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Abstract: This paper explores the development of traffic-aware energy management strategies
by means of scenario-based optimization. This is motivated by that fact that real driving
conditions are subject to uncertainty, thereby making the real-time optimization of the energy
consumption of a vehicle to be a challenging problem. In order to deal with this situation,
we employ the current framework of complete vehicle energy management in a receding
horizon fashion, in which we consider random constraints representing realizations of exogenous
signals, i.e., the uncertain driving conditions. Additionally, we study three methods for velocity
prediction in energy management strategies, i.e., a method based on (average) traffic flow
information, a method based on Gaussian process regression, and a method that combines both.
The proposed strategy is tested with real traffic data using a case study of the power split in a
series-hybrid electric vehicle. The behavior of the battery, control inputs and fuel consumption
generated with the resulting strategies are compared against the optimal solution from an offline
benchmark and a situation with perfect prediction of the future, For the considered case, the use
of a Gaussian process regression and the traffic speed achieves near optimal fuel consumption.

Keywords: Vehicle Energy Management,Model Predictive Control, Scenario Optimization,
Power request predictions

1. INTRODUCTION

Nowadays, vehicle efficiency has become more relevant
due to the need to mitigate the environmental impact of
fossil fuels and to meet the CO2 emission targets set for
2030 as expressed in the ”Global EV Outlook 2018” and
”IEA New Policies Scenario” (IEA, 2018). In fact, several
countries are proposing regulations to stop the use of non-
electrified vehicles in the city centers or even suggesting
to ban the commercialization of petrol-based passenger
cars between 2025 and 2040. However, e-mobility faces
a crucial problem to experience a total incorporation in
the transportation market denominated range anxiety,
i.e., users are concerned about not having enough en-
ergy to reach their final destination (IEA, 2018). From
this perspective, the development of Energy Management
Strategies (EMSs) becomes a relevant research topic in the
automotive industry, because their implementation does
not require substantial hardware modifications to achieve
longer traveling distances using only a reduced amount of
energy.

Basically, EMSs determine how to optimize the energy
consumption of a vehicle by establishing an appropriate
division of the energy used by its components and sub-
systems, which in a broader sense is referred as Com-
plete Vehicle Energy Management (CVEM) (Kessels et al.,
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2012). Generally, the EMS literature can be divided into
online and offline methods. Offline methods are typically
based on Dynamic Programming, Pontryagin’s Minimum
Principle (Sciarretta and Guzzella, 2007) or static opti-
mization techniques (Khalik et al., 2018; Padilla et al.,
2019), and require the drive cycle to be known a priori.
These methods are not real-time implementable and ne-
glect the presence of uncertain driving conditions, e.g.,
traffic congestion, varying speed limits and different driv-
ing styles. Alternatively, different online methods explored
in the literature are given by rule-based techniques, express
the energy required by the subsystems through Equivalent
Consumption Minimization Strategies (ECMS) (Sciarretta
and Guzzella, 2007) or apply Model Predictive Control
(MPC) methods with online predictions of the driving
mission (Romijn et al., 2017).

Despite being online implementable, all these methods
required tuning, which often relies on offline solutions,
or assume exact predictions of the power request, lim-
iting their use under real-life situations. Alternatively,
stochastic optimal control methods provide noticeable ex-
tensions for Traffic-aware Energy Management Strategies
(TaEMS), i.e., strategies that take into account the uncer-
tainty present in real traffic conditions. These strategies
are typically obtained using Stochastic Dynamic Program-
ming (SDP) (Johannesson et al., 2007), which suffers from
scalability problems known as ”Curse of Dimensionality”,
or Stochastic MPC (Di Cairano et al., 2014), which could
become computationally demanding when the number of
subsystems considered in the control problem increases.
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In this paper, we use the recent developments of scenario-
based optimization (Campi and Garatti, 2018; Schildbach
et al., 2013, 2014) to extend the current framework of
CVEM as in Padilla et al. (2019). This aims to achieve
a tractable method for traffic-aware complete vehicle en-
ergy management, in which an intuitive tradeoff can be
made between computational complexity and robustness
depending on the number of scenarios considered. Fur-
thermore, the proposed method has the potential of using
distributed optimization techniques to improve its imple-
mentation capabilities (although this will not be addressed
in this paper). In addition, we propose the use of Gaussian
Processes Regression for this TaEMS to generate multiple
predictions of the future driving situations, i.e., sample
random scenarios, which are combined with traffic flow
information to provide long-term speed predictions.

This paper is organized as follows: In Section 2, the
general vehicle energy management problem formulation
is presented and extended as an uncertain optimal control
problem. A description of the prediction methods for
traffic-aware vehicle energy management is included in
Section 3. Section 4 presents the implementation details
and simulation results obtained on a case study. Finally,
conclusions are presented in Section 5.

2. TRAFFIC-AWARE VEHICLE ENERGY
MANAGEMENT

In this section, we present the mathematical formulation
describing the optimal control problem arising from the
CVEM framework in a receding horizon fashion. Addi-
tionally, an extension of the resulting Receding-Horizon
Optimal Control Problem (RHOCP) in the context of
scenario-based optimization is introduced to account for
uncertain factors affecting a vehicle, i.e., the uncertain
power request caused by, e.g., unknown driving conditions.

2.1 Receding Horizon Optimal Control Problem

In general, the CVEM problem aims to define the opti-
mal energy flows between the subsystems in the power
network of a vehicle over a prediction horizon k ∈ K =
{0, 1, . . . ,K−1} given the measurements at time step t ∈ N
represented by

min
{um,k|t,ym,k|t,xm,k|t}

∑
m∈M

∑
k∈K

am,kym,k|t + bm,kum,k|t

(1a)

where xm,k|t ∈ Rnm are the states, um,k|t ∈ R are scalar
inputs and ym,k|t ∈ R are scalar outputs of the converter
of subsystem m ∈ M = {1, . . . ,M}, and the coefficients
am,k ∈ R+0, bm,k ∈ R define the desired cost metric
based on the energy consumed by each subsystem at time
instant k + t. For instance, setting all coefficients to zero
apart from a1,k and assuming that m = 1 corresponds
to the combustion engine results in a fuel consumption
minimization, where y1,k|t represents the chemical fuel
power flow and a1,k can be either a constant or variable
coefficient, e.g., sampling time. Note that the subscript
[·]·|t will be dropped for clarity of the notation as the
terms {u, y, x, w} throughout this paper define predictions
at time k + t given information of time t ∈ N and k ∈ K.

(a) Power network structure (b) Powertrain topology

Fig. 1. CVEM diagrams.

The minimization of (1a) is subject to a set of constraints
describing the behaviour of the vehicle’s power network
and the exchanges of power in it (Fig. 1a shows a general
network structure). First, we consider quadratic equality
constraints that define the input-output behaviour of the
converter in each subsystem

ym,k = 1
2γ2,mu

2
m,k + γ1,mum,k + γ0,m (1b)

with γ2,m ∈ R+, γ1,m ∈ R and γ0,m ∈ R being coefficients
that define the efficiency of converter m ∈ M. Further-
more, the network presents different states that are being
controlled, imposing constraints based on the linear system
dynamics of the energy buffers

xm,k+1 = Am,kxm,k +Bm,kum,k (1c)

in which xm,k ∈ Rnm and um,k ∈ R denote the predicted
states and inputs, respectively, of subsystem m ∈M, and
where the initial states xm,0 are known. The admissible
states and inputs are subject to constraints, i.e.,

xm,k ∈ Xm and um,k ∈ Um (1d)

Moreover, the interconnections of subsystems are de-
scribed by J = {1, . . . , J} nodes and no direct interactions
between them are considered, i.e., each subsystem can be
connected only to a node, resulting in the power balances

gj(ym,k, um,k, wj,k) ≤ 0 (1e)

with

gj(ym,k,um,k,wj,k)=
∑
m∈M

cj,mym,k+dj,mum,k+wj,k (1f)

for all j ∈ J and k ∈ K.

In (1e), wj,k are exogenous signals acting on each node,
e.g., the power request from the driver or the auxiliaries.
Generally for EMS, it is assumed that these exogenous
signals are known in advance or can be perfectly pre-
dicted. However, this might not be always true, as they
are generated by the environment or external factors,
e.g., the driver. Therefore, we can consider that these un-
known exogenous signals have a stochastic nature, turning
the CVEM problem (1) into a Stochastic RHOCP. Even
though different methods can be used to solve this prob-
lem, we make use of the scenario approach (Campi and
Garatti, 2018) to solve the resulting uncertain RHOCP
in a computationally advantageous way as presented in
the remainder of this section (Detailed information on the
CVEM framework can be found in Romijn et al. (2017)).

2.2 Stochastic RHOCP

Before presenting the scenario approach, let us consider a
stochastic extensions to problem (1) accounting for the
unknown exogenous signals wj,k in nodes j ∈ J . In
particular, we can post the resulting CVEM problem as
the following chance-constrained RHOCP
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min
{um,k,ym,k,xm,k}

∑
m∈M

∑
k∈K

am,kym,k + bm,kum,k (2a)

subject to (1b) - (1d), and

Pr{gj(ym,k, um,k, wj,k) ≤ 0} ≥ 1− εj (2b)

where the parameters εj are acceptable infeasibility levels
and the functions gj are defined as in (1e). Here, the need
to guarantee that the chance-constraints (2b) will hold
for any realization of wj,k becomes a major restriction,
since the distributions of these exogenous signals might be
unknown and, even if they are known, the solution could be
more conservative and lead to an undesired performance.

2.3 Scenario-Based Traffic-Aware Energy Management

In order to deal with the characteristics of the chance-
constrained formulation in the previous section, we make
use of the scenario approach (Campi and Garatti, 2018)
instead. This methodology for data-driven optimization
aims to solve the resulting chance-constrained RHOCP
by means of a deterministic approximation that considers
only a finite number of realizations of the unknown exoge-
nous signals wj,k, where taking more samples into account
increases the chances of satisfying (1e), thereby providing
a tuning knob to balance robustness versus performance
of the scenario solution. This allows to achieve a computa-
tionally tractable problem when multiple subsystems are
considered, in comparison to classic stochastic EMS based
on SDP (Johannesson et al., 2007). With this in mind,
the power balances (2b) in problem (2) can be replaced
by a deterministic set of randomly sampled constraints
(scenarios), leading to what we refer to as scenario-based
Traffic-aware Energy Management Strategy (ScTaEMS).

Now, following the scenario approach and the results
in (Schildbach et al., 2013, 2014), we introduce some
definitions and assumptions required for the scenario-
based RHOCP:

(1) The uncertainties wj,k of each node are contained in
a single variable wk = [w1,k, . . . , wJ,k]ᵀ which is a
random variable with (maybe unknown) probability
measure Pr and support set W.

(2) A sequence of variables {w[ι]
0 , . . . , w

[ι]
K−1} is the ι− th

realization of the uncertainty wk over the prediction
horizon defining the scenario w[ι].

(3) Enough i.i.d. samples w[ι] can be obtained at every
time instant, giving a set of scenarios I = {1, . . . , I}.

(4) The scenario-based RHOCP problem has a feasible
solution for almost any w[ι].

With this definitions, the resulting scenario-based TaEMS
problem at time t ∈ N is given by

min
{um,k,ym,k,xm,k}

∑
m∈M

∑
k∈K

am,kym,k + bm,kum,k (3a)

subject to

ym,k = 1
2γ2,mu

2
m,k + γ1,mum,k + γ0,m (3b)

xm,k+1 = Am,kxm,k +Bm,kum,k (3c)

xm,k ∈ Xm and um,k ∈ Um (3d)

and
gj(ym,k, um,k, w

[ι]
j,k) ≤ 0, (3e)

for all ι ∈ I and j ∈ J , and k ∈ K, m ∈M.

From the previous formulation, we make use of the results
in Schildbach et al. (2013) to address the selection of the
number of scenarios required for a particular feasibility
level. To this end, let us define the probability of constraint
violation

Vj,k(y∗m,k, u
∗
m,k) = Pr{gj(y∗m,k, u∗m,k, w

[ι]
j,k) > 0} (4)

where u∗m,k, y
∗
m,k refer to the scenario solution. It has

been shown in Campi and Garatti (2018) and Schildbach
et al. (2013) that Vj,k(y∗m,k, u

∗
m,k) is bounded by a Beta

distribution B(ρj , I − ρj + 1), such that

PrI{Vj,k(y∗m,k, u
∗
m,k) > εj} ≤ B(ρj , I − ρj + 1) (5)

where ρj is the support rank of the constraint in node j and
PrI is the I − th product of Pr for the sampled scenarios.
Here, we make use of the results in Schildbach et al. (2013)
instead of considering the number of decision variables as
in the classic scenario approach presented in Campi and
Garatti (2018). This is favorable as only a reduced number
of the decision variables in problem (3) is affected by (3e)
at every step on the prediction horizon k regardless of the
number of sampled scenarios.

From this formulation, we aim to find the minimum num-
ber of samples required to satisfy the original chance
constraint, as the more samples are drawn, the more
conservative the solution becomes. Nevertheless, given
that new samples are drawn at each time step, we
consider a bound on the expected violation probability
EI [Vj,k(y∗m,k|t, u

∗
m,k|t)] ≤ εj , which leads to a sample size

of εj ≤ ρj/(I+ 1). This result follows from the integration
of (5), which can be interpreted as the probability that
the I + 1 sample becomes a support constraint, i.e., the
solution obtained with the scenarios I does not satisfy
the power balances gj(·) ≤ 0 (see Campi and Garatti
(2018); Schildbach et al. (2013, 2014) for further details
and proofs).

3. SCENARIO GENERATORS

In order to make predictions of the unknown traffic con-
ditions, and thus the exogenous signals wj,k, we present
the three velocity prediction methods used in this work,
e.g., predictions based on GPS/eHorizon data, predictions
using a Gaussian Process Regression (GPR) model, and
a mixed generator that combines both the GPS and the
GPR model.

3.1 GPS / eHorizon Methods

First, we consider that the vehicle has access to traffic
information through a Global Positioning System (GPS)
or an electronic horizon (eHorizon), which are devises
available in today’s vehicles. Here, the average traffic speed
is calculated based on the traffic flow through a particular

section of the road as follows: vηavg,tw = 1
Pη

∑Pη
p=1 v

p
tw,

where η are the road sections and Pη is number of vehicles
passing through a particular road section during a time
window, e.g., an update frequency between 1 to 5 minutes,
as is usually done in mapping and traffic management
systems (HERE Global B.V, 2020; Herrera et al., 2010).
Here, the generation of speed predictions assumes that
the vehicle will follow the latest traffic speed recorded
depending on the road section where it is located.
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3.2 Gaussian Process Regression

Since the average traffic speed only provides a determinis-
tic estimate of the traffic situation, a probabilistic model to
forecast the future speed of the vehicle is proposed in this
section. In particular, we propose to use a Gaussian Pro-
cess Regression model (Rasmussen and Williams, 2006).
The selection of this non-parametric model is motivated by
the remarkable prediction capabilities achieved with ma-
chine learning methods in (Sun et al., 2015; Lefèvre et al.,
2014; Liu et al., 2019) and, at the same time, its particular
ability to provide a direct measure for the uncertainty of
the predictions. For our application, the GPR model is
employed as a predictor for a Nonlinear Auto-Regressive
Model (NAR-GP), which results in regressing a function
zk = f(qk) + ek with a feature vector qk = {vk−p, . . . , vk}
that predicts the future speed zk = {vk+1}. Additionally,
ek ∼ N (0, σ2

n) is a noise term acting on the output of the
function and f ∼ GP(µ, ker) is a GPR defined with a prior
distribution with µ = 0, a kernel function ker, e.g., squared
exponential, Matérn, etc, and a set of hyper-parameters Θ.
Furthermore, the definition of these hyper-parameters is
done by minimizing the negative log-likelihood function
on training data D = {(qn, zn) | n = {1, . . . , N}}, see
(Rasmussen and Williams, 2006) for further details.

Once the NAR-GP is fully defined, we obtain a model that
allows us to generate random samples from the posterior
distribution, such that

vk+1 ∼ Pr(z∗|D, q∗) = N (f̄post, kerpost + σ2
n; Θ) (6a)

in which

f̄post =kerᵀ(q∗)(ker + σ2
nI)
−1z (6b)

kerpost =ker(q∗, q∗)− kerᵀ(q∗)(ker+σ2
nI)
−1ker(q∗) (6c)

with z the output training data, I the identity matrix and
points q∗, z∗ referring to a test input and output, respec-
tively. For this method, we consider a naive approach to
generate the predictions over the horizon K, neglecting
the propagation of uncertainty to simplify the process and
avoid intractable predictions with large speed changes.

3.3 Mixed Generator Approach

Given that long prediction horizons lead to a better per-
formance of the EMS (Romijn et al., 2017), a combination
of the velocity prediction methods is considered in this
work in order to exploit the benefits of each method, e.g.,
account for the uncertainty in a short-term and preserve
the preview of the traffic situation given by the average
traffic speed. This combination is motivated by the fact
that most of the maneuvers in car following or traffic
situations require a very short time (see Lefèvre et al.
(2014) and references therein) and the possible mismatch
between the traffic speed and the individual speed profiles.
At the same time, it is known that machine learning
methods tend to incur in large prediction errors when
the prediction horizon length increases, as these methods
are not able to account for long-term traffic dependencies
(Liu et al., 2019). In fact, most of the methods present in
the literature are restricted to predictions of 10 seconds
in the future and, therefore, the integration of external
information could lead to substantial fuel savings while
generating more robust solutions against the actions of
the driver.

Table 1. Powertain model coefficients

EGU

γ2,egu = 2 · 10−5 γ1,egu = 2.52 γ0,egu = 19
ūegu = 210 [kW] uegu = 0 [kW]

HVB

γ2,hvb = 1.671 · 10−3 γ1,hvb = −1 γ0,hvb = 0
ūhvb = 92.4 [kW] uhvb = −92.4 [kW] xhvb,0 = 11988 [kJ]
x̄hbv = 22680 [kJ] xhbv = 7560 [kJ] xhvb,K = 11988 [kJ]

4. CASE STUDY

In this section, we define a simple case study considered
to evaluate the potential of the proposed scenario formu-
lation. The case study is based on TaEMS for a series
hybrid vehicle. We will start by presenting the RHOCP
formulation, followed by the selection of the sample size
and the explanation of the power request determination.

4.1 Receding Horizon Optimal Control Problem

The case study in this paper is based on the series-hybrid
electric vehicle (SHEV) presented in (Khalik et al., 2018).
In particular, the powertrain topology of the vehicle is
represented as the network of energy buffers depicted in
Fig. 1b with m = {egu, hvb, em}. In this figure, EGU
stands for Engine Generator Unit, with yegu being the
fuel consumption and uegu the power supplied by the
EGU to the power network. Furthermore, uhvb and yhvb
define the electric power coming from the High-Voltage
Battery (HVB) and xhvb represents the stored energy in
the battery. Besides this subsystems, the Electric Motor
(EM) provides yem, which represents the (unknown) power
request defined by the driver. Note that yem propels the
vehicle when being positive and brakes the vehicle when
being a negative value.

The node interconnecting the elements in the network
defines a power balance as in (1e), where the parameters
chvb = 1, degu = −1 and cem = 1 are specified according
to the flow direction of the power for each subsystem
and all the others are set to zero. On top of this, an
external braking signal ybr is introduced to account for the
mechanical braking that dissipates the excess of energy in
the powertrain and xhvb,0 = xhvb,K is included in (3d).

According to the problem formulation in Section 2.1,
the task of reducing the fuel consumed by the SHEV is
described by the cost function (1a) with aegu,k = τk and
all the remaining parameters am,k = bm,k = 0, as they do
not contribute to the objective of the problem and where
τk is the sampling interval along the prediction horizon
K. In this case, yem,k is considered to be an uncertain
consequence of the driver actions and only the power
request yem,0 is known at the current time step t, which is a
realistic assumption given the on-board sensors in today’s
vehicles. Furthermore, Table 1 presents the parameters
defining the powertrain in this case study.

By substituting (3b) for the EGU in (3a) and (3b) for
the HVB in (3e), removing the state variables through a
prediction model as is generally done in linear MPC and
considering the case study’s parameters, the problem can
be reformulated as a Quadratically Constrained Quadratic
Program (QCQP) which can be efficiently solved with
specialized solvers, e.g., CPLEX CPL (2019), resulting in
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min
{um,k}

∑
k∈K

τk( 1
2γ2,eguu

2
egu,k + γ1,eguuegu,k + γ0,egu)

(7a)

subject to
1
2γ2,hvbu

2
hvb,k+γ1,hvbuhvb,k − uegu,k︸ ︷︷ ︸

gqcqp

+γ0hvb ≤ −y
[ι]
em,k

(7b)

for all ι ∈ I and

Φxhvb,0 − τk ◦ Γuhvb ∈ Xhvb (7c)

um,k ∈ Um (7d)

with k ∈ K, m ∈ {egu, hvb} and (7c) are the battery
constraints in matrix form. Note that this problem is
convex since γ2,m > 0, leading to a direct definition of
the sample size for the scenario-based RHOCP.

4.2 Sample Size for Scenario-based RHOCP

Since the power balance (7b) is present for every pre-
diction of time k + t, given information at time t, the
problem has K scenario constraints and affect only the
particular inputs at that stage in horizon K. Therefore,
it is straightforward to define the support rank of the
scenario constraint and specify the required sample size.
In this case, the support rank of (7b) is calculated as in
Schildbach et al. (2013) and given by ρ = d−L = 2, leading
to an expected violation probability EI [Vj,k(u∗m,k)] ≤ 2

I+1 ,

where Vj,k(u∗m,k) = Pr{gqcqp + (γ0hvb + y
[ι]
em,k) > 0}. In

this case study, we have defined a sample size of I = 119
implying a theoretical bound of ε ≤ 2/120 ≈ 1.66%.
This percentage can be interpreted as the times when
the vehicle will not provide enough power to follow the
commands of the driver.

4.3 Power Request Definition

Given that the scenario generators forecast possible veloc-
ity profiles {v1, . . . , vK+1}, the power request is considered
as the mechanical power yem,k = vkuem,k, where a power
limit ȳem = ūegu + ȳhvb is defined and the traction force,
uem,k, required to follow each profile is calculated using an
inverted vehicle dynamics model, given by:

yem,k = vk
σu

(vk+1−vk
τk

+ σvv
2
k + σr + g sin(θ(sk))) (8)

where σr = gcr, σu = 1
m , σv = 1

2mcdρaAf and θ define the
rolling resistance, inverse of the mass, aerodynamic drag
and the road slope, respectively. The definition and values
of these coefficients for the vehicle in this case study can be
found in Table 2 and a flat road is considered, i.e., θ = 0.

5. SIMULATION RESULTS

In order to analyse the performance of the scenario gener-
ators and the TaEMS for the power split problem, we first
describe the particular characteristics considered in the
simulations and, subsequently, we present results obtained
with each method. Here, the solutions of the TaEMSs are
compared to the optimal performance given by an offline
benchmark and an online solution with perfect prediction
of the future driving cycle. Additionally, we assess the
benefits of hybridization under uncertain predictions by

Table 2. Vehicle coefficients

Parameter symbol Value

Frontal drag area Af 7.5400 [m2]

Drag coefficient cd 0.7

Rolling resistance cr 0.007

Air density ρa 1.1840

Mass m 15950 [kg]

Gravitational acceleration g 9.81 [m/s2]

including the fuel consumption that would be generated if
the power request was only covered by the EGU.

For this case study, we used the traffic data set from the
Mobile Century field experiment (Herrera et al., 2010),
which was a project carried out over a 16 km section of the
Interstate 880 highway in California to evaluate the use of
GPS-enabled smartphones for accurate traffic information
systems. The data was recorded from 10 a.m. to 6 p.m. and
includes a traffic congestion event around 10:30 a.m. from
where the driving cycles to evaluate the proposed TaEMS
are taken (the reader is referred to Herrera et al. (2010)
for further information and descriptions of the data used).

For implementation, we use a moving average filter with
a Gaussian window to smooth intractable speed changes
present in the predictions from the traffic speed or large
noise realizations in the NAR-GP samples.

5.1 GPS / eHorizon Method

In order to replicate the information supplied by a GPS, we
have divided the road in 100 segments and have considered
a time window tw = 300 seconds according to the update
frequency in (Herrera et al., 2010). We consider that the
vehicle has access to the average speed relative to the
current time relative to the driving cycle, e.g., at 10:43
a.m. the information obtained at 10:40 a.m. is known and
an update is available at 10:45 a.m.

5.2 Gaussian Process Regression

For this probabilistic velocity prediction method, the
training data D was composed by real driving cycles taken
from the Mobile Century data set starting before 10:30
a.m., and the HWFET, LA92 short and EPA standard
driving cycles in order to provide more dynamic data to
the model. Furthermore, the kernel function used in this
work is the Matérn 5

2 function, see, e.g., (Rasmussen and
Williams, 2006). This selection was motivated by the fact
that the real driving cycles present long braking patterns,
which were not properly captured when using a squared
exponential function due to its smoothness characteristics.
Additionally, the total number of lags in the NAR-GP was
set to 5, since it was observed that longer dependencies did
not provide a substantial improvement of the predictions.

As an example, the mean predictions generated with the
NAR-GP for test cycle 1 are shown in Fig. 2, where the
top plot presents the prediction accuracy with different
prediction horizons and the trajectories for 10 seconds of
prediction are shown in the bottom plot. As it can be
seen, when the predictions are made for short periods
of time, e.g., 10 seconds, 95% of the errors are smaller
than 1 m/s, which is acceptable for the development of
energy management strategies. Nevertheless, these errors
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Fig. 2. NAR-GP predictions for test cycle 1. Top: Error
of the predicted mean vs. prediction horizon length.
Bottom: Predicted mean speed with K = 10 seconds.

present an increasing trend when generating a velocity
forecast for longer horizon lengths, as only short term
correlations are captured from the training data and
translated to the predictions while no information of the
upcoming traffic is provided to the NAR-GP. Besides
this, the NAR-GP occasionally generates wrong braking
predictions, e.g., predictions around second 1100, but such
errors are mitigated by the presence of multiple random
samples that result in a more cautious use of the battery.

5.3 Prediction Horizon Length

In order to establish an appropriate length of the pre-
diction horizon, the fuel consumption obtained with the
GPS and the NAR-GP predictions were evaluated. Table 3
presents the fuel consumption with a perfect prediction,
the scenario solution with the NAR-GP and the average
traffic speed (GPS), where the offline benchmark and the
EGU-only case (i.e., not using the battery) give the range
of possible savings. It can be seen that a longer prediction
horizon results in a lower consumption since it allows a
larger deviation from the final state constraint imposed in
the problem. For test cycles 1 and 2, the GPS captures
the braking pattern accurately, leading to an appropriate
use of the battery compared to the NAR-GP, where the
battery is mainly used after the charging event due to pre-
diction errors, see Fig. 3. Regarding the third test, the GPS

Table 3. Impact of prediction horizon on fuel
consumption for the individual methods

Method
Horizon Fuel Consumption per
Length Test Cycle [l]/100[km]

[seconds] 1 2 3

Offline - 21.104 24.666 20.310

EGU-only - 23.390 26.222 21.978

Perfect
Prediction

20 22.101 25.689 20.872
30 21.759 25.327 20.625
60 21.166 24.748 20.362
120 21.121 24.684 20.322

NAR−GP

20 22.951 25.731 21.282
30 22.795 25.482 21.074
60 22.312 25.353 20.553
120 22.006 25.160 20.506

GPS

20 22.718 25.836 20.973
30 22.444 25.459 20.889
60 22.084 25.003 20.618
120 21.702 24.947 20.766
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Fig. 3. Trajectory of the energy stored in the battery for
test cycle 2 (battery limits are shown as dashed lines)

incurs in a higher consumption with longer predictions,
while the NAR-GP leads to better fuel economy. This is
due to a softer deceleration that deviates from the traffic
flow and, as seen in the perfect prediction case, reduces the
advantage of a long horizon compared to the other tests.

5.4 Mixed Scenario Generator

As shown before, the NAR-GP is capable of producing
accurate predictions when a short horizon is specified but
fails to anticipate longer braking events, causing a higher
fuel consumption. For this reason, and as a reference point
with the literature, a horizon length of 10 seconds was
selected to generate random speed profiles. After these
predictions are made, the average traffic speed is used
to complete the remaining part of the prediction horizon
assuming that the driver follows the GPS after 10 seconds
in order to keep the preview of the future traffic conditions
and provide more freedom for the usage of the battery.

Finally, since longer horizons have a large impact in
the computation time due to the increment of con-
straints and decision variables in the RHOCP, we in-
corporate the variable step-size approach proposed in
(Romijn et al., 2017) since, as indicated by the authors,
coarser predictions of the future have minor impacts in
the fuel savings while noticeably reducing the computation
complexity of the problem. We consider (τ1, . . . , τK) =
(1, 1, 2, 4, 6, 8, 10, 12, 16, 20, 40) as the step-size sequence
used to generate long-term predictions, where the specific
sequence follows the suggestion in (Romijn et al., 2017),
such that the total length of the predictions is 120 seconds.

The resulting fuel savings obtained with the mixed sce-
nario generator are reported in Table 4, where we present
the fuel consumed with ‘full mixed’ scenario generator (i.e.,

Table 4. Fuel consumption of TaEMS with
mixed scenarios and GPS information

Test
Cycle

Method
Fuel Relative Fuel

[l]/100[km] Consumption Increase

1
Full Mixed 21.674 2.70 %

Variable Mixed 21.852 3.54 %
Variable GPS 22.220 5.29 %

2
Full Mixed 24.851 0.75 %

Variable Mixed 25.109 1.79 %
Variable GPS 25.423 3.06 %

3
Full Mixed 20.804 2.44 %

Variable Mixed 21.247 4.62 %
Variable GPS 21.136 4.07 %
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Fig. 4. State trajectory and node signals from the TaEMSs
using sequence τk in test cycle 2 (dashed lines: limits).

with constant step sizes τk = 1), the ‘variable mixed’ sce-
nario generator (i.e., with variable step sizes, as explained
above) and applying the same variable step size sequence
only to the average traffic speed, i.e., ‘variable GPS’. Here,
the last column presents the increment of fuel consumption
relative to the optimal savings of the offline benchmark.
Moreover, the state trajectory and the signals acting on
the powertain node in test cycle 2 are shown in Fig. 4.

From Table 4, it can be seen that the proposed TaEMS
provides a slight improvement when the full predictions of
the mixed scenario generator are considered in comparison
to the GPS-based predictions. Nevertheless, the main
advantage is observed when the decision variables are
reduced by means of the variable sequence τk. In this case,
we see that the fuel savings decreased as shown in (Romijn
et al., 2017) but the incorporation of multiple predictions
leads to a better fuel economy, consuming only 0.75% more
than the optimal solution in test cycle 2 when full predic-
tions are used and 1.79% with the sampling sequence τk.
On the other hand, the negative effect of faulty predictions
is also visible, as the consumption increases due to the
mismatch of the long-term predictions in test cycle 3.

6. CONCLUSIONS

In this paper, a traffic-aware energy management strategy
that accounts for uncertain driving conditions has been
developed. This strategy is based on the solution to a
scenario-based optimal control problem used in a receding
horizon fashion. The scenario-based approach reduces the
probability of running out of energy during a driving mis-
sion. Different alternatives to include traffic information
for the generation of scenarios have been explored, achiev-
ing a deviation of 0.75% from the optimal consumption
with a suitable mix of the available information and 1.79%
using variable step-size predictions. Nevertheless, the need
of accurate traffic data becomes an essential factor for this
TaEMS, however, such quality of information was provided
by the traffic behavior in the highway situation considered.
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