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Abstract: Adaptive control methods have received a lot of interest to control uncertain systems
with parametric uncertainties. In particular, composite adaptation law that incorporates a
memory storing the past trajectory data is promising, because it has an exponential convergent
rate for both the tracking error and the parameter estimation under a mild condition of
excitation. In this study, this research direction is extended to cope with uncertain parameters
that change over time, which is difficult to solve with traditional memory-based methods. The
problem is formulated into a Markov decision process, and a reinforcement learning algorithm
is adopted to solve the optimal decision making problem. The proposed formulation preserves
the stability of the original composite adaptive system, and the reinforcement learning agent
can learn the optimal composite strategy.
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1. INTRODUCTION

Adaptation of a controller to regulate the systems un-
der uncertainties in the mathematical models has been
the main principle of direct adaptive control schemes.
Model reference adaptive control (MRAC), one of the
most popular methods, can ensure the Lyapunov stability
for a certain class of systems which track a pre-designed
reference model. This is why MRAC schemes have been
widely used in the safety-critical systems such as robotics
and aerospace applications.

However, there is one disadvantage in implementing the
MRAC schemes for physical systems. Even if the Lyapunov
stability analysis guarantees the convergence of the target
states, the responses in transient stages may be either
too rapid for the physical controller to generate such
control inputs, or undesirably very slow. This trade-off
is determined by the adaptation gain in update law of
the control parameters, which corresponds to the learning
rate in the context of online learning. Several studies have
been conducted to alleviate this problem by combining
uncertainty estimators. Slotine and Li (1991) suggested
a composite MRAC which adds a parameter estimation
error to the update equation, in a way that it does not
compromise stability. They expected that more accurate
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estimates of the uncertain parameters would enhance the
transient responses, which has been supported by many
case studies, such as Lavretsky (2009), Nakanishi et al.
(2005), and Patre et al. (2010).

Given a dataset, the accuracy of estimation depends on
the quality of the dataset, which can be assessed by its
spectral characteristics. In the context of the composite
MRAC, however, data is revealed at each time following a
certain trajectory in a high-dimensional space. Thus, it is
inevitable to introduce a new tool to measure the quality
of the incoming data, which is called the persistent exci-
tation condition (Anderson (1977), and Boyd and Sastry
(1986)). If this condition is met, the estimation of un-
certain parameters becomes more accurate, which implies
that the composite MRAC provides better performance.
However, the persistent excitation sometimes requires a
perturbation in the input command to the system, which is
undesirable for some real applications such as a level-flight.
Chowdhary et al. (2014) resolved this issue by considering
that the data observed in the past also contains useful
information if the uncertain parameters remain constant.
The concurrent-learning adaptive control they introduced
reuses a set of data stored in a memory, and updates this
memory concurrently with observations in real-time. Cho
et al. (2018), Pan and Yu (2016), and Pan and Yu (2018)
suggested additional continuous-time systems that can
replace the discrete-time memory to analyze the behavior
more apparently.
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The common concept of these approaches is to find the
best combination of the data previously observed to max-
imize a given performance index. This concept is very
sound to improve data efficiency in dynamic systems op-
erating online, but there exist two limitations. First, the
optimization relies only on the observed data. Indeed,
the optimization results affect subsequent observations,
because they are included in the parameter update equa-
tion. Second, the optimization is sensitive to time-varying
parameters. It is hard to capture the true parameters
through this kind of data processing, when the parameters
are varying over time.

To solve the above-mentioned problems, in this study,
a novel memory-based composite MRAC method is pro-
posed, which is assisted by reinforcement learning (RL)
techniques. Because the memory consists of the past
data experienced by the system, it is essentially a non-
Markovian process if the RL agent chooses action based on
it. Thus, state is redefined to formulate the whole system
into the Markov decision process (MDP). The RL agent
determines the importance of each past data stored in the
memory, and this decision is reflected in the adaptation
law. The importance of each data is assessed as expected
total reward, which includes tracking errors and control ef-
forts as well as the traditional memory quality assessment
such as the minimum eigenvalue. Thanks to the original
structure of the composite MRAC, the uncertain proba-
bilistic decisions of the RL agent can be readily applied
to the adaptation law without compromising stability.
The online implementation of reinforcement learning also
ensures that the direction of parameter update is optimal
in the long term sense.

This paper is organized as follows. Section 2 provides a
brief introduction to a system class considered in this
study, and a basic structure of composite adaptive con-
troller along with the stability analysis. Section 3 demon-
strates a memory-driven composite MRAC scheme which
preserves the stability. Section 4 introduces an MDP for-
mulation of the memory-driven model, and a RL algorithm
to solve the problem, appropriately. The result of numeri-
cal simulation is presented in Section 5. Concluding remark
is given in Section 6.

2. PRELIMINARIES

2.1 Notation

Let R and N denote the set of real numbers and natural
numbers, respectively. Also, let Rd denote the set of all
real vectors in d dimensions. Given a real vector v, let

‖v‖ =
√
vT v denote the Euclidean norm, while given a

real matrix Q, the Frobenius norm ‖Q‖ =
√

tr(QTQ) is
used instead, where tr(·) denotes the trace operator. For
a given square matrix R, let λmin(R) and λmax(R) denote
the minimum and maximum eigenvalue, respectively.

2.2 Problem Formulation

The MRAC designs require a main model and a bounded-
input-bounded-output (BIBO) stable reference model.
Commands are inserted to the reference model, and ap-
propriate feedback controllers are designed so that the

main model follows the reference model. Let us define an
error as the difference between their states, and regard the
error dynamics as our main system to be analyzed. Even
if the error dynamics depends on the states of the main
and reference models, it can be reflected in time-dependent
functions of a non-autonomous system as follows,

ẋ = f(t, x) +B(u+ δ(t, x)), (1)

where x ∈ X is the state, u ∈ U is the control input, the
functions f and δ are piecewise continuous in t and locally
Lipschitz in x on [0,∞) × X , and the constant matrix B
has full column rank. The function f and the matrix B are
assumed to be known, while the function δ represents all
uncertainties in the model. The uncertainty δ considered
in this paper is represented as follows,

δ(t, x) = W ◦(t)Tφ(x), (2)

where φ : X → Rd is the known basis function, and the
function W ◦ denotes the unknown time-varying parame-
ter. The function φ is locally Lipschitz in x, and the norms
‖W ◦‖ and ‖Ẇ ◦(t)‖ are bounded for all t ≥ 0.

Let us further assume that x = 0 is an exponentially stable
equilibrium point of the following system.

ẋ = f(t, x). (3)

This is a typical assumption for the error dynamics in the
literature of MRAC methods. The Lyapunov converse the-
orem (Khalil (2002)) implies that there exists a function
V ◦ such that

V ◦(t, x) ≥ c1‖x‖2, (4)

∂V ◦

∂t
+
∂V ◦

∂x
f(t, x) ≤ −c2‖x‖2, (5)

for all [0,∞)×X , where c1 and c2 are positive scalars.

2.3 Composite MRAC

Let the control input be

u = −WTφ, (6)

whereW is the control parameter updated by the following
adaptation law:

Ẇ = Γφ(x)
∂V ◦

∂x
B − Γ(F (t)W −G(t)), (7)

where the constant matrix Γ is positive definite, and the
matrix-valued functions F and G are piecewise continuous
in t ≥ 0.

Theorem 1. Suppose that the matrix F (t) is positive def-
inite, and the norm ‖F (t)W ◦(t)−G(t)‖ is bounded for
all t ≥ 0. Then, with the control input (6), the solution
(x,W ) to the systems (1) and (7) is uniformly ultimately
bounded.

Proof. Suppose that there exist positive scalars b1 and b2
such that

‖F (t)W ◦(t)−G(t)‖ ≤ b1,
‖Ẇ ◦(t)‖ ≤ b2,

for all t ≥ 0. Let the Lyapunov function candidate be

V = V ◦ +
1

2
tr
(
W̃TΓ−1W̃

)
, (8)

where W̃ := W −W ◦. The time derivative of V is given
by
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V̇ ≤ −c2‖x‖2 − tr
(
W̃T (FW −G)

)
− tr

(
W̃TΓ−1Ẇ ◦

)
≤ −c2‖x‖2 − λmin(F )‖W̃‖ 2

− tr
(
W̃T (FW ◦ −G)

)
− tr

(
W̃TΓ−1Ẇ ◦

)
≤ −c2‖x‖2 − λmin(F )‖W̃‖ 2

+
(
b1 + λmin(Γ)

−1
b2

)
‖W̃‖ .

The rest of the proof is similar to that in Chowdhary et al.
(2014).

3. MEMORY-DRIVEN COMPOSITE MRAC

The overall stability of the composite MRAC system can
directly be guaranteed by Theorem 1, where the conditions
for F and G can be satisfied by various methods (Chowd-
hary et al. (2014) and Cho et al. (2018)). This section
provides a simple approach to configure the functions
F and G based on a memory that stores the observed
data of filtered signals. An update law for the memory is
then proposed. Along with the overall MRAC system, the
update law can be expressed as an MDP, as discussed in
the next section, which implies that any RL algorithms
enable optimal construction of the memory.

3.1 Stability Analysis

To satisfy the condition of Theorem 1 uniformly in time,
consider the following filtered system (Cho et al. (2018)).

ϕ̇ = −1

τ
(ϕ− φ), (9)

ż =
1

τ
(B†x− z) +B†f(t, x) + u, (10)

y =
1

τ
(B†x− z), (11)

where B† := (BTB)−1BT , and the positive scalar τ is a

time constant. Let ε = y −W ◦Tϕ, then,

ε̇ = −1

τ
ε− Ẇ ◦Tϕ. (12)

Since x and ‖Ẇ ◦‖ are bounded, φ, ϕ and ε are also
bounded, which implies the following linearly parameter-
ized, time-varying relation.

y(t) = W ◦T (t)ϕ(t) + ε(t). (13)

Proposition 2. Let

F (t) = ε(t)Id +
∑
i

aiϕ(ti)ϕ(ti)
T , (14)

G(t) =
∑
i

aiϕ(ti)y(ti)
T , (15)

for a finite sequence of time {ti}, and of positive bounded
real numbers {ai}, where Id ∈ Rd×d is an identity matrix.
The function ε : [0,∞) → [0, ε0] denotes an auxiliary
function to ensure λmin(F (t)) > 0 for all t ≥ 0. Then, the
conditions of Theorem 1 are satisfied with (14) and (15).

Proof. The matrix F (t) is obviously positive definite.
Now, suppose that there exist positive scalars b3 and b4
such that

‖W ◦(t)‖ ≤ b3, ‖ε(t)‖ ≤ b4, (16)

for all t ≥ 0. Then, from (13), (14), and (15), we have

‖F (t)W ◦(t)−G(t)‖
≤ ε0b3 +

∥∥∥∑
i

aiϕ(ti)ϕ(ti)
T (W ◦(t)−W ◦(ti))

∥∥∥
+
∥∥∥∑

i

aiϕ(ti)ε(ti)
T
∥∥∥

≤ ε0b3 +
∑
i

ai‖ϕ(ti)‖ (2b3‖ϕ(ti)‖ + b4).

Since ϕ is bounded, and the sequences {ti} and {ai} are
finite, the norm ‖F (t)W ◦(t)−G(t)‖ is also bounded for
all t ≥ 0.

Note that Proposition 2 implies the system (1) is uniformly
ultimately bounded with F and G being any finite sums of
past data with finite weights in the form of (14) and (15).
A straight forward choice of the auxiliary function is

ε(t) = ε01{λmin(F◦(t))=0}, (17)

for some ε0 > 0, where F ◦(t) :=
∑
i aiϕ(ti)ϕ(ti)

T , and 1{·}
denotes an indicator function.

Now, what remains is to select appropriate sequence of
weights, ai, based on the sequential observations. The next
section will show that the problem can be formulated as an
MDP with a proper selection of an extended state space.

3.2 Memory Update Law

To implement RL algorithms, discrete-time update laws
are selected for F and G. The RL agent observes state
information at each time t ∈ T := {ti}, where i ∈ N, and
t1 = 0. Hence, it is required that F and G defined in (14)
and (15) are constructed by the observed data.

For n ∈ N, let us define an index set as

In :=
{

1 ≤ i(n)1 < . . . < i
(n)
ν(In) = n

}
, (18)

where ν(In) ≤ N ∈ N denotes the size of the index set,
and a corresponding sequence of non-negative scalars as

a(n) := (a
(n)
1 , . . . , a

(n)
ν(In)). (19)

Given T , let

F (t) = Fn := ε(tn)Id +
∑
i∈In

a
(n)
i ϕ̂(ti)ϕ̂(ti)

T , (20)

G(t) = Gn :=
∑
i∈In

a
(n)
i ϕ̂(ti)ŷ(ti)

T , (21)

for all t ∈ [tn, tn+1), where tn, tn+1 ∈ T , the function
ϕ̂(·) := ϕ(·)/‖ϕ(·)‖, the function ŷ(·) := y(·)/‖ϕ(·)‖, and
the function ε is the auxiliary function. The functions F
and G defined above satisfy the conditions of Proposi-
tion 2. Note that

ε(tn) ≤ λmin(Fn) ≤ λmax(Fn) ≤ ε(tn) +
∑
i∈In

a
(n)
i , (22)

by Weyl’s inequality.

Unlike the previous methods in Pan and Yu (2018) and
Cho et al. (2018), the algorithm proposed in this study

actively chooses each a
(n)
i at each stage n based on a set

of data Dn, called a memory, denoted by

Dn := {(ϕ̂(ti), ŷ(ti))}i∈In . (23)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9652



Equations (20) and (21) can be rewritten with Dn as

Fn = Fn(a(n),Dn), Gn = Gn(a(n),Dn), (24)

with slight abuses of notation.

To keep the size of Dn finite, a purging algorithm is
developed based on a(n). Let

i
(n)
min := arg min

i∈In
a
(n)
i . (25)

The index set In is updated as follows,

In+1 =

{
In ∪ {n+ 1}, if ν(In) < N,

In \ {i(n)min} ∪ {n+ 1}, else.
(26)

The role of the index i
(n)
min is to pull out the most irrelevant

data in the memory Dn, which is also updated according
to (26). Note that the memory always contains the most
recent observation.

4. RL-ASSISTED COMPOSITE MRAC

This section provides an MDP formulation for the sug-
gested data-driven MRAC. When the problem is properly
formulated into an MDP, it is straightforward to imple-
ment any RL algorithms.

4.1 MDP Formulation

Let us rewrite the system dynamics into a typical but
abstract MRAC form to see that the overall systems can be
represented as an MDP. The main model, reference model,
and command model are given by

x(tn+1) ∼ px(X | x(tn), xr(tn),W (tn)), (27)

xr(tn+1) = fr(xr(tn), c(tn)), (28)

c(tn+1) ∼ pc(c | c(tn)), (29)

where x and xr are the state vectors of the main and
reference models, respectively, and c is the command which
is assumed to have an unknown dynamics. The stochastic
property, represented by the probabilities px and pc, may
come from unobservable states such as W ◦, and from the
internal dynamics of c. The update laws for W and Dn
can be represented as

W (tn+1) = fW (x(tn), xr(tn),W (tn),Dn, a(n)), (30)

Dn+1 ∼ pD(D | x(tn), xr(tn),Dn, a(n)), (31)

where the probability pD may originate in the differences
between the dynamics of x and xr, and of the filtered
values ϕ and y.

From the above observations, if an extended state is
defined by

s(n) := (x(tn), xr(tn), c(tn),W (tn),Dn), (32)

it is obvious that the probability of the next state s(n+1) ∈
S is determined only by the current state s(n) ∈ S and
the current action a(n) ∈ A, which is defined in (19), i.e.,
s(n+1) ∼ p(s | s(n), a(n)). The overall structure of the RL-
assisted composite MRAC scheme is depicted in Fig. 1.

To formulate an MDP for RL, it is necessary to define a
reward, which has a finite value at each stage. Consider
the following reward.

r(s, a) := β1(λmin(F ))− β2(‖x‖)− β3(‖u‖), (33)

for (s, a) ∈ S × A, where u is the control input defined
in (6), β1, β2, β3 : [0,∞) → [0,∞) are strictly increasing

MRAC System 
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Fig. 1. The block diagram of the RL-assisted composite
MRAC. The blue rectangle denotes most recently
observed data appended to the memory, where the
red-dotted rectangle denotes pulled out data.

functions, and ‖·‖ denotes any norm. Since F , x, and u
are bounded, the reward at each stage is also finite. MDP
is now well defined by the tuple (S,A, p, r).

4.2 RL Algorithm

The MDP formulation proposed in Section 4.1 requires
a model-free RL algorithm that runs in real-time. Run-
ning in real-time necessitates off-policy algorithms to
reuse past experience. Deep deterministic policy gradient
(DDPG) is the commonly used algorithm for such settings
with continuous state and action spaces (Lillicrap et al.
(2016)). The algorithm provides for sample efficiency, but
is easily unstable and highly sensitive to hyperparameters.
Haarnoja et al. (2018) proposed an efficient but stable
model-free, off-policy RL algorithm, called soft-actor-critic
(SAC). In this framework, the actor tries to maximize
an expected reward while maximizing entropy. As SAC
has shown promising results in complex domains, such as
robotics, the algorithm is implemented for the proposed
RL-assisted composite MRAC framework.

5. NUMERICAL EXAMPLE

Numerical simulation is conducted to demonstrate the
performance of the proposed method compared to the
existing CMRAC methods. The model used in the simula-
tion is a virtual-control-augmented model of wing rock for
slender delta wing. The uncertain parameters are 1,000-
times larger than the original parameters from Elzebda
et al. (1989), and bounded continuous functions of time
are added to change the parameters over time. The model
is augmented to perform a tracking control for a given
reference model, and a corresponding feedback controller
is implemented according to the design guide in Cho et al.
(2018). For the convenience, only the tracking error model
and the reference model are shown here as
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ė =

[
0 1 0

−15.8 −5.6 −17.3
1 0 0

]
e+

[
0
1
0

] (
u+W ◦(t)Tφ(t, e)

)
,

(34)

ẋr =

[
0 1 0

−15.8 −5.6 −17.3
1 0 0

]
xr −

[
0
0
1

]
c(t), (35)

where the function c is piecewise continuous on [0,∞). The
time-varying parameter is defined by

W ◦(t) =


−18.59521
15.162375
−62.45153

9.54708
21.45291

+


30
30
30
30
30

 tanh

(
t

60

)
, (36)

and the basis function is given as

φ(t, e) =
[
x1, x2, |x1|x2, |x2|x2, x31

]T
, (37)

where x := e + xr(t). The function c denotes a command
signal for x1 to be tracked. The initial states are all set to
be zero except for x(0) = [0.3, 0, 0]T . The time constant
for the filtered systems (9), (10), and (11) is chosen to be
0.001. The memory size is chosen as N = 100, and the
observation occurs in every 0.01 second.

The hyperparameters for SAC is given in Table 1. The
notations are the same as Haarnoja et al. (2018). The
value network, the soft-Q network, and the policy network
have three linear hidden layers with ReLU activation
functions. The reward function is chosen as (33), where
β1 = 105, β2 = 100, and β3 = 0.1.

The results of the proposed method, referred to as RL-
CMRAC, are compared to the standard MRAC, and the
composite MRAC proposed in Cho et al. (2018), referred
to as FE-CMRAC. The full state and control histories of
each method are shown in Fig. 2. The reference model
tracking error seems to be small enough in the sense of
average, while there exist high-frequency responses for the
standard MRAC and FE-CMRAC. Particularly notewor-
thy, the high-frequency oscillation gradually disappears
in the standard MRAC, while it is growing in the FE-
CMRAC. This phenomena is mainly due to the time-
varying feature of the uncertain parameters. The FE-
CMRAC still seems to determine that the past data are
more important, where the parameters are quite different
from the current.

Figure 3 supports this interpretation. The memory of the
FE-CMRAC is no longer updated after about 34 seconds.
In contrast, the RL-CMRAC actively updates its memory.
In spite of the fluctuation, the minimum eigenvalue of F
tends to increase gradually, and after 90 seconds the RL-
CMRAC outperforms the FE-CMRAC.

Finally, the parameter estimation errors are depicted in
Fig. 4, with the real parameters. It can be seen that the
estimation error goes to zero for the RL-CMRAC, while
the FE-CMRAC does not.

Table 1. Hyperparamters for SAC.

Hyperparameter Value Hyperparameter Value

γ 0.99 λV , λQ, λπ 10−4

τ 0.01 Batch size 128
Buffer size 104 Hidden layer size 32
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Fig. 2. State and control input history.
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6. CONCLUSION

A new RL-assisted composite MRAC scheme was pro-
posed to overcome the essential limitations of the existing
memory-based methods. For this purpose, an MDP using
a novel state representation was formulated considering
the memory update structure. The probabilistic RL-based
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Fig. 4. Parameter estimation error (‖W̃‖ ) history. Gray
lines are the real parameters.

controller was carefully selected and implemented, which
preserves the original stability of the composite MRAC
methods. Numerical simulation result confirmed the con-
vergence of both tracking error and parameter estimation
error even if the parameter changes over time.
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