)
U(s), (4)

where
U(s) =

u0

s
. (5)

In time domain the output becomes

y(t) =
1
m

t2

2
u0 +G0u0 + yst(t), (6)

where yst(t) is the inverse Laplace transform of Gst(s)
u0
s . Since

Gst is stable, and Gst(0) = 0, this expression has no poles in
the closed right-half plane, and so yst(t) converges to zero as
t → ∞. In other words, yst(t) is the (asymptotically) stable part
of the solution.

So we see that the output in time domain has a clear form in
which the compliance can be read of directly. Therefore, the
anticipated output format for flexible motion systems is taken
in accordance with (6). Hence the following is considered as
the expected solution of these systems

ωassumed(t) = ω2
t2

2
+ω0 +ωst(t). (7)

Here ω2 is the part of solution that stems from the double-
integrator-based part of the system and it equals, for u0 = 1,
the inverse of the total mass of the system. The term ω0 is the
compliance function of the dynamic system which is denoted
by the G0 term in the frequency response. It is the static
response of the NRB modes at zero frequency. ωst(t) accounts
for the stable resonant dynamics of NRB modes.

3. MODELLING FRAMEWORK

The class of damped equations to be considered in this section
is the following:

ω̈(t)+dA ω̇(t)+A ω(t) = Bu(t), (8)
where A is n× n matrix and d is a positive scalar; d > 0.
The aim is to find the solution, and specifically the unique
compliance function ω0 of these damped systems. To do so,
we take u(t) = u0, t ≥ 0, and the following initial conditions:

ω(0) = 0, ω̇(0) = 0. (9)
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Substituting this and the anticipated solution ωassumed (7) into
(8) gives the following:

ω2 + ω̈st(t)+dA (ω2t + ω̇st(t))+

A (ω2
t2

2
+ω0 +ωst(t)) = Bu0.

(10)

Collecting the t2-term, t-term, constant term, and the stable
part, equation (10) gives the following dependent equations for
ω2,ω0 and ωst :

A ω2 = 0, (11)
A ω0 +ω2 = Bu0, (12)
ω̈st(t)+dA ω̇st(t)+A ωst(t) = 0, (13)

ωst(0) =−ω0, ω̇st(0) = 0.

Obviously, ω0 cannot be derived uniquely unless the other
terms of ωassumed is determined. Consequently, each term of
the anticipated solution ωassumed as proposed in (7) needs to
be ascertained for these class of systems.

The initial conditions for the stable function ωst(t) in (13)
verifies that the compliance function ω0 lies in the stable space
of the solution. Hence, the ensured stability of the compliance
function adds one more extra condition to find out the unique
terms of ωassumed . The extra equation is obtained via the follow-
ing theorem.
Theorem 1. Let the state space X have inner product 〈x,y〉,
and let A be symmetric and non-negative with respect to this
inner product. Assume further that the kernel of A is one-
dimensional. Then X can be written as

X = span{ϕ0,ϕ1,ϕ2, ...,ϕn−1}, (14)
where A ϕk = λkϕk, λ0 = 0, and ϕ0,ϕ1,ϕ2, · · · ,ϕn−1 form an
orthonormal basis of the space.

The equations (11) and (12) are uniquely determined by

ω2 = αϕ0, ω0 =
n−1

∑
k=1

βkϕk, (15)

where
α = 〈ϕ0,Bu0〉, (16)

and

βk =
〈ϕk,Bu0〉

λk
. (17)

Proof 1. Since A is symmetric it has an orthonormal basis of
eigenvectors. Furthermore, since the kernel is one-dimensional
we may always choose the first eigenvalue to span this space.
Thus the orthonormal basis of the space satisfies the following:

A ϕk = λkϕk, with
{

λk > 0 if k > 0
λ0 = 0 ,

(18)

where λk are the eigenvalues A .

Equation (11) gives that ω2 lies in the kernel of A and by our
assumption on this kernel, we find that

ω2 = αϕ0. (19)

Next we solve (13). It is not hard to see that the general solution,
i.e., disregarding the initial conditions, of this second order
differential equation is given by

ωst(t) =
n−1

∑
k=1

(
βk,1eµk,1t +βk,2eµk,2t)

ϕk

+(β0,1 +β0,2t)ϕ0,

(20)

where

µk,i =
−dλk±

√
d2λ 2

k −4λk

2
, i = 1,2. (21)

Since by assumption ωst must be stable, we find that β0,1 =
β0,2 = 0. In particular, this implies that ω0 = −ωst(0) ∈
span{ϕ1,ϕ2, ...,ϕn−1}. So we have shown the second assertion
in (15). Using this, equations (19) and (12) gives the following:

αϕ0 +A
n−1

∑
k=1

βkϕk = Bu0. (22)

By taking the inner product of (22) with ϕ0 we find

〈ϕ0,αϕ0〉+ 〈ϕ0,A
n−1

∑
k=1

βkϕk〉= 〈ϕ0,Bu0〉, (23)

Using the orthogonality of eigenvectors gives the unique coef-
ficient for ω2 in (16).

Next taking the inner product of (22) with ϕk0 gives the follow-
ing:

〈ϕk0 ,αϕ0〉+ 〈ϕk0 ,A
n−1

∑
k=1

βkϕk〉= 〈ϕk,Bu0〉, (24)

and hence
λk0βk0 = 〈ϕk0 ,Bu0〉. (25)

Thus, (25) gives the unique coefficients for finding ω0 in (17).

As we have seen ωst is given by

ωst(t) =
n−1

∑
k=1

(
βk,1eµk,1t +βk,2eµk,2t)

ϕk. (26)

Choosing

βk,1 =
−〈ω0,ϕk〉µk,2

µk,2−µk,1

βk,2 =
〈ω0,ϕk〉µk,1

µk,2−µk,1

(27)

we have that the initial conditions are satisfied. Furthermore,
the fact that d and λk, k≥ 1 are positive, gives that ωst is stable,
see also (21), as requested. 2

Remark 1. Since the eigenvectors form an orthonormal basis,
we have that the condition that ω0 ∈ span{ϕ1, · · · ,ϕn−1} is
equivalent to the condition that ω0 is othogonal to ϕ0.
Remark 2. It is clear from the proof that if the kernel of A
would only contain the zero element, then the assumed solution
(7) (with ω2 6= 0) would not exist.

4. EXAMPLES

In this section, our direct compliance calculation approach is
investigated by means of two examples. The first example
consist a finite order (lumped parameter system) which falls
in the class considered in Theorem 1. The second example is
an infinite order (distributed parameter system) motion system.
Although Theorem 1 does not directly apply, we will see that
the ideas used in its proof are easily extendable to this case as
well.

4.1 Example I: Mass-spring-damper system

As a first example, we consider a single-input-multiple output
system, i.e., a two mass spring damper (MSD) system which is
shown in Fig. 2. Actuation occurs via a (constant) force applied
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m1 m2

x1 x2

k

d

u0

Fig. 2. Two mass spring damper (MSD) system

on the first mass. The equations of the motion of two masses
with damping are given by

m1ẍ1 = d(ẋ2− ẋ1)+ k(x2− x1)+u0,

m2ẍ2 = d(ẋ1− ẋ2)+ k(x1− x2),
(28)

where m1, m2 denotes the masses of the system, k is the stiffness
of the spring, d is the damping coefficient and u0 is the constant
force. x1 and x2 are the position of each mass. The output of
the system can be determined either by considering x1 or x2 as
the point of interest. Here, the non-collocated response of the
system x2, in which the sensor location is different from the
actuator is adopted as an output. Representation of the system
similar to (8) is given by[

ẍ1
ẍ2

]
+

d
k︸︷︷︸
d


k

m1

−k
m1

−k
m2

k
m2


︸ ︷︷ ︸

A

[
ẋ1
ẋ2

]
+


k

m1

−k
m1

−k
m2

k
m2


︸ ︷︷ ︸

A

[
x1
x2

]

=

[ 1
m1
0

]
︸ ︷︷ ︸

B

u0. (29)

In this example, we have R2 as our state space with inner
product defined as:

〈a,b〉= m1a1b1 +m2a2b2. (30)
The MSD system lies in the class of damped system in (8).
Hence, the assumed solution is applicable to this system in
order to find the compliance vector of the MSD system.

ωassumed(t) = ω2
t2

2
+ω0 +ωst(t), (31)

where ω2 and ω0 are elements of the state space.

Easy calculation gives that A is symmetric with respect to the
inner product (30). The eigenvalues of A and the correspond-
ing orthonormal basis eigenvectors are as follows:

λ0 =0⇒ ϕ0 =
1√

m1 +m2

[
1
1

]
, (32)

λ1 =
k

m1
+

k
m2
⇒ ϕ1 =

1√
m1m2

2 +m2m2
1

[
m2
−m1

]
. (33)

Equation (16) in Theorem 1 gives the coefficient of ω2 which is
based on the zero eigenvalue.

α = 〈ϕ0,Bu0〉=
1√

m1 +m2
u0,

⇒ ω2 = αϕ0 =
u0

m1 +m2

[
1
1

]
.

(34)

u0
w(t, r)

r

r = L

Fig. 3. The damped Euler-Bernoulli beam

Furthermore, (17) gives the unique coefficient of ω0 as follows:

β1 =
〈ϕ1,Bu0〉

λ1
=

u0m2

λ1

√
m1m2

2 +m2m2
1

. (35)

This gives that

ω0 =β1ϕ1 =
u0m2

λ1(m1m2
2 +m2m2

1)

[
m2
−m1

]
=

m2

k(m1 +m2)2

[
m2
−m1

]
u0.

(36)

Thus, the compliance vector of the MSD system is calculated
by determining the stable subspace of the system which is ex-
pected from the definition of the compliance function (see (2)).
The first and second element of (36) pertain to the compliance
of the first and second mass, respectively. Moreover, if unit
force (u0 = 1) is applied, then ω(t) is given by

ω(t) =
1
M

[
1
1

]
︸ ︷︷ ︸

ω2

t2

2
+

m2

kM2

[
m2
−m1

]
︸ ︷︷ ︸

ω0

+ωst(t), (37)

where M is the total mass, i.e., M = m1 +m2. In terms of phys-
ical interpretation, the compliance function is the inverse of the
stiffness of the system, which shows the resistance property
of a system in response to an applied force. Consequently, the
compliance is dealing with the flexibility of the system.

The compliance vector of the MSD system is validated with
the frequency response of the NRB modes at low frequency
(Kontaras et al. (2016)).

4.2 Example II: Damped Euler-Bernoulli beam

As a second example, the 1-D Euler-Bernoulli beam is inves-
tigated. The analysis of this infinite dimensional system can
be considered as a useful step toward calculation of dynamics
of flexible motion systems in more complex geometries. In
order to better categorize the model similar to (8), damping
is included in the model. Different types of damping can be
used (Herrmann (2008)). In this example, the most common
type of damping referred to Kelvin-Voigt damping is employed
in modeling. The partial differential equation (PDE) describing
the beam is given by

ρA
∂ 2ω(t,r)

∂ t2 + cd
∂ 5ω(t,r)

∂ t∂ r4 +EI
∂ 4ω(t,r)

∂ r4 = 0, (38)

where ρ, I,A and E are the mass density, second moment of
inertia, cross-sectional area, and the Young’s modulus, respec-
tively. We denote the spatial point by r and the length by L.

The output of the system is the deflection of the beam ω(t,r)
at position r, and u0 represents a constant input force applied
to the left of the beam. The vertically moving Euler-Bernoulli
beam is illustrated in Fig. 3. In order to find the deflection
ω(t,r), four boundary conditions are defined in the following
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and are visualized in Fig. 3. We consider a roller support at one
side of the beam that allows the beam to move vertically. So,
the first boundary condition at r = 0 is based on the shearing
force and is given as

EI
∂ 3ω(t,r)

∂ r3

∣∣∣∣
r=0

= u0. (39)

Since the beam is clamped at the base, its slope is zero. This
gives the second boundary condition.

∂ω(t,r)
∂ r

∣∣∣∣
r=0

= 0. (40)

The other two boundary conditions are located at the end of
the beam which is free. Hence, both the bending moment and
shearing force equal zero and the third and fourth boundary
conditions are given by

∂ 2ω(t,r)
∂ r2

∣∣∣∣
r=L

= 0, (41)

EI
∂ 3ω(t,r)

∂ r3

∣∣∣∣
r=L

= 0. (42)

As in the previous case, the initial condition of the system is
assumed to equal zero.

ω(0,r) = 0,
∂ω

∂ t
(0,r) = 0.

(43)

The PDE representing this example is similar to the damped
class of equations in (8). It is formally given by

ω̈(t)+
cd

EI︸︷︷︸
d

A ω̇(t)+A ω(t) = 0, (44)

where the dot denotes the derivative with respect to time, and
A is the fourth order spatial derivative operator given by

A =
EI
ρA

∂ 4

∂ r4 . (45)

Similar to the MSD system, the assumed solution for this
mechanical system corresponds to the direct solution of PDE,
and it is of the form, see also (7),

ωassumed(t,r) = ω2(r)
t2

2
+ω0(r)+ωst(t,r).

Assuming that this is a (classical) solution of the PDE, we find
equations for the ω2,ω0 and ωst similar to those formulated
in (11)–(13). However, next to differential equations which
they should satisfy, also boundary conditions need to hold. For
instance, for ω2 we find the (differential) equation

A ω2(r) = 0, (46)
with boundary conditions

dω2(0)
dr

=0,
d2ω2(L)

dr2 = 0,

d3ω2(L)
dr3 =0,

d3ω2(0)
dr3 = 0. (47)

Hence ω2 is constant, i.e.,
ω2(r) = ω20. (48)

Secondly, the following equation with three homogeneous and
one non-homogeneous boundary condition needs to be solved
for ω0.

A ω0(r)+ω2(r) = 0, (49)

with
dω0(0)

dr
= 0,

d2ω0(L)
dr2 = 0,

d3ω0(L)
dr3 = 0, EI

d3ω0(0)
dr3 = u0.

(50)

Using (48) and integrating (49) from 0 to L, gives the following:
EI
ρA

[
d3ω0(L)

dr3 − d3ω0(0)
dr3

]
+ω20L = 0. (51)

Using the boundary conditions, we see that

ω2(r) = ω20 =
1

ρAL
u0. (52)

Next, ω0 is calculated with (49) and non-homogeneous bound-
ary conditions as

ω0(r) =
−u0

24EI ·L
r4 +

u0

6EI
r3− u0L

4EI
r2 +C4. (53)

Obviously, this equation does not yield to the unique compli-
ance function of the damped beam ω0. Therefore one more
condition is needed. After substitution of ωassumed in the main
equation (44), the p.d.e. derived associated with the stable part
of the solution, ωst , is given by

ω̈st(r, t)+dA ω̇st(r, t)+A ωst(r, t) = 0 (54)
with homogeneous boundary conditions. Combining this with
the fact that ωst is a stable solution, it implies that∫ L

0
ωst(r, t)dr = 0 for all t ≥ 0. (55)

As mentioned, the initial condition of the assumed solution is
zero. This leads to the following initial condition for ωst (see
also (13))

ωst(0,r) =−ω0(r). (56)
Hence ω0 must lie in the stable subspace and satisfies (55)
which provides the extra condition for structuring the compli-
ance function ω0.∫ L

0
ω0(r)dr = 0⇒C4 =

L3

20EI
. (57)

Thus, the position dependent compliance of the beam ω0(r) for
unit force is the following:

ω0(r) =−
1

24EIL
r4 +

1
6EI

r3− L
4EI

r2 +
L3

20EI
. (58)

Next we show that we could have mimicked the approach we
took for the finite-dimensional state space. We take as state
space L2(0,L) with inner product

〈 f ,g〉=
∫ L

0
f (r)g(r)dr. (59)

It is easy to see that the operator A defined in (45) with
boundary conditions (47) is symmetric with respect to this inner
product. Thus ω0 lies in the stable subspace if and only if it is
orthogonal to the unstable subspace, see Remark 1. Since we
have found that the unstable subspace contains only constant
functions, the extra condition emerges from the orthogonality
of ω0 and constant functions in the unstable subspace. This is
equivalent to (57) in the PDE approach.

In the above example we have shown how the compliance
function can be calculated for a PDE model. It is clear that
we follow (at least in spirit) the same approach as for an ODE
model. However, the PDE presentation of the beam (44) does
not include the input term exactly like in (8) and so it does not
comply with it exactly. Using the language of Boundary Control
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Systems, see e.g. Curtain & Zwart (1995), a boundary control
PDE can be rewritten as an abstract differential equation like
in (8). However, this technique introduces the derivative of the
input. Furthermore, the weak formulation of the PDE of the
beam introduces the derivative of the input as well, and since
our input is a step, this will cause additional difficulties.

The compliance function of the damped Euler-Bernoulli beam
ω0(r) is plotted for a numerical example with properties spec-
ified in Fig. 4. It is a fourth order function with respect to the
position at the beam which shows transversal deflection of the
beam. The calculated compliance function is validated with
the frequency response of the NRB modes at low frequency
(Kontaras et al. (2016)).
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-10

-8

-6

-4

-2

0

2

4

6

8
10

-8

Fig. 4. The compliance function of the damped Euler Bernoulli
beam; Length L = 0.6 [m], Cross-sectional area A = h2 =
10−4 [m2], Mass density ρ = 7.75×103 [kg/m3], Young’s
modulus E = 2×1010 [kg/(m ·s2)], Second moment of in-
ertia I = h4/12 = 10−4/12 [m4], and Kelvin-Voigt damp-
ing cd = 0.4625.

5. CONCLUSIONS

The compliance function of the flexible dynamical systems
is defined as the low frequency approximation of the flexible
modes of the mechanical system. In this work, this function is
calculated by a direct time domain approach which proposes a
general solution for the mechanical systems.

The proposed method has been applied to the motion systems
with one structural mode (mass-spring-damper system) and
with infinite number of modes (Damped Euler-Bernoulli beam).
Extension of this time domain approach to a 2D flexible motion
system is the scope of future works. This will notably ease the
calculation in comparison to the frequency response calculation
of the compliance function.

Furthermore, the PDE counterpart of Theorem 1 needs to be
formulated and proved and is also part of future research.
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