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Abstract: This paper proposes the integration of an Adaptive Artificial Potential Fields
algorithm with a new end effector orientation control technique for real-time robot path
planning. The development of autonomous robotic systems has undergone several advances
in path planning algorithms. These systems generate object collision-free paths in the robot’s
workspace. In this context, the Artificial Potential Fields technique has been the focus of
improvements in recent years due to its simplicity of application and efficiency in real-time
systems, since it does not require a global mapping of the robot’s workspace. In spite of its
efficiency, this technique is susceptible to local minimum problems of different natures, such as
Goals Non-Reachable with Obstacles Nearby (GNRON). To solve this problem, we suggest the
use of an improvement called Adaptive Artificial Potential Fields used in conjunction with the
proposed end effector orientation control technique, which allows reaching a desired orientation
of the end effector. The resulting force, generated from the Adaptive Artificial Potential Field,
guides the robot end effector to the goal. The Robot Operating System (ROS) framework
and a collaborative robot manipulator UR5 are used to validate the proposed method on an
approaching task for an object on a 3D printer tray.
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1. INTRODUCTION

Technological developments allow new generations of
robots to become increasingly autonomous. In this respect,
robots may have abilities of perception, location, control,
and self-decision (Leite et al., 2015). One of the goals
of autonomous robotic systems is to perform a secure
control of movement so that there is no collision with
obstacles such as people, machines and objects (Thomas
et al., 2011). This objective requires treatment of various
problems such as location, movement control, as well as
trajectory and path planning.

An example of a path planning algorithm for real-time
application of an anti-collision system in manipulating
and mobile robots, known as Artificial Potential Fields
(APF), was firstly proposed by Khatib (1986). With the
use of APFs in manipulator robots, the links are seen as
charged particles that undergo intervention of repulsive
potential fields generated by obstacles and an attractive
field generated by the final, or objective, position. Despite
their efficiency, classical APFs have some restrictions or
local minimum, such as:

• Inability to reach a desired end effector orientation in
case of robot manipulators.

• Failure to achieve the goal when it is within the
obstacle’s influence area, a problem known as Goals
Non-Reachable with Obstacles Nearby (GNRON) (Ge
and Cui, 2000). This problem occurs in mobile and
manipulator robots.

• Non-convergence of the path in the positioning
configurations where there are obstacles near the
links. The obstacle’s repulsive forces prevent the
end effector from reaching the goal, problem known
as Reacharound Local Minimum Problem (RLMP)
(Byrne et al., 2013). This problem occurs exclusively
in robotic manipulators.

• The generated path need post-processing in order to
make it smoother.

The increasing research in the area of collision avoidance
using the APF method has been remarkable due to its
typically small computation times (Quiroz-Omaña and
Adorno, 2019). The application areas include manipulator
robots, mobile robots, autonomous cars, unmanned aerial
vehicles (UAVs), autonomous underwater vehicles, among
others. Some works in the area, as proposed by Ge and Cui
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(2000), developed a technique called Modified Artificial
Potential Fields (MAPF) to solve GNRON problems in
mobile robots. An expansion to a three-dimensional space
of this technique was presented by Luo et al. (2012), but
increasing the chances of stagnation in a local minimum.
Zhang et al. (2017) developed the so-called Adaptive
Artificial Potential Fields (AAPFs) to solve this MAPF’s
problem. In this method, concepts of classical APFs are
used, when distant from the objective, and MAPFs, when
it is close to the objective. Thus, the path travelled does
not face problems related to local minimum caused by the
repulsive potential fields and, at the same time, is able to
solve the GNRON problem.

The integration of classic APFs into Collision Cone Ap-
proach was proposed by Kim et al. (2016), so that a
possible collision between mobile robots and obstacles can
be predicted. Li et al. (2015) presented a method of path
planning for mobile robots in known, partially known or
totally unknown environments. The APFs were integrated
into the Simultaneous Forward Search Method (SIFORS)
to find a valid and short path to the objective.

APFs have some local minimum problems specific of mo-
bile and manipulators robots. Mobile robots have greater
freedom of movement, whereas in a chain of rigid bodies
of a manipulator, the movement of each joint changes the
position of the previous joint to reach a goal determined
by the path planning algorithm. When attempting to
reach a final position, a robotic manipulator may stagnate
to a local minimum due to the repulsive forces acting
on the links, a problem known as RLMP. Byrne et al.
(2013) used the methods known as Goal Configuration
Sampling, Subgoal-Selection, based on the Sampling-based
method and the Expanded Convex Hull algorithm, to avoid
RLMPs local minimum caused by APFs. Akbaripour and
Masehian (2017) developed a method that integrates Prob-
abilistic Roadmap Method (PRM) and Lazy-PRM algo-
rithms. This method was named Semi-Lazy Probabilistic
Roadmap Method (SLPRM) and it is based on Sampling-
based algorithms. The method was developed for appli-
cation in robot manipulators. The results showed that
the computational efficiency of the SLPRM algorithm is
higher when compared to the PRM and the Lazy-PRM
algorithms.

Orientation control plays a key role in path planning.
The end effector is sometimes required to be in a specific
orientation in order to pass in narrow passages. The
APF method itself does not provide orientation control.
That is, it is not possible to set a goal orientation using
only the APF classic method. To solve this problem, this
paper presents a new approach to path planning, where
AAPF is used with an end effector orientation control
technique. It was also shown that the AAPF method
reduces the jitter by allowing robot joints to smoothly
enter the area of influence of obstacles. This is not the
desired behaviour except for the end effector. Due to
this, the AAPF method was only applied to the end
effector while the APF method was applied to all other
joints. Experimental results demonstrate the performance
of the proposed approach to solve GNRON problem and
orientation control.

The paper is organized as follows. Section 2 shows the
theory of classical APFs. Section 3 deals with AAPF as
a solution to the GNRON problem. Section 4 shows our
proposed end effector orientation control technique using
AAPF. Section 5 shows the experimental results discussing
the advantages of the use of the end effector orientation
control technique with the AAPF in typical advanced
manufacture approach applications. Section 6 concludes
the article and discusses suggestions for future work.

2. CLASSIC ARTIFICIAL POTENTIAL FIELDS

In classic APF method, the expression of the attractive
potential function is

Uatt(q) =
1

2
ζρ2 (1)

where ζ is a parameter used as an attractive field scale
factor.

The repulsive field is nullified after a certain distance of
influence ρ0 from the obstacle and raises it when close to
it, that is,

Urep(q) =


1

2
ηj

(
1

ρ
− 1

ρ0

)2

; ρ ≤ ρ0

0 ; ρ > ρ0

(2)

where the obstacle influence distance is represented by ρ0,
the smallest distance of q to the boundaries of an obstacle
in the configuration space is defined by ρ and ηj is a gain
coefficient that determines the influence of the repulsive
field.

Attractive and repulsive fields resemble the concept of elec-
trostatic fields. The force acting on the robot is equivalent
to the negative gradient of U and is given by:

F (q) = −∇U(q) = −∇Uatt(q)−∇Urep(q) (3)

One of the requirements to be considered by the attractive
potential field is to increase with the distance between qend
and qinitial. In order to avoid discontinuities in attractive
forces, APF uses a quadratically growing field with the
distance of qfinal. Where ρf is the Euclidean distance
between q and qfinal, denoted by:

ρf (q) = ||q − qfinal|| (4)

It is possible to set the quadratic attractive field to
∇Uatt(q) such that

∇Uatt(q) = ∇1

2
ζρ2f (q) = ζ(q − qfinal) (5)

For the parabolic well, the attractive force, Fatt(q) =
−∇Uatt(q) is a vector directed toward qfinal.

The expression for repulsive force is:

Frep(q) =

ηj
(

1

ρ
− 1

ρ0

)
1

ρ2
∇ρ ; ρ ≤ ρ0

0 ; ρ > ρ0

(6)

where ∇ρ indicates the gradient ∇ρ(x) evaluated at x =
Cj(q). If a b point in the obstacle boundary in the
workspace is close to the repulsive field of a control point
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in the robot, then ∇ρ = ||cj(q) − b|| and its gradient is
represented by:

∇ρ(x)
∣∣
x

=
aj(q)− b
||aj(q)− b||

(7)

The forces acting on the robot are summed and applied
to each joint i through the transposed Jacobian to obtain
the necessary torque to move the joints. The total artificial
joint torque acting on the arm is defined as:

τ(q) =
∑
i

JT
i (q)Fatt,i(q) +

∑
i

JT
i (q)Frep,i(q) (8)

3. ADAPTATIVE ARTIFICIAL POTENTIAL FIELDS

To eliminate GNRON problems present in classical APFs,
Zhang et al. (2017) developed the AAPF. The repulsive
field of AAPFs is represented by

Urep(q) =


1

2
ηj

(
1

ρ
− 1

ρ0

)2 ρng
1 + ρng

; ρ ≤ ρ0

0 ; ρ > ρ0

(9)

where ρg is the distance from the joint to the goal and
n > 0.

In (9), when n = 1 and the robot is far from the target,
that is, ρng � 1, then ρng /(1ρ

n
g ) ≈ 1 and the repulsive

fields of AAPFs are equivalent to the repulsive fields of
APFs, avoiding the path from increasing as the distance
to the target increases. When the robot is near the goal,
i.e. ρng � 1, the expression ρng /(1ρ

n
g ) is equivalent to

approximately ρg.

In AAPF, the repulsive force is fragmented into two other
components, which draw the robot to the target and repel
it from the obstacle even though it is positioned within the
area of influence ρ0, that is,

Frep(q) =

{
Frep1 γOR + Frep2 γRG ; ρ ≤ ρ0

0 ; ρ > ρ0
(10)

where the unit vector γOR = ∇ρ(q, qobs) indicates the
direction from the obstacle to the robot control point and
γRG = −∇ρ(q, qgoal) indicates the robot’s direction to the
goal.

The Frep1 component, represented by:

Frep1 = ηj

(
1

ρ
− 1

ρ0

)
ρng

ρ2(1 + ρng )
(11)

repels robot from the obstacle and the Frep2 component,
represented by:

Frep2 =
n

2
ηj

(
1

ρ
− 1

ρ0

)2 ρn−1
g

(1 + ρng )2
(12)

draws the robot to the goal.

Fig. 1 shows the attractive and repulsive AAPF force
components. The total force generated from the AAPF
guides the robot end effector to the goal, represented by
the green circumference. For this method to work in real
situations, the shape of the object must be filled with
spheres representing repulsive fields, as shown in Fig. 3.

So that only the end effector, and not the other links, can
reach a position within the obstacle’s field of influence,
AAPFs were applied only to the last link, while the other
links remain using the APFs. This ensures that the other
links do not enter the obstacle’s influence area.

Fig. 1. AAPF attractive and repulsive force components.

4. ORIENTATION CONTROL

The APF was also implemented in configuration space in
order to control the orientation of the end effector through
all the trajectory. The initial end effector orientation q,
corresponding to Roll, Pitch and Yaw angles, is set equal
to the grasping orientation qfinal for the robot to keep
current set orientation while it is moving. The attractive
force in configuration space is given by

Fattω (q) = −∇Uatt(q)

=

 −ζ(q − qfinal) ; ρf (q) ≤ d
−dζ(q − qfinal)

ρf (q)
; ρf (q) > d

(13)

where ρf (q) is the distance from q to qfinal and d is defined
as the influence distance to the final orientation in radians.
Fig. 2 shows the UR5 base link frame and the end effector
frame. The axis xi, yi and zi of the end effector frame fr2
gets attracted by the axis xi−1, yi−1 and zi−1 of the UR5
base link frame fr1 in configuration space.

Fig. 2. Reference frame of the UR5 base link and end
effector.

To implement the end effector orientation control, the
Jacobian matrix was divided into linear Jacobian Jv (the
submatrix formed by the three first rows of the Jacobian
matrix) and angular Jacobian Jω (the submatrix formed
by the three last rows of the Jacobian matrix), each one
having 3×c dimension (for this work, c = 6 and the control
points are the UR5 joints), as described in (14).

Jc×c =

[
Jv3×c

Jω3×c

]
(14)
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The attractive forces of each control point i in configura-
tion space are transformed into joint torque through the
transposed angular Jacobian JT

ω,i, where Ji is the Jacobian

matrix from the base frame to the ith joint. The total
artificial joint torque acting on the arm is defined as:

τ(q) = Fω,i(q) + Fv,i(q) =
∑
i

JT
ω,i(q)Fattω (q)+∑

i

JT
v,i(q)Fatt,i(q) +

∑
i

JT
v,i(q)Frep,i(q)

(15)

where, i represents the ith joint. The force Fω,i(q) is
equivalent to the attractive force in configuration space
imposed to the joints, so the end effector’s orientation
keeps constant, and Fv,i(q) is the resulting force in the
workspace.

5. EXPERIMENTAL RESULTS

The problem domain comprises an additive manufacturing
process, where a part will be produced in a 3D printer,
then the robot must reach the 3D printer in a specific
orientation, grasp the part and carry it to a defined
location. The manipulator used is a UR5 robotic arm, from
Universal Robots. It has 6 degrees of freedom, a maximum
payload of 5 kg and weights 20,6 kg (Robots, 2019).

Three experiments were done in the same environment,
the first and second ones using the AAPF and APF with
orientation control, respectively, and the third one using
the AAPF without orientation control. The task was to
approach an object inside a 3D printer with a very narrow
opening in the front side. The printer was modelled as a
set of spherical obstacles, twelve points for the front side
and one point for the tray, as shown in Fig. 3, where the
obstacles are the red spheres. As the space in the print
area is narrow, and the object to approach is small, the
tray was modelled as a bigger sphere involving the object
to be picked. This way, the attractive force from the goal
won’t drag the end effector in the tray’s direction.

Aiming to make the approach in a good configuration so
the end effector can easily enter the printer and reach
the objective, the orientation control method was applied
to guarantee the correct final pose of the planned path.
The AAPF method was applied only to the tray obstacle
to avoid collisions with the outer parts of the printer.
Thus the other obstacles repulsive forces stay the same
as the classic APF. Similarly, to avoid collisions with the
manipulator’s links, the AAPF method was applied only
to the grasping control point. Therefore, the other control
points will never try to enter an obstacle influence area.
These considerations make the technique application less
likely to cause accidental collisions in the printer inner
area.

From Fig. 4 one can see that the beginning of the three
paths is identical (the part where the distance is superior
to around 0.3m). That is the obstacle-free part of the
planned path. This is so because when the manipulator
is relatively far from the obstacles, the resulting force of
the AAPF method becomes equal to the one from the APF
method, as expected. In the areas near the obstacles, the
differences begin to be relevant, and the paths differ from
each other.

(a) Real model (b) Virtual environment

Fig. 3. Experiment arrange showing (a) the UR5 manipu-
lator, the 3D printer and (b) the simulated environ-
ment.

Fig. 4. Comparison of the distance from UR5 end effector
to the goal using APF and AAPF with orientation
control and AAPF without orientation control

Also, from Fig. 4 is possible to see that the AAPF method
with orientation control is the only method that converges
to the goal. Although the AAPF without orientation
control is still better than the APF with orientation control
as it can enter the repulsive fields, the uncertainty of
the tool orientation when approaching the printer narrow
opening makes this method unreliable to achieve the goal
as it is susceptible to other local minimum problems than
GNRON. This shows the importance of orientation control
in cases like this.

Fig. 5 and Fig. 6 show that the only case where both
attractive and repulsive forces go to zero is the AAPF with
orientation control method, proofing its convergence. For
the APF method, the repulsive force presents a wobbling
behaviour leading to an unstable situation, because the
limitation of this method to handle the GNRON problem
and interact well with several obstacles in a narrow area. In
the AAPF without orientation control case, the repulsive
force stabilizes in a non-zero value, characterizing a local
minimum caused due to the bad final position of the
planning solution. The abrupt changes in the magnitudes
of force are due to the entry of the end effector into the
repulsive fields.

Fig. 7 shows the paths in configuration space. Note that
in Fig. 8 the robot adjusts its orientation as it reaches the
final position, grasping the object correctly. In Fig. 9 it is
shown that, although using the AAPF method, the robot
stagnates and oscillates because its actual orientation does
not allow to enter potential repulsive fields. Fig. 10 shows
that, even though the orientation control method was
applied to the classic APF method, it was not possible to
reach the goal due to GNRON problems. Note that only
the AAPF method with orientation control reaches the
goal, while the other methods stopped by the maximum
sample number condition. The technique presented similar
performance to the simulated environment in the real
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Fig. 5. Comparison between attractive forces using AAPF
and APF with orientation control and AAPF without
orientation control

Fig. 6. Comparison between repulsive forces using AAPF
and APF with orientation control and AAPF without
orientation control

Fig. 7. Comparison between UR5 joint angles using AAPF
and APF with orientation control and AAPF without
orientation control

(a) (b)

(c) (d)

Fig. 8. AAPF with orientation control method applied on
real scenario

hardware. The video showing the experiments is available
at https://youtu.be/9d7lBqTH_JA.

6. CONCLUSIONS

In this paper, we introduced a new end effector orientation
control technique which allows reaching a desired end effec-
tor orientation using AAPF. The local minimum known as
GNRON problem was avoided using of the AAPF method.
It was shown that the use of this method reduces the jitter
in narrow areas and allow the end effector to reach the goal
even if it is inside the obstacle influence area. Experimen-
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(a) (b)

(c) (d)

Fig. 9. AAPF without orientation control method applied
on a real scenario

(a) (b)

(c) (d)

Fig. 10. APF with orientation control method applied on
a real scenario

tal results of the AAPF method used with the proposed
orientation control technique perform as expected by the
theory.

Despite the results, the manipulator not always reaches the
goal due to the static weights for the attractive and repul-
sive forces. It is necessary to update them constantly, so a
balance in the potential fields is achieved. In future works,
a method for environment exploration with autonomous
goals and obstacles recognition with computer vision will
also be implemented.
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