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1. INTRODUCTION

This paper proposes a damage identification method for
a tree model given a noisy measurement of its overall
frequency response when there exists one damaged com-
ponent. The tree model, which is shown in Fig. 1, has
many applications. For example, see its application to
viscoelastic behavior in Heymans and Bauwens (1994),
blood vessel in Gabryś et al. (2005), the vascular tree in
human retina in Masters (2004), and 1D relaxation of the
aortic valve in Doehring et al. (2005). The main reason for
us to choose that model as the starting point of our work
is because its transfer function is rational with real orders
and commensurable (See Valério and Da Costa (2013) for
the definition of commensurable transfer function), which
is the simplest case among all non-integer-order systems.
Note that although the tree model consists of linear springs
and dampers, it can also be converted to an electrical,
a fluid or a thermal system since springs and dampers
have their corresponding equivalent components for those
systems.

Fault detection is indispensable to modern industry in
real life. Consequently, different types of fault detection
methods have been proposed, for example Roemer and
Kacprzynski (2000) and Sikorska et al. (2011). One type of
methods uses system identification to monitor a system’s
health, for example Juang and Pappa (1985), Brincker
et al. (2001) and Peeters and De Roeck (2001). The dam-
age identification method proposed in this paper belongs
to that type. In addition to using system identification,
the method proposed in this paper also leverages the
result from our previous work, which exactly models the
frequency response of a tree with one damaged component.
That knowledge from modeling brings two advantages.
? The partial support of NSF Award 1826079 is gratefully acknowl-
edged.

First, it makes our identification procedure "know" the an-
swer when the measurement of a damaged tree’s frequency
response is perfect. As a result, that modeling knowledge
helps our identification method work well with a very
noisy measurement. Second, that modeling knowledge also
helps us to cast a damage identification problem as an
optimization problem where the damage case is the deci-
sion variable directly. Therefore, we can not only identify
the transfer function, but, importantly, also identify the
damage inside that tree directly. As we shall see later,
the overall frequency responses for large networks are
non-integer order naturally. Hence, our proposed method
is derived from a fractional-order system identification
method proposed by Oustaloup (1995). Other fractional-
order system identification methods can be seen in Hartley
and Lorenzo (2003), Liu et al. (2013), and Zhou et al.
(2013).

There are at least two limitations for this work at its
current state. First, the number of damaged components is
limited to one in this paper. Second, it only applies to one
specific network, the tree model. Therefore, we are working
on generalizing this idea to multiple damaged components
in a class of networks similar to the tree. The result of our
initial analysis is promising.

A closely related literature, Leyden and Goodwine (2018),
from our group sets a goal similar to this paper. However,
they are not exactly the same. Leyden and Goodwine
(2018) uses the order variation in a large network’s transfer
function to monitor its health which is different from the
method proposed in this paper. Furthermore, that work
cannot identify the exact damage case inside a network.
In contrast, this paper aims at locating the damaged
component and quantifying its damage amount.

The rest of this paper is organized as follows. Section 2
formally defines the tree model and computes its undam-
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Fig. 1. The tree model.

aged transfer function. Most importantly, it also recaps
our previous work showing how to model its damaged
transfer function. Then, Section 3 uses the knowledge from
that damage modeling to propose a damage identifica-
tion algorithm. Section 4 shows the test results for that
algorithm and lists observations about the misidentified
cases. Section 5 talks about some rationales behind that
identification procedure and some effects brought by a
damaged component which is located at a deep generation
inside the tree. Finally, Section 6 concludes this paper.

2. THE TREE MODEL

The tree model, as shown in Fig. 1, has an infinite number
of generations. At each generation, the number of nodes
is doubled compared to the one on its left. For each pair
of two nodes, the upper one is connected to its left node
through a linear spring and the lower one is connected
through a linear damper. At the last generation, all nodes
are locked together. The input of interest here is the
force, f , applied to both ends of the tree, and the output
is the relative displacement, x1,1 − xlast, between both
ends. Therefore, throughout this paper, without explicit
exception, transfer functions always represent (X1,1(s) −
Xlast(s))/F (s).

Due to self-similarity, it is easy to see those two sub-
networks, from x2,1 and x2,2 to xlast, are also trees. Let us
use GU (s) and GL(s) to represent their transfer functions,
that is

GU (s) =
X2,1(s)−Xlast(s)

F1(s)
,

GL(s) =
X2,2(s)−Xlast(s)

F2(s)
,

F (s) = F1(s) + F2(s).

Then, the tree model can be illustratively drawn as Fig. 2,
from which, using series and parallel connection rules for
mechanical components, we can obtain that the transfer
function for the entire tree can be computed by the
following formula given the expressions of GU (s) and
GL(s),

G(s) =
1

1

1

k1,1
+GU (s)

+
1

1

b1,1s
+GL(s)

, (1)

f
x1,1

k1,1

b1,1

x2,1

x2,2

GU (s)

GL(s)

xlast

f

Fig. 2. An illustration about the tree model taking advan-
tage of its self-similarity, which is equivalent to Fig. 1.

which we call the transformation formula for the tree
model.

For the undamaged tree, all of its springs have the same
constant k and all of its dampers have the same constant
b. In addition, we use G∞(s) to specifically denote the
transfer function for the undamaged tree model. Chapter 3
in Mayes (2012) shows that by converting the transforma-
tion formula (1) to its undamaged version, we can obtain
that the undamaged transfer function for the tree model
is exactly half-order:

G∞(s) =
1√
kbs

. (2)

When the tree model is damaged, some of its springs’
(dampers’) constants are different from their undamaged
value k (b). Throughout this paper, we assume that
only one component, either one spring or one damper,
is damaged, which is denoted by l. In addition, we also
assume the constant of that damaged component l changes
from the undamaged value k (b) to k · ε (b · ε), where ε is
called its damage amount and 0 < ε < 1. Note that, in the
rest of this paper, we use a pair (l,ε) to refer to a certain
damage case.

Our previous work shows that the transfer function of a
damage case (l,ε) for the tree model with one damaged
component can be expressed as

G(l,ε)(s) = G∞(s) ·∆(l,ε)(s),

where

∆(l,ε)(s) =
N(l,ε)(s)

D(l,ε)(s)
=

∏2g
j=1

(
s

1
2 + zj(l, ε)

)
∏2g
j=1

(
s

1
2 + pj(l, ε)

) . (3)

Here, −zj and −pj are called half-order zeros and poles.
Moreover, g denotes the generation where the damaged
component l is located. For example, when the damper b3,1
is damaged, l = b3,1 and thus g = 3. Therefore, all damage
cases (b3,1, ε) have 6 pairs of half-order zeros and poles.
Note that the damaged transfer function (3) is rational
and commensurable.

To compute zj and pj for a specific damage case (l,ε)
numerically, we have to start at the first generation and
go through each generation until the damaged component
l is reached. Such computation takes advantage of the fact
that the tree model is self-similar.

As a concrete example, let us show how to use the
transformation formula (1) repeatedly to obtain zj and
pj for the damage case (k3,1,ε). Due to self-similarity,
from Fig. 1, we observe that the k3,1 component of the
entire tree model is equivalent to the k2,1 component
within the sub-network from x2,1 to xlast, and the k2,1
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component of the entire tree model is equivalent to the
k1,1 component within the sub-network from x2,1 to xlast.
Therefore, using such self-similarity, we see that we need
to first compute the transfer function for the damage case
(k1,1,ε), namely G(k1,1,ε)(s). Then, using that result, we
can compute G(k2,1,ε)(s), which is then used to finally
compute G(k3,1,ε)(s).

For the damage case (k1,1, ε), that is when k1,1’s spring
constant becomes k ·ε and all the other springs’ (dampers’)
constants stay at k (b), the transfer function for the sub-
network from x2,1 to xlast in this damage case is same
as the undamaged transfer function, i.e. GU (s) = G∞(s).
For the same reason, GL(s) = G∞(s), too. Hence, for this
damage case, we can replace (G(s), GU (s), GL(s), k1,1,
b1,1) with (G(k1,1,ε)(s), G∞(s), G∞(s), k · ε, b) in Eq. (1)
which leads to

G(k1,1,ε)(s) =
1

1

1

k · ε
+G∞(s)

+
1

1

bs
+G∞(s)

.

After simplification, this gives
G(k1,1,ε)(s) = G∞(s) ·∆(k1,1,ε)(s)

= G∞(s) ·
N(k1,1,ε)(s)

D(k1,1,ε)(s)

= G∞(s)

·

(
s

1
2 +

√
k
b

)(
s

1
2 + ε

√
k
b

)
(
s

1
2 + ε

√
k
b +

√
ε(ε−1)k

b

)(
s

1
2 + ε

√
k
b −

√
ε(ε−1)k

b

) .
(4)

Using the result in Eq. (4), we can now compute
the transfer function for the damage case (k2,1,ε), that
is G(k2,1,ε)(s). For the similar reason explained above,
G(k2,1,ε)(s) can be obtained by replacing (G(s), GU (s),
GL(s), k1,1, b1,1) with (G(k2,1,ε)(s), G(k1,1,ε)(s), G∞(s), k,
b) in Eq. (1), which gives

G(k2,1,ε)(s) =
1

1

1

k
+G(k1,1,ε)(s)

+
1

1

bs
+G∞(s)

.

After simplification, this gives

G(k2,1,ε)(s) = G∞(s) ·
sD + s

1
2

√
k
b (N +D) + k

bN

sD + s
1
2

√
k
b (N +D) + k

bD
. (5)

Note that here D = D(k1,1,ε)(s) and N = N(k1,1,ε)(s) are
known from Eq. (4). Hence, by using a numerical equation
solver, we can find the values for s

1
2 which make either the

numerator or the denominator in Eq. (5) equal to 0, and
those values are the half-order zeros and poles for damage
case (k2,1,ε). Then, from the numerical value of those half-
order zeros and poles, we can construct that

G(k2,1,ε)(s) = G∞(s) ·

∏4
j=1

(
s

1
2 + zj(k2,1, ε)

)
∏4
j=1

(
s

1
2 + pj(k2,1, ε)

) . (6)

Table 1. Correspondence among all springs up
to the 4th generation.

1st Gen. 2nd Gen. 3rd Gen. 4th Gen.

k1,1

k2,1

k3,1
k4,1
k4,5

k3,3
k4,3
k4,7

k2,2

k3,2
k4,2
k4,6

k3,4
k4,4
k4,8

Table 2. Elements substituted into (G(s),
GU (s), GL(s), k1,1, b1,1) in Eq. (1) enable us
to move between corresponding components at

two consecutive generations.

Elements substituted into Eq. (1) Corresponding
components

(G∞(s), G∞(s), G∞(s), k, b) Undamaged
(G(k1,1,ε)(s), G∞(s), G∞(s), k · ε, b) Undamaged→ k1,1

(G(b1,1,ε)(s), G∞(s), G∞(s), k, b · ε) Undamaged→ b1,1

(G(k2,1,ε)(s), G(k1,1,ε)(s), G∞(s), k, b) k1,1 → k2,1

(G(k2,2,ε)(s), G∞(s), G(k1,1,ε)(s), k, b) k1,1 → k2,2

(G(k3,1,ε)(s), G(k2,1,ε)(s), G∞(s), k, b) k2,1 → k3,1

(G(k3,2,ε)(s), G(k2,2,ε)(s), G∞(s), k, b) k2,2 → k3,2

(G(k3,3,ε)(s), G∞(s), G(k2,1,ε)(s), k, b) k2,1 → k3,3

(G(k3,4,ε)(s), G∞(s), G(k2,2,ε)(s), k, b) k2,2 → k3,4

Finally, we can compute half-order zeros and poles for
the damage case (k3,1, ε) by using that G(k2,1,ε)(s) in
Eq. (6). For the similar reason explained above, we can
obtain G(k3,1,ε)(s) by replacing (G(s), GU (s), GL(s), k1,1,
b1,1) with (G(k3,1,ε)(s), G(k2,1,ε)(s), G∞(s), k, b) in Eq. (1),
which gives an expression similar to Eq. (5). Then, again,
using a numerical equation solver, we are able to find those
half-order zeros and poles for G(k3,1,ε)(s).

In summary, to compute zj and pj for a damage case (l,ε),
we need to compute its corresponding damage case at each
generation from the first one to the one where the damaged
component l is located. Table 1 shows such correspondence
among all springs up to the fourth generation. For exam-
ple, if we want to compute zj and pj for the damage case
(k4,7, ε), using Table 1, we know that we first need to
compute G(k1,1,ε)(s). Next, we need to use that result to
compute G(k2,1,ε)(s), which enables us to further obtain
G(k3,3,ε)(s). Then, we finally reach atG(k4,7,ε)(s). Note that
the correspondence among all dampers works exactly the
same.

Additionally, as described in the example above, moving
between corresponding components at two consecutive
generations requires to substitute correct elements into
(G(s), GU (s), GL(s), k1,1, b1,1) in Eq. (1). Such substi-
tution is listed in Table 2. For example, if we want to
compute G(k3,3,ε)(s) based on G(k2,1,ε)(s), from Table 2,
we know that we can replace (G(s), GU (s), GL(s), k1,1,
b1,1) with (G(k3,3,ε)(s), G∞(s), G(k2,1,ε)(s), k, b) in Eq. (1).
Again, note that the substitution for all dampers are
exactly the same except for b1,1 which has also been listed
in Table 2.
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3. DAMAGE IDENTIFICATION ALGORITHM

In this section, we formally describe our damage identi-
fication procedure. The goal is that, for a tree with one
damaged component, given a noisy measurement of its
frequency response, we want to identify the damaged com-
ponent and quantify its damage amount. The knowledge
brought by the exact modeling of damaged trees allows
us to formulate a damage identification problem as an
optimization problem where the damage case (l, ε) is the
decision variable directly. That is, we are able to come up
with a metric which directly maps a damage case (l, ε) to
a quantification of the difference between its computed
frequency response and the measured one. Inspired by
Chapter 4 in Leyden (2018), we use the following metric
to quantify that identification error

J(l, ε) =
∑
s

‖∆(l,ε)(s)−∆(s)‖
‖∆(s)‖

, (7)

where ∆(l,ε)(s) is the computed frequency response for
a damage case (l, ε) and ∆(s) is a noisy measurement
waiting for identification. In addition, the summation is
over s = i ·ω where ω are the angular frequencies at which
∆(s) is sampled.

Here is the main idea of our identification procedure.
Before identification, we need a prior knowledge about
where that damage is possibly located. For example, we
assume that the damaged component is within the first
four generations. Then, we can define a finite set for
possible damaged components, that is

L = [k1,1, b1,1, k2,1, b2,1, k2,2, b2,2, . . . , k4,8, b4,8]. (8)
For each component l ∈ L, we find the locally best ε which
minimizes the identification error J(l, ε). Then, among all
those locally best pairs of (l,ε), we pick the one which
gives the globally smallest identification error to be the
final identification result (l∗,ε∗).

At every l ∈ L, we solve the nonlinear programming
problem

min
ε
J(l, ε) =

∑
s

‖∆(l,ε)(s)−∆(s)‖
‖∆(s)‖

, (9)

subject to
0 < ε < 1;

∆(l,ε)(s) =

∏2g
j=1

(
s

1
2 + zj(l, ε)

)
∏2g
j=1

(
s

1
2 + pj(l, ε)

) .
Algorithm 1 shows the pseudocode for our identification
procedure. Note that Jmin is initialized to +∞ which
means the largest real number determined by the machine
in use.

Those half-order zeros and poles −zj and −pj are com-
puted offline. Before the identification procedure shown in
Algorithm 1, we sample −zj and −pj at different εa and
store them to a database. Then, during the identification,
we use the piecewise linear interpolation to obtain −zj
and −pj from those stored values for any 0 < ε < 1.
Specifically, at each component l ∈ L, we pick 500 εa’s
between 0 and 1. Then, for each pair of (l, εa), we use the
method described in Section 2 to compute the correspond-
ing −zj(l, εa) and −pj(l, εa), and store them to a database.

Result: Identify the damaged component l∗ and
quantify its damage amount ε∗ given the
measured ∆(s).

Jmin ← +∞;
for l ∈ L do

for The initial guess ε0 ∈ [0.1, 0.2, . . . , 0.9] do
Find (ε,J) such that ε solves the optimization
problem (9) at the component l, and J is the
corresponding optimized identification error;

if J < Jmin then
Jmin ← J ;
l∗ ← l;
ε∗ ← ε;

end
end

end
Algorithm 1: Pseudocode for our identification proce-
dure. Note that the double for loop here can be easily
implemented in parallel.
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Fig. 3. Sampling of the real and imaginary part for the
half-order zero −z7(k4,7, εa) where a = 1, 2, . . . , 500
and εa is determined by Eq. (10).

For example, Fig. 3 shows the real and imaginary part of
the half-order zero −z7(k4,7, εa) for a = 1, 2, . . . , 500. Note
that, for the damaged tree model, −zj and −pj are usually
very sensitive as ε → 0 and ε → 1. Therefore, we pick
discrete εa based on the Chebyshev nodes, that is

εa =
1

2

[
cos

(
2a− 1

1000
π

)
+ 1

]
, a = 1, 2, . . . , 500. (10)

Then, during the identification, we use piecewise linear
interpolation to obtain half-order zeros and poles, −zj and
−pj , for any 0 < ε < 1. That is,

−zj(l, ε) =− zj(l, εa) ·
(

1− ε− εa
εa+1 − εa

)
− zj(l, εa+1) · ε− εa

εa+1 − εa
, (11)

−pj(l, ε) =− pj(l, εa) ·
(

1− ε− εa
εa+1 − εa

)
− pj(l, εa+1) · ε− εa

εa+1 − εa
, (12)

where εa ≤ ε < εa+1. For example, Fig. 4 shows the
locus of half-order zeros and poles when the damaged
component l = k2,1 after interpolation. Those arrows in
Fig. 4 indicate the direction along which −zj(k2,1, ε) and
−pj(k2,1, ε) move when ε varies from 1 (undamaged) to 0
(completely damaged).
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Fig. 5. Bode plot of ∆(s) to which 50% noise is added
when the damage case (l, ε) = (k3,2, 0.5).

4. IDENTIFICATION TEST RESULTS

We test our identification procedure on all damage cases
where the damaged component is located in the first three
generations and each damaged component has ten different
damage amounts. That is, each damage case (l,ε) during
the test is an element of the following Cartesian product

{k1,1, b1,1, . . . , k3,4, b3,4} × {0.05, 0.15, . . . , 0.95}.
Therefore, 140 different damage cases are tested in total.
During the test, we use fmincon() from MATLAB to solve
the nonlinear programming problem (9).

To imitate real measurements, we add noise to the analyti-
cal value of ∆(s). Here is what we mean by adding nmax%
noise to ∆(s): If the analytical value of ∆(s) = A + i ·
B at some angular frequency ω, what the identification
procedure can see is its corresponding noisy value of ∆(s)
where

|∆(s)| = 10(1+n%)·log10(
√
A2+B2),

6 ∆(s) = (1 + n%) · atan2(B,A),

and n is a uniformly distributed random variable between
−nmax and nmax. For example, Fig. 5 shows the Bode plot
of ∆(s) to which 50% noise is added when the damage case
(l, ε) = (k3,2, 0.5). Note that, by doing so, the identification
result depends on the value of the random variable n
chosen by MATLAB. As a result, to accommodate that
dependence, we test our identification algorithm ten times
at each level of added noise.
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Fig. 6. Box plot for the percentage of misidentified cases
out of total 140 damage cases versus the percentage of
noise added to ∆(s). Ten runs for each level of added
noise.

Table 3. Average percentage of misidentified
cases for components on the third generation.

Damaged components Average % of misidentified cases
k3,1, b3,1 0.5%

k3,2, b3,2, k3,3, b3,3 20.75%

k3,4, b3,4 2%

When no noise presents in the measured ∆(s), that is
when the measured ∆(s) is same as its theoretical value,
our method correctly identifies all 140 damage cases. The
maximum absolute difference between the actual damage
amount ε and the identified ε∗ is 1.89×10−5 which happens
at the damage case (l, ε) = (b3,1, 0.45).

When measurement noise exists in ∆(s), some misidenti-
fied cases appear. However, our identification method still
works well. For example, when we add 100% noise to ∆(s),
only about 13% of total 140 cases are misidentified on
average. In the following, we list four observations.

(1) When more noise is added to ∆(s), more misidentified
cases happen. We can observe such trend from Fig. 6.

(2) For the same level of noise, a damage case which
happens at a deeper generation is more likely to be
misidentified.

(3) For the same level of noise, and for the damage
cases which happen at the same generation, those
cases occurring at inner components are more inclined
to misidentification compared to those occurring at
outer components.

(4) For the same level of noise, and for the same dam-
aged component, misidentification happens more fre-
quently when the damage amount ε is close to 1
(undamaged).

The above observations from (2) to (4) are shown next
based on ten different runs where 50% noise is added to
∆(s). Fig. 7 shows the percentage of the misidentified
cases at each generation, from which we can confirm the
observation (2). For the observation (3), we focus on the
third generation where we call k3,1, b3,1, k3,4, b3,4 outer
components, and k3,2, b3,2, k3,3, b3,3 inner components.
Table 3 shows average percentage of misidentified cases
for components on the third generation, from which we
can confirm the observation (3). For the observation (4),
we focus on those inner components at the third generation
which have most misidentified cases. Fig. 8 plots the
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Fig. 7. Box plot for the percentage of the misidentified
cases at each generation. Ten runs when 50% noise is
added.
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Fig. 8. Number of trials out of 10 total trials where each
damage case (l, ε) is misidentified versus the amount
of damage ε.

number of trials out of total 10 runs where each damage
case (l, ε) is misidentified versus the amount of damage ε,
from which we can confirm the observation (4).

Finally, to summarize the observations from (2) to (4),
we plot the second best identification error against both
the index of the damaged component l and the amount of
damage ε in Fig. 9. Note that Fig. 9 is based on only one of
those ten trials where 50% noise is added to ∆(s), but plots
for all the other nine trials are qualitatively similar. Recall
that in our identification procedure, we solve an optimiza-
tion problem (9) to find the minimum identification error
at each component. Then, among all those locally best
identification errors, the globally smallest one gives the
final identification result. Therefore, for a damage case (l,
ε), how small its globally second best identification error is
indicates how easily that damage case can be misidentified.
Here, in order to make plotting convenient, we index the
components up to the third generation by integers from 1
to 14, that is, k1,1 → 1, b1,1 → 2, . . . , b3,4 → 14. Hence,
indices {1, 2} represent components on the first generation,
indices {3, 4, 5, 6} represent components on the second gen-
eration, and indices {7, 8, . . . , 14} represent components
on the third generation. Moreover, {9, 10, 11, 12} represent
the inner components on the third generation. Therefore,
from Fig. 9, we can get an overall idea for the observations
(2) to (4).

Fig. 9. Second best identification error versus the index of
damaged component l and the amount of damage ε.
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Fig. 10. Comparison between two J(k2,1, ε) where the
measured ∆(s) is for (l, ε) = (k2,1, 0.5). The blue
one is obtained by using piecewise linear interpolation
to construct a continuous mapping from ε to zj
and pj based on those sampled values zj(k2,1, εa)
and pj(k2,1, εa). The red one uses the polynomial
regression to construct that continuous mapping.

5. DISCUSSION

5.1 Justification for using piecewise linear interpolation to
make the mapping from ε to zj and pj continuous

As described in Section 3, before the damage identification,
we sample zj and pj at discrete εa which is picked as stated
by Eq. (10). Then, that mapping is made continuous using
piecewise linear interpolation so that zj and pj can be
computed for all 0 < ε < 1 according to Eqs. (11) and (12).

The most important consideration of picking a suitable
interpolation method in this case is that it does not create
extra saddle points and local minima in the identifica-
tion error J(l, ε), since those would prevent the decision
variable from converging to the actual minimizer. Fig. 10
compares two different J(k2,1, ε) versus ε where the ∆(s)
is for the damage case (l, ε) = (k2,1, 0.5). One J(k2,1, ε)
is obtained by using piecewise linear interpolation to con-
struct a continuous mapping from ε to zj and pj based
on those sampled values zj(k2,1, εa) and pj(k2,1, εa). The
other J(k2,1, ε) is obtained by using polynomial regression
to construct that continuous mapping. From Fig. 10, we
see that the J(k2,1, ε) obtained by polynomial regression
has a lot of oscillations. Such behavior is due to the oscil-
latory nature of polynomial regression known as Runge’s
phenomenon, and it is undesirable. Should another inter-
polation method lead to a smooth J(l, ε) similar to the
blue curve in Fig. 10, it can also be used.
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Fig. 11. The tree’s overall frequency responses for 7 dif-
ferent damage cases where the damaged component
is k1,1 through k7,1, and the damage amount stays at
0.5.

5.2 Effects brought by a deeper damage

There are three aspects of consequences when a dam-
age goes deeper inside the tree. First, a deep damaged
component is naturally difficult to be identified as it has
little effect on the overall frequency response of the tree.
Fig. 11 plots the frequency response of the same damage
amount when that damage goes from the first generation
to the seventh, from which we can see that the discrepancy
between two curves is less obvious for a deeper damage.

Second, a deeper damage requires a larger database to
store discrete samples of zj and pj , which thus also requires
more time to construct that database. Note that from the
first to the n-th generation, there are 2n+1−2 components
in total. Therefore, the size of that database doubles
for each generation deeper. As for the time required to
construct that database, we note that the computation of a
damage case is always based on other damage cases which
have already been stored in that database. Therefore,
the computation time of a new damage case would not
be significantly affected by its generation. As a result,
the total time consumption to construct that database is
proportional to its size, and thus it would also double for
each generation deeper.

Third, a deeper damage requires more iterations during
our identification procedure, because the size of L in-
creases. As a result, the outer for loop in Algorithm 1
iterates more. For the same reason explained in the above
paragraph, the size of L doubles for each generation
deeper, so the total running time would also double. Note
that the time consumption inside the outer for loop is
independent of how deep a damage case is.

6. CONCLUSION

In this paper, we propose a method to identify the dam-
aged component l and quantify its damage amount ε in
a damaged tree given its overall frequency response. Our
identification procedure iterates through all possible com-
ponents and solve a nonlinear programming problem (9) at
each component. Formulation of that optimization prob-
lem takes advantage of our previous work about modeling
the damaged tree model as G∞(s)·∆(l,ε)(s) where ∆(l,ε)(s)
is completely determined by its corresponding damage case
(l,ε) as shown in Eq. (3). In addition, the performance
of that identification algorithm and the effects brought

by a damaged component at a deep generation are also
discussed in this paper.
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