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Abstract: This paper provides a procedure for building a one port impedance quantization
involving annihilation operators only for a class of linear quantum systems having a positive
real impedance transfer function matrix. Based on the positive real properties of these quantum
systems, it is shown that it is possible to use the Brune algorithm in order to find an electrical
circuit that can physically implement these quantum systems. This theory, illustrated for one-
port circuits may be useful for the implementation of superconducting microwave circuits used
in quantum filters found in the field of quantum computing.
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1. INTRODUCTION

Super-conducting circuits are used in many hardware im-
plementations of a quantum computer. In fact, some super-
conducting quantum processors have been already devel-
oped using 3D microwave cavities and coplanar waveguide
circuits. For further information, please refer to Blais et al.
(2004), Paik et al. (2011), Rigetti et al. (2012). These
processors are typically made using Josephson junctions
that are directly connected to cavity resonators. These
resonators are in turn connected to microwave circuits
that are responsible for reading data and the operation
of quantum gates. It is important to mention here that
Josephson junctions are lossless nonlinear elements. They
create a quantum energy spectrum where it is possible
to get two low levels of energy that could be used to
construct a qubit. On the other hand, super-conducting
quantum processors are microwave systems with many
resonant modes. Therefore, it is essential to build models
of these systems with the aim of increasing the quality
factor of the qubit as well the cavity modes. Some previous
attempts have failed to provide accurate models of multi-
mode super-conducting qubit systems and that is due
mainly to the absence of accurate estimation of the loss
rates Bourassa et al. (2011).

In this paper, the modeling of a system involving a one
port and a Josephson junction is illustrated. In that case,
the microwave circuit is modelled by its impedance Z(s) as
illustrated in Figure 1, which also shows a voltage source
as well as a shunting resistor.
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Fig. 1. The quantum circuit Impedance.

2. STATE-SPACE FORMALISM FOR A TYPE OF
ANNIHILATION OPERATOR LINEAR QUANTUM

SYSTEM

An important type of quantum system can be described
by using the time evolution of creation and annihilation
operators in the Heisenberg picture for harmonic oscilla-
tors that are coupled to optical fields; e.g., see Wiseman
and Milburn (2010), Walls and Milburn (2008) and Gar-
diner and Zoller (2000). A specific type of these quan-
tum systems involves quantum Wiener processes (e.g.; see
James et al. (2008)). In that case, the question arises
as to whether the quantum system in question can be
represented by a quantum harmonic oscillator. This is
related to the physical realizability conditions that are
developed in James et al. (2008). Moreover, in Maalouf
and Petersen (2009), Maalouf and Petersen (2011b) and
Maalouf and Petersen (2011c), the lossless bounded real
property of annihilation-operator quantum systems has
been connected to physical realizability. The type of an-
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nihilation operator quantum systems considered in this
paper can be described by using quantum probability
theory Bouten et al. (2007) as in Maalouf and Petersen
(2011b) and Maalouf and Petersen (2011a). In that case,
the quantum differential equations (QSDEs) describing the
systems under consideration are of the form

da(t) = Fa(t)dt+Gdw(t); a(0) = a0

dy(t) =Ha(t)dt+ Jdw(t) (1)

where J ∈ Cny×nw , H ∈ Cny×n, F ∈ Cn×n, G ∈ Cn×nw .
Also, (ny, nw, n are positive integers).

In addition, the vector of annihilation operators a(t) is

given by a(t) = [a1(t) · · · an(t)]
T

. In that case, w represents
the input fields and has the following partition:

dw(t) = βw(t)dt+ dw̃(t).

Here, βw(t) and w(t) are a self-adjoint adapted vector
process and the quantum noise signal respectively (Please
refer to Bouten et al. (2007), K.R.Parthasarathy (1992)
and Hudson and Parthasarathy (1984)). The Ito table of
the quantum noise w̃(t) is

dw̃(t)dw̃†(t) = Fw̃dt (2)

(see Belavkin (1992) and K.R.Parthasarathy (1992))
where Fw̃ is a Hermitian positive definite matrix. In that
case, the notation † refers to the adjoint transpose vector
of operators. Also, the quantum noise components satisfy
the following commutation relations:

[dw̃(t), dw̃∗(t)] = dw̃(t)dw̃†(t)− (dw̃∗(t)dw̃T (t))T = Twdt
(3)

Here, Tw is a Hermitian complex matrix. The signals
involving noises are operators on a Fock space (e.g; see
Belavkin (1992) and K.R.Parthasarathy (1992)). The pro-
cess βw(t) represents the variables of fields interacting with
the system (1). Hence, βw(0) should be an operator on a
Hilbert space an operator that is different from that of a0

and the noises. The assumption is made that βw(t) and
a(t) commute together for any t ≥ 0. In addition, being
an adapted field, βw(t) and dw̃(t) commutes together for
all t ≥ 0. The following assumption is made on the system:
(1), nw = ny.

Equation (1) is an annihilation-operator quantum differ-
ential equation where the integration is considered to be
quantum Ito integration with respect to dw(t). Note that
a(t) is adapted, and the commutator of dw̃(t) with a(t)
is zero. If βw(t) represents the currents and y(t) represent
the output voltages of a quantum network in question then
nw = ny and the resulting impedance transfer function
matrix is

Za(s) = J +H(sI − F )−1G. (4)

It is important to mention here that complex realizations
are considered such that the matrices J,H,G, F are all
complex.

3. MINIMAL REALIZATIONS FOR THE
IMPEDANCE

In classical control theory, the set of matricesD1, C1, B1, A1

is considered to be a minimal realization for Z1r (s) if
[A1, C1] is completely observable and [A1, B1] is com-
pletely controllable. More explicitly, the pair [A1, B1] is
said to be completely controllable, if there exists a control
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Fig. 2. State Space extraction in the Brune Algorithm.

signal βw1
such that if at time t0, the system is at state

x1(t0), then the system can be led to reach the state of
zero (x1(t1) = 0) at time t1. The pair [A1, C1] is said to
be completely observable over the interval [t0, t1], if for a
given input and ouput functions βw1

and y1(t) respectively,
then it is possible to determine x1(t0) uniquely. For further
information, the reader is referred to Anderson and Vong-
panitlerd (2006) where the properties of minimal realiza-
tions and state-space realizations are discussed explicitly.

4. THE STATE SPACE REPRESENTATION OF
BRUNE’S ALGORITHM-ONE PORT CASE

In this section, (F,G,H, J) is assumed to be a minimal
realization of the lossless positive real impedance transfer
function Za(s) for the case of a one-port network. It is
important to mention here that J is a scalar in this case.
As indicated in Figure 2, to execute Brune’s algorithm
in state space, we have to start by extracting the series
resistance R1.

Using Za(s) = J + H(sI − F )−1G, it is possible to
determine the real part of the impedance as follows:

Re[Za(jω)] =
1

2
(Za(jω) + Za(−jω));

= J +
1

2
H(jωI − F )−1G

+
1

2
H(−jωI − F )−1G;

= J −HF (ω2I +A2)−1G (5)

By using the equivalence between the annihilation opera-
tor quantum system (1) and its corresponding real quan-
tum system as given by system (4) on page 787 in Maalouf
and Petersen (2011a) along with the conditions (8) satis-
fied (see page 787 in Maalouf and Petersen (2011a)), it
is possible to get Z1r

(s) = D1 + C1(sI − A1)−1B1. Also,
by using the equivalence between real quantum systems of
the form (4) on page 787 in Maalouf and Petersen (2011a)
and the corresponding stochastic systems established in
James et al. (2008), then Z1r

(s) would correspond to the
impedance of a stochastic system. On the other hand, by
using Brune’s algorithm, with Z(s) = D + C(sI −A)−1B
representing the impedance at the terminals of the network
NT1 , then the extracted resistance R1 is given by

R1 = min
ω
Re[Z1(jω)] (6)
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where for some frequency ω0

Re[Z1(jω0)] = R1. (7)

Let the network NT2
in Figure 2 be described by the state-

space equations

ẋ2 = A2x2 +B2u2

y2 = C2x2 +D2u2;

so that the realization A2, B2, C2, D2 corresponds to the
impedance Z2r (s) = D2 + C2(sI −A2)−1B2 at the termi-
nals of the network NT2 (D2 is a scalar). Thus, the network
NT1 has the following state-space equations:

[
ẋ2

ẋC1

ẋL1

]
=

 A2 0 −B2

n1

√
L1

0 0 1
n1

√
L1C1

C2

n1

√
L1
− 1
n1

√
L1C1

− D2

n2
1L1

[ x2

xC1

xL1

]
+


B2

n1
1− 1

n1√
C1
D2

n2
1

√
L1

u1;

y1 =
[
C2

n1

1− 1
n1√
C1
− D2

n2
1L1

] [ x2

xC1

xL1

]
+
D2

n2
1

u1;

where xC1
=
√
C1vC1

and xL1
=
√
L1iL1

. Consequently,
the state-space equations of the network NT1

are

ẋ = Ax+Bu;

y = Cx+Du; (8)

x =

 xT2
xC1

xL1

 ; (9)

A =

 A2 0 −B2

n1

√
L1

0 0 1
n1

√
L1C1

C2

n1

√
L1
− 1
n1

√
L1C1

− D2

n2
1L1

 ; (10)

B =


B2

n1
1− 1

n1√
C1
D2

n2
1

√
L1

 ; (11)

C =
[
C2

n1

1− 1
n1√
C1
− D2

n2
1L1

]
; (12)

D =
D2

n2
1

. (13)

Then A,B,C,D corresponds to the impedance Z(s) = D+
C(sI−A)−1B at the network terminals NT1 (D is a scalar)
which is connected to Z1r (s) according to the following
equation

Z1r
(s) = Z(s)−R1. (14)

It is shown in Anderson and Moylan (1975) that if Z(s) (a
positive-real impedance function) has A,B,C,D as a min-
imal realization with the condition Z(jω0) + Z(−jω0) =
0 for some ω0 > 0 then a transformation T1 exists
which would yield an equivalent state-space realization

A1, B1, C1, D1 for the impedance Z1r
(s) in the form given

in (8-13) with

A= T1A1T
−1
1 ;

B = T1B1;

C =C1T
−1
1 ;

D=D1.

4.1 Lemma 1 (one-port case)

The following lemma provides a procedure that can be
used to construct the transformation matrix T1.

Lemma 1. Let A1, B1, C1, D1 be a minimal realization
of Z1r (s) (positive-real impedance) satisfying Z1r (jω0) +
Z1r (−jω0) = 0 for some frequency ω0 (A1 does not
have jω0 as an eigenvalue). It is possible then to obtain
a transformation matrix T1 such that A = T1A1T

−1
1 ,

B = T1B1, C = C1T
−1
1 and D = D1 a re of the form

given in (8-13).

The matrix T1 could be constructed as follows: 1) Find
a nonsingular matrix T1a

with (ω2
0I + A2

1)−1B1 and
−A1(ω2

0I + A2
1)−1B1 being the last two columns of T−1

1 .
2) Set Ab = T1a

A1T
−1
1a

, Bb = T1a
B1 and Cb = C1T

−1
1a

and
compute [

Cb(ω
2
0I +A2

b)
−1

Cb(ω
2
0I +A2

b)
−1Ab

]
= [ R12 R22]

where R22 is a 2× 2 matrix

T1b =

[
I 0

R−1
22 R12 I

]
.

2) Set Ac = T1b
AbT

−1
1b

; Bc = T1b
Bb and C = CbT

−1
1b

. Then[
Cc(ω

2
0I +A2

c)
−1

Cc(ω
2
0I +A2

c)
−1Ac

]
=

[
0 · · · 0 λ2 0
0 · · · 0 0 ψ2

]
for non-zero λ, ψ. Define

T1c
=

[
I 0 0
0 λ 0
0 0 ψ

]
.

Then T1 = T1c
T1b

T1a
. By constructing T1 according to

the previous lemma and using the equivalence between the
system (1) and the system (4) on page 787 in Maalouf and
Petersen (2011a), it is possible to associate the one-port
electric circuit in Figure 2 to the annihilation operator
linear quantum system given by (1).

5. QUANTIZATION OF THE BRUNE CIRCUIT-ONE
PORT MODEL

The circuit obtained by using the Brune algorithm de-
scribed previously is referred to as ‘the state-space Brune
circuit’. Figure 3 shows a Brune circuit with M stages.
In that case, the inductors shunting ideal transformers in
Figure 3 are used to replace the inductors at each stage
of the Brune circuit in Figure 1 which is justified by the
equivalence shown in Figure 4.

Previous circuit-quantization analysis methods did not use
ideal transformers Burkard et al. (2004); Burkard (2005);
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Fig. 3. Brune circuit.

 

Fig. 4. The equivalent inductive circuit resulting from the
Brune algorithm.

 

Fig. 5. Modified Brune circuit.

 

Fig. 6. The inductor-ideal transformer for a turns ratio
equal to one.

Devoret (1997), treats them via a new technique which is
introduced eliminating matrices involving turns ratios as
their entries.

The augmented Brune circuit is shown in Figure 5. RM+1

is replaced with a capacitor CM+1 through the substitu-

tion CM+1

iωRM+1
.

The lossless part of the Brune circuit is illustrated in
Figure 5. As shown in Figure 6, this circuit is one of
the lossless Foster forms in Foster (1924) for the special
case of a unity turns ratio. A capacitance CJ shunting
the Josephson junction is also added in order to ensure
a non-singular capacitance matrix (case of no degenerate
stages).

Next, the loop analysis in Burkard (2005) is extended to
ideal transformers. Kirchhoff’s laws are given by Equations
(4-5) in Burkard (2005)

FIch =−Itr;
FTVtr = Vch; (15)

where the assumption of having no external fluxes in the
circuit loops is made. Here, F is being a matrix with entries
being 0, 1 or −1 (see Burkard (2005)). After the effective
Kirchhoff analysis done below, F will be replaced by the

effective matrix Feff with real-valued entries. Itr and Ich
are the tree and chord branch current vectors respectively
arranged as follows:

Itr = (IJ , IL, IZ , I
tr
T );

Ich = Ich(IC , I
ch
T ).

Here the labels J, L, Z,C, T correspond to Josephson junc-
tion, inductor, resistor, capacitor and ideal transformer
branches, respectively. T represennts the current vectors
for ideal transformer branches in the tree and chords
respectively. We also partition the loop matrix F according
to the partitioning of current vectorsFJC FJT

FLC FLT
FZC FZT
FTC FTT

 .
We will eliminate ideal transformer branches from Kirch-
hoff laws in equation (15) to obtain loop matrices Feff and
(FT )eff such that we have a new set of effective Kirchhoff
relations

FeffIcheff
=−Itreff

; (16)

(FT )effVtreff
= Vcheff

where

Itreff
= (IJ , IL, IZ);

Icheff
= IC

and

Feff =

[
FeffJC

FeffLC

FeffZC

]
, (17)

(FT )eff =

 (FTJC)eff

(FTLC)eff

(FTZC)eff

 .
We note here that the entries of the matrix F eff are real
numbers, being functions of the ideal transformer turn
ratios as we will see below.

In this section, we will derive only the effective Kirchhoff
current law in Equation (16) by computing Feff .

Now, we claim that Feff in Equation (17) is given by

FJCeff
= [( 1 1 · · · 1 1)] (18)

FLCeff
=


1 (1− n1) · · · (1− n1) (1− n1)

. . .
. . .

...
...

1 (1− nM−1) (1− nM−1)

0 1 (1− nM )

 ;

(19)

FZCeff
=


1 1 · · · 1 1

1 · · · 1 1
. . .

...
...

0 1 1

 (20)
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where FJCeff is a row vector of length (M + 1), FLCeff
and FZCeff are M × (M + 1) matrices. Note that

I
(tr)
T = −FTCIC (21)

with

FTC =


0 1 1 · · · 1

0 1 · · · 1
. . .

. . .
...

0 0 1

 (22)

where FTC is a M×(M+1) matrix. We note that FTC does
not involve any turns ratios. Using the ideal transformer

relations I
(ch)
T = −NI(tr)

T where N is the diagonal matrix
of turns ratios n1 0

. . .
0 nM

 (23)

and Equation (21) we get

I
(ch)
T = NFTCIC . (24)

The inductor currents are given by

IL = −FLCIC − FLT IchT (25)

where

FLC =


1 1 · · · 1 1

1 · · · 1 1
. . .

...
...

0 1 1

 (26)

and FLT = −I. Using equations (24) and (25) we get

IL = −(FLC −NFTC)IC (27)

which gives the loop matrix FLCeff
,

FLCeff
= FLC −NFTC

=


1 (1− n1) · · · (1− n1) (1− n1)

. . .
. . . · · · · · ·
1 (1− nM−1) (1− nM−1)

0 1 (1− nM )

 .
We note that FLCeff

is no longer a binary matrix as we
have turns ratios appearing in its entries. FJCeff

is simply
given by

FJCeff
= FJC

= [1 1 · · · 1 1] .

Since the current through the Josephson junction is a
function only of the chord capacitor currents

IJ = −FJCIC . (28)

Note that FJCeff
does not depend on the turns ratios.

Similarly the currents through the resistors Rj for 1 ≤
j ≤M depend only on the chord capacitor currents,

IZ = −FZCIC . (29)

Hence,

FZCeff
= FZC

=


1 1 · · · 1 1

1 · · · 1 1
. . .

...
...

0 1 1

 .

Now one can write an equation of motion for the one-port
Brune circuit in Figure 3 in the form of Equation (29) in
Burkard (2005).

(C + CZ) ∗ Φ̈ = −−∂U
∂Φ

(30)

However, the matrices derived above have to replace the
original matrices when computing the quantities in (30)
such as C and CZ , as it is shown next.

C0 is computed for the Brune circuit in Figure 3 using
Equation (22) of Burkard (2005) with the matrix FCeff

C0 =

[
CJ 0
0 0

]
+ FeffC C(FCeff

)T (31)

where C is the diagonal matrix of capacitances

C =

C1 0
. . .

0 CM+1

 (32)

and

FCeff
=

[
FJCeff

FLCeff

]
. (33)

Lt in Equation (15) of Burkard (2005) is a diagonal matrix
of inductances

Lt =

L1 0
. . .

0 LM

 (34)

. with

G =

[
0

1(M×M)

]
(35)

since there are no chord inductors. It follows using Equa-
tion (31) of Burkard (2005) that

M0 = GL−1
t Gt

=

[
0 0
0 L−1

t

]
.

A transformation matrix T is determined in order to make
the Langrangian description (i.e., both C0 and M0) of the
system band-diagonal:

T =


1
−1

(1−n1)
−1

(1−n1)

1
(1−n2)

1
(1−n2)

0
.
.
.

.
.
.

0 (−1)M

(1−nM )
(−1)M

(1−nM )

 .

Applying T to C0 and M0 we get

C = T
tC0T


CJ + n2

1C
′
1 n1C

′
1

n1C
′
1 C

′
1 + n2

2C
′
2

.
.
. 0

. .
.

. .
.

0 C
′
M−1 + n2

MC
′
M nMC

′
M

nMC
′
M C

′
M + CM+1

 ;
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M0 = T
tM0T



1

L
′
1

1

L
′
1

1

L
′
1

1

L
′
1

+ 1

L
′
2

1

L
′
2

0
1

L
′
2

1

L
′
2

+ 1

L
′
3

. .
.

.
.
.

.
.
.

0 1

L
′
M−1

+ 1

L
′
M

1

L
′
M

1

L
′
M

1

L
′
M


where C

′

j = Cj/(1−nj)2, L
′

j = Lj/(1−nj)2. A Lagrangian
L0 (and equivalently a Hamiltonian HS) is given by

L0 =
1

2
Φ̇TCΦ̇− U(Φ),HS =

1

2
QTC−1Q+ U(Φ). (36)

Here, Φ is the vector representing the transformed coordi-
nates of length (M + 1) and Φ1 = (Φ0

2π )ϕJ . It is important
to mention here that the transformation T in Equation
(36) introduces a relationship between Φ and Φ′Lj

across

the inductors L′js for 1 ≤ j ≤ M in the Brune circuit in
Figure 4. By this means, it follows that the flux ΦLj

is a
superposition of two consecutive coordinates Φj and Φj+1

given by the relation ΦL = TΦ which gives

ΦLj
=

(−1)j

(1− nj)
(Φj + Φj+1) (37)

for 1 ≤ j ≤ M . ΦL is the vector representing the fluxes
flowing in the inductors of the Brune circuit in Figure 3
such that

ΦL = (ΦJ ΦL1
· · ·ΦLM )T (38)

with ΦJ = (Φ0

2π )ϕJ being the flux across the Josephson
junction.

6. CONCLUSION

In this paper, a one port impedance quantization theory
for a class of annihilation operator linear quantum systems
with positive real impedance properties has been devel-
oped using the Brune algorithm. This theory, illustrated
for one-port circuits may be useful for the implementation
of superconducting microwave circuits related to quantum
filters found in the field of quantum computing.
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