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Abstract: Steam assisted gravity drainage (SAGD) is a widely adopted oil extraction technique
for heavy oil reservoirs in Alberta, Canada. One of the common approaches by which the
producers optimize the production from SAGD reservoirs is by controlling the emulsion level
above the producer well bores, a strategy known as subcool control within the industry. In
this study, we assess and compare performances of two subcool control strategies, one of which
makes use of classic control strategy (PID) and the other is of advanced control strategy (model
predictive controller (MPC)). As the controlled process in this case is a non-linear process, we
propose a gap metric-based control performance assessment (CPA) method. By this method,
the local models as well as their associated weights are determined using the gap metric. We
show that the MPC-based strategy outperforms the PID loops-based strategy in subcool control
application.

Keywords: Multi-modal control performance assessment, Gap metric, Steam assisted gravity
drainage process, Subcool control, Model predictive control.

1. INTRODUCTION

In steam assisted gravity drainage (SAGD) production,
two wells are directionally drilled one above the other
and that can extend laterally within the pay zone more
than a kilometer. In the top well, steam is continuously
injected to lower the viscosity of the oil and allow it
to mobilize through the producer well directly below it.
Over time, a steam chamber is formed downhole and
the mobilized bitumen and steam condensate form an
emulsion inventory which is collected above the producer
wellbore. The collected emulsion is moved to the surface
by various artificial lift methods.

Controlling the emulsion production from each well at a
rate that matches the in-flow from the reservoir as it is
mobilized by the injected steam, is one of the common
challenges faced in SAGD production. Variable steam in-
jection rates and variable production rates make this a
challenging production control problem with operators at-
tempting to manage hundreds of well pairs simultaneously.
Producing oil from a well at rates that exceed the inflow
from the reservoir causes the well ‘pump off’, resulting
in steam breakthrough from the injector to the producer.
Steam breakthrough can cause many equipment reliability
issues associated with the well resulting in damage to liners
and electrical submersible pumps (ESPs) typically. On the
other hand, producing at rates which are less than the

inflow from the reservoir causes the emulsion level to rise
in the steam chamber and eventually flood the injector
if not recognized by operations. This is also not ideal, as
much of the latent heat (energy) available in the steam
can be lost to the emulsion layer rather than it heating the
surrounding reservoir as intended under these conditions.

As the sensor technology does not yet exist to physically
measure the level of emulsion above the producer wellbore,
subcool is used as proxy and controlled instead. Different
definitions of subcool are used in the industry depending
on which pressure measurements are used for calculating
the saturation conditions of the steam. Reservoir subcool
is the difference between the steam saturation temperature
corresponding to the Reservoir pressure and the temper-
ature of the emulsion inventory at the producer well.
Alternately, wellbore subcool is the difference between
the steam saturation temperature corresponding to the
producer wellbore pressure and the temperature of the
emulsion at the producer well. A positive subcool measure
indicates there is an available emulsion inventory to be
produced. Good subcool control is desirable as it can help
minimize the steam-to-oil-ratio (SOR) in a SAGD opera-
tion while protecting the downhole pump from abnormal
conditions such as steam breakthrough [Edmunds et al.
(1998)].
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Recent studies on subcool control automation have re-
ported the applicability of both PID and MPC [Vembadi
(2015)]. Most of the reported studies make use of reser-
voir simulation packages to compare the performance of
different control strategies without documenting results
from actual field implementations. It is noteworthy that
many studies in the literature discuss closed loop control
of subcool based on the steam injection rates. However,
the studied configuration has closed loop control based on
the emulsion production rate. Subcool responds quicker
to changes in production rates compared to the changes
in steam injection rates which makes closing the loops
on the producer wellbore a more practical option. In the
studied wells, steam injection rates and pressures are still
controlled through PID controllers.

One of the challenges of controlling subcool is that it
responds with a large time constant to the changes in ma-
nipulated variables (production rate and injection rates).
After a setpoint change to the ESP speed for example, it
can be several hours before the change in emulsion inven-
tory, and in turn, in the measured subcool. To cope with
large time constant, high gain PID controllers have been
used in this application which may not provide the best
performance in terms of variability reduction or constraint
handling [Purkayastha et al. (2015)].

MPC, on the other hand, utilizes predictive models be-
tween the controlled variable (subcool) and manipulated
variable (pump speed/production rate) which captures the
process dynamics. MPC can also be exploited to manage
production constraints or limits, lowering the variability of
the emulsion production rate, pump speed and ultimately
subcool. Across the process industries, MPC has been used
in multivariable constrained control applications and in
applications with large time constants like the studied
process.

The main goal of this paper is to assess performances
of MPC and PID which are implemented on SAGD pro-
cess. Over many years, the process control community has
developed several control performance assessment (CPA)
metrics and techniques to assess, monitor and compare
performances of the industrial controllers [Desborough and
Harris (1992)],[Huang and Shah (1999)]. In industrial set-
tings, controllers are often designed for regulatory oper-
ations, and hence decreasing the output variance is one
of the most important goals in controller design. Further-
more, decreasing the variance also has implications such
as improved product quality, and less wear and tear to
the actuators. As a result, the Minimum Variance-based
(MV) performance index has emerged as one of the most
important CPA indices in the literature Huang and Shah
(1999). There have been several reported applications of
CPA studies on the industrial control loops.

Considering that the SAGD process is a nonlinear pro-
cess [Yuan et al. (2013)], some traditional control per-
formance benchmarks such as linear minimum variance
(MV) control benchmark which is usually estimated for a
single operating mode under stationary conditions are not
applicable. The nonlinearity poses significant challenges
in determining the minimum variance index due to the
difficulties in optimizing the nonlinear minimum variance
(MV) cost function. To this end, we propose to use a

multi-modal CPA technique. The main idea behind the
multi-modal approach is to represent the nonlinear system
with a convex combination of linear models. The challenges
of this approach are determining the sufficient number of
local models and the operation points around which the
linear models should be constructed. To overcome these
challenges, a popular metric known as the gap metric is
utilized in deciding the number of local linear models and
the model weights [Wan and Huang (2002)].

Galán et al. (2003a) suggested using the gap metric, which
measures the distance between two linear models, as a
guideline for selecting local models. The advantage of the
method is that a detailed nonlinear model of the system is
not required. By this approach, the number of the local
models can also be determined. After having all local
models, the global model can be determined by combining
the local models using either soft switching approaches in
which the global model is formed by a weighted sum of
the local models. In this paper, this method is utilized to
conduct CPA. Thus, operating point selection and local
controller design can be integrated in multi-model design
procedure

The remainder of the paper is organized as follows: In
the following section, we introduce the subcool control
strategies that are being assessed in this paper. In section
3, we present the proposed gap metric based multi-modal
CPA technique. In section 4, we discuss the performance
assessment and comparison results . In section 5, we
provide the concluding remarks.

2. SUBCOOL CONTROL CONFIGURATIONS

In this section, we introduce the two different subcool
control configurations that are studied. The initial con-
figuration used two PID loops working in tandem, one to
control the pump speed and the second as a low override
on reservoir subcool. In the second configuration, the PID
controllers were replaced by an MPC for wellbore subcool
control for comparison. We provide the details of both the
configurations in this section.

2.1 Configuration 1: PID configuration.

A schematic of the control configuration is shown in Fig.
1. The strategy attempts to control electric submersible
pump speed with an override on a minimum reservoir
subcool.

In the application, the SAGD well is equipped with a
downhole distributed temperature sensor (DTS) along the
producer wellbore allowing temperatures to be measured
at the multiple locations. Configured logic in the control
system chooses the maximum value of the temperature
measurements at a given instant as it is this maximum that
corresponds to the minimum subcool along the wellbore.
Reservoir pressure is inferred from the residue gas injection
pressure, which in turn, is used to calculate the saturation
temperature of the injected steam. The difference between
the steam saturation temperature and the emulsion tem-
perature gives the reservoir subcool measurement used by
the PID controller.

In this application, the emulsion production rate is mea-
sured at the producer wellhead which is equipped with a
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Fig. 1. Previously existed strategy: PID control for pro-
duction control and an overriding PID control for
reservoir subcool control.

wedge style emulsion flow meter. Note that it is unusual to
have independent emulsion flow measurements from indi-
vidual producer wells in SAGD, as typically the produced
gas fraction limits their accuracy. In this application, the
gas/oil ratio is low, making reliable emulsion flow mea-
surements possible.

In the control configuration shown in Fig. 1, under normal
operating conditions, the pump speed controller is active
producing the oil at a rate predetermined by production
engineering personnel. If the well pumps off and the
subcool constraint becomes active, the subcool controller
overrides the pump speed controller slowing the pump
down until the subcool can recover at which time it returns
control to the pump speed controller

2.2 Configuration 2: MPC

A schematic of the second control configuration is shown
in Fig. 2 with wellbore subcool as the primary controlled
variable. Wellbore pressure at the pump intake (rather
than residue gas pressure) is used for calculating the sat-
uration temperature of the steam which in turn, is used
for subcool calculation. With MPC being a multivariable
controller, reservoir subcool and production flow rate were
incorporated as constraint variables. In this strategy, the
MPC accepts a subcool setpoint and calculates the flow
setpoint for the production rate controller which, in turn
writes the setpoint to the pump speed controller. Should
the production rate rise too high, the constraint is han-
dled automatically by the MPC backing the production
setpoint down.

In the MPC configuration, a feedforward signal is fed to
the production rate controller from a production header
pressure sensor. This feedforward control is used to handle
the production header disturbance that occurs as the well
is switched between the production header and the test
separator.

3. THE PROPOSED MULTI-MODAL CPA

In this section, we introduce the proposed multi-modal
performance assessment metric utilized in this paper. Gap
metric is a measure of distance between two linear models.
It can be utilized to select the number of local models
when approximating the non-linear system with multiple

Fig. 2. Strategy 2: MPC for wellbore subcool.

local linear models [Galán et al. (2003b)]. Typically, in gap
metric-based modelling, the local models are retained or
merged based on the distance between them. If the gap
metric is lower than the desired threshold between any
pair of local models, the two will be merged. When it
comes to prediction, gap metric is also used to determine
the appropriate weights for the local models and provide
weighted prediction. The gap metric-based approach has
been utilized in robust controller design [Wan and Huang
(2000), Wan and Huang (2002)]. In this paper, we propose
and utilize a gap metric-based multi-modal CPA approach
to assess and compare the performance of the two control
configurations introduced earlier.

Gap metric: Let Pi, i=1,2 be p×m rational transfer
function matrices representing two plant models, and Pi =
NiM

−1
i = M̃−1

i Ñi, i = 1, 2 denote the normalized
right/left coprime factorizations of P1 and P2, respectively.
In gap metric-based approach, the distance between the
two models P1 and P2 in frequency domain is defined as
[Tan et al. (2004)]:

κ (P1, P2) (ω) = σ̄
(
Ñ2M1 − M̃2N1

)
(ω) ,

κ (P1, P2) (ω) ≤ 1 ∀ω
(1)

where σ̄ (A) (ω) stands for the maximum singular value of
the matrix A at frequency w. With the distance function
(1), the gap metric is defined as

δ (P1, P2) ={
sup
ω

κ (P1, P2) (ω) if det (M∗
1M2 +N∗

1N2) 6= 0

1 otherwise.

(2)

where det(A) stands for the determinant of the matrix A,
and M∗ (s) = MT (−s) stands for the conjugate transpose
of any M (s). Considering Eq. (1) and (2), the gap metric
is small if the distance between the numerators and the
denominators of the two systems respectively is small [Tan
et al. (2004)]. The defined gap metric has some advantages
over other distance measures metrics such as infinity norm
owing to the following properties:

(1) 0 ≤ δ (P1, P2) ≤ 1 .
(2) The gap metric gives a better view about distance

between two linear systems. For instance, the distance
between two systems P1 = 1/s and P2 = 1/s+ 0.1 in
the sense of infinity norm and gap metric is infinity
and 0.1, respectively.
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(3) It measures the ‘distance’ in the closed-loop sense. In
other words, when the distance between two linear
models is small in the gap metric sense it means
there exists at least one feedback controller that can
stabilize both linear systems [Tan et al. (2004)].

Selection of number of local models in gap metric-based
modelling: In order to select the appropriate number
of local models, at first the nonlinearity measure index is
utilized to decompose the operation region of the nonlinear
process into a set of local linear operating points as shown
in [Guay et al. (1996), Helbig et al. (2000)]. In this paper,
we utilize a method which measures nonlinearity in data
by testing whether a nonlinear ARMAX model produces a
better estimate of data than a linear ARMAX model. The
estimation method can be described as

Y (k) = L (k) + Fn (k) + E (k) (3)

where E (k) is noise sequence, L (k) is the portion of the
data to be modeled by the linear function of the above
model, while Fn (k) is the portion of the data to be mod-
eled by the nonlinear function of the above model. The
nonlinearity measure index is given by the standard devi-
ation of Fn (k). If the nonlinear function shows that a sig-
nificant portion of the data are beyond the data explained
by the linear function (namely Fn (t) has higher impact
than L (t)), a nonlinearity is detected. This algorithm is
available in a built-in MATLAB function called “isnlarx”.
After determining the nonlinearity measure index, a linear
model is constructed around each of the local operating
points. Considering that the characteristics of the process
in some of these points can be similar, the identified local
linear models may turn out to be redundant. Hence, the
gap metric is employed to merge the linear models which
are similar. Different method can be conducted for merg-
ing models, here we keep one of the model and discard
others. The merging threshold depends on the application
and desired total number of local models. The detailed
algorithm for constructing the local models is provided in
Fig. 3.

Fig. 3. Local model construction flowchart

Local model weights: To determine the weights for each
local model, gap metric can be utilized. To this end,

assume there exist N local models (Pi, i = 1, . . ., N) that
describe the nonlinear dynamics of the process (see Figure
4). The weights are updated at discrete time interval (k).

We assign the weights for each local model using following
formula

ωi (k) =
1− δi∑N

i=1 (1− δi)
(4)

where δi is the gap metric between the local model i and
the process model at time instance k. Figure 4 illustrates
the scheme for single-input-single-output nonlinear model.
In figure 4, the associated weight for each local linear
model is assigned using its gap-metric-based distance from
process model at sample k.

Fig. 4. Illustration of the proposed weighting method for
the nominal linearized models P1, . . . , PN .

Multi-modal CPA: Now suppose a nonlinear dynamic
model is linearized around N equilibrium points using a
set of ARMAX models as:

yi (k + d) = Ai
(
z−1
)
y (k) +Bi

(
z−1
)
u (k)

+Ci
(
z−1
)
e (k + d) for i = 1, . . . , N

(5)

where y (k) and u (k) denote the process output and input
at time k, respectively, e (k) denotes process noise with
zero mean and variance σ2

e , and d denotes system delay
time for the local model i. Ai

(
z−1
)

,Bi
(
z−1
)

and Ci
(
z−1
)

are the transfer functions expressed as polynomials in
backshift operator z−1.

Now, the weights determined by the gap metric can be
utilized to combine the local models (5) as the following,

y (k + d) =

∑N
i=1 (1− δi) yi (k + d)∑N

i=1 (1− δi)

=

∑N
i=1 (1− δi)×

(
Ai
(
z−1
)
yi (k) +Bi

(
z−1
)
ui (k)

)∑N
i=1 (1− δi)

+

∑N
i=1 (1− δi)×

(
Ci
(
z−1
)
e (k + d)

)∑N
i=1 (1− δi)

(6)

Further, Ci
(
z−1
)

can be split into unpredictable Fi and
predictable Ri components using the Diophantine identity
[Huang and Shah (1999)] for each operation region i:

Ci
(
z−1
)

= Fi
(
z−1
)

+ z−dRi
(
z−1
)

(7)
4
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where Fi is polynomial in z−1, deg (Fi) = d− 1, i.e.

Fi
(
z−1
)

=

d−1∑
j=0

fijz
−j (8)

where deg stands for degree of the polynomial and fij are
feedback invariant terms.

Eq. (6) can be rewritten as

y (k + d) =∑N
i=1 (1− δi)

(
Ai
(
z−1
)
y (k) +Bi

(
z−1
)
u (k)

)∑N
i=1 (1− δi)

+

∑N
i=1 (1− δi)

(
Ri
(
z−1
)
e (k)

)∑N
i=1 (1− δi)

+

∑N
i=1 (1− δi)Fi

(
z−1
)
e (k + d)∑N

i=1 (1− δi)

(9)

Above equation can be utilized to calculate the benchmark
value. For doing this, the minimum variance cost function
is defined as [Huang and Shah (1999)]

JMV = min
u(k)

E
{
y2 (k + d)

}
(10)

where E denotes the expectation operator.

By substituting Eq. (12) in above equation, and consider-
ing that E {u (k) e (k + d)} = 0 and E {y (k) e (k + d)} =

0, and the term

∑N

i=1
(1−δi)Fi(z−1)e(k+d)∑N

i=1
(1−δi)

is invariant with

respect to u(t), the optimal value of the cost function (10)
is

JMV−Optimal =

E


[∑N

i=1 (1− δi)Fi
(
z−1
)
e (k + d)∑N

i=1 (1− δi)

]2 (11)

and corresponding optimal control law u (k) can be
achieved by solving the following equation.∑R

i=1 (1− δi) (k)
(
Ai
(
z−1
)
y (k) +Bi

(
z−1
)
u (k)

)∑R
i=1 (1− δi) (k)

+

∑R
i=1 (1− δi) (k)

(
Ri
(
z−1
)
e (k)

)∑R
i=1 (1− δi) (k)

= 0

(12)

Using Eq. (4), (8) and (11), the MV benchmark for multi-
modal (5) can be written as follows:

JMV−Optimal (k) =

N∑
i=1

wi (k)

d∑
j=1

f2ijσ
2
e (13)

MV benchmark is theoretically achievable minimum value
for the variance of the process output. Actual variance
in the process variables can be compared against the
theoretically achievable minimum value as the following,

η (k) =
JMV−Optimal (k)

σ2
y

=

 N∑
i=1

wi (k)

d∑
j=1

f2ij

 σ2
e

σ2
y

(14)

where η is the MV index which is obtained as the ratio
between the MV benchmark (JMV−Optimal) and the actual

process output variance (σ2
y). The MV index is a scalar

whose range is given by [0, 1]. The index values close
to 0 indicate poor performance, and values close to 1
mean good control in comparison with minimum variance
control.

4. RESULTS

In this section, performances of the PID and MPC con-
trollers implemented on SAGD process are assessed and
compared by the proposed multi-modal performance as-
sessment method.

PID controller configuration was replaced by the MPC
configuration on the 11th of March 2017. In this study,
we make use of data from the 11th of January 2017 to
the 10th of March 2017 for assessing the performance of
configuration 1 and data from the 11th of March to the
15th of April 2017 for assessing the performance of the
MPC based configuration. Two adjacent time periods were
chosen for the comparison to ensure that the effect of
potential long-term process changes would not affect the
performance metrics. Over the evaluation period process
changes were considered negligible. From both periods,
data were sampled at every 30 seconds archived in data
historian. Fig. 5 shows the trends of the key variables
under control of PID (classic control strategy) and MPC
(advanced control strategy), respectively. For proprietary
reasons, the values of the process variables are masked by
removing the y-axis ticks of the plots. However, similar y-
axis scales (minimum and maximum limits) are retained
for the plots that compare trends between existing and
new control configurations.

Feb Mar Apr

2017   

Emulsion production rate

Wellbore subcool

Reservoir subcool

PID - Reservoir subcool control MPC - Wellbore subcool control

Fig. 5. Trends of emulsion flow rate, reservoir subcool and
wellbore subcool from the selected data for analysis.

To set up comparison between the performances of MPC
and PID controllers, the proposed multi-modal MV bench-
mark is applied on SAGD data by following the steps intro-
duced in Algorithm 1. Figure 6 shows the MV benchmark
for each local linear model. Now, for each time interval
(1000 samples in this case), the multi-modal MV index
can be calculated using Eq. (13). The weights (wi (k)) are
determined by calculating gap metric between the linear
local models and the model obtained by operation data
at samples k, . . ., k+ 1000. As the nonlinear SAGD model
is not known, the routine operating data of the process
is utilized to construct the ARMAX models with input,
output and noise polynomial order of all 3. Considering
the frequent change of set-point, sufficient excitation is
expected. The selected operating points for constructing
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local models are shown in Fig. 6. The flow rate and subcool
are input and outputs of the local models, respectively.
Figure 7 shows the obtained results for multi-modal MV
benchmark based on the proposed approach. It shows that
the overall MV benchmark varies between 0.05 and 0.2.
Now the equation (14) can be utilized to compare the
performance of the MPC and PID. It is determined that
average performance index for PID and MPC is 0.12 and
0.32, respectively. Based on the proposed performance as-
sessment result, the implemented controller configuration
with MPC has led to the reduction in the overall variability
of the key process variables, emulsion flow and subcool.

Fig. 6. The MV benchmark values of each local linear
models.

Jul 2016 Aug 2016 Sep 2016 Oct 2016 Nov 2016 Dec 2016 Jan 2017 Feb 2017 Mar 2017

Time

0.05

0.1

0.15

0.2

M
V

 b
e
n
c
h
m

a
rk

Fig. 7. The MV multi-modal benchmark Curve for SAGD
system which is function of time.

5. CONCLUSIONS

This paper proposed a method to assess the subcool con-
trol performances implemented on SAGD production well
that has a strong nonlinearity. The performance assess-
ment was conducted primarily based upon the variability
in production flow and subcool measurements. Consid-
ering the nonlinearity in subcool control loop, the gap
metric-based multi-modal control performance assessment
technique is proposed. Using the gap metric, the required
number of local models is determined and the associated
model combination weights are calculated. From the ob-
tained multi-model, control performance benchmark was
calculated for the subcool control. It is concluded that the
MPC configuration has better performance in decreasing
the variability of the key variables of interest.
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