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Abstract: We propose a novel method for control of dynamical systems that ensures the
belonging of an output signal to the given set at any time. The method is based on a special
change of coordinates such that the initial problem with given restrictions on an output variable
can be performed as the problem of the input-to-state stability analysis of a new extended system
without restrictions. This method is used for control of linear plants.
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1. INTRODUCTION

The paper Miller and Davison (1991) proposes the adap-
tive control method which ensures belonging of output
signal to given sets. These sets may be different for tran-
sient and steady state modes. The sets are performed by
a sequence of rectangles. The height of each rectangle cor-
responds to the desired maximum deviation of the output
variable from the equilibrium position. The length of the
rectangle corresponds to the desired time when the output
variable belongs to the corresponding rectangle. However,
the rectangular areas in Miller and Davison (1991) are
rather rough and the algorithm is applicable only for plants
with scalar input and output signals.

Differently from Miller and Davison (1991), in the paper
Bechlioulis and Rovithakis (2008) a control method with
the guarantee of belonging the output signal to a given set
for plants with vector input and vector output is proposed.
However, the implementation of this method requires
knowledge of the sign and knowledge of the set of initial
conditions. Moreover, obtained upper and lower bounds
for transients are rather rough because these bounds are
determined by the same function with different signs.
Additionally, the upper and lower bounds asymptotically
converge to some constants.

In the present paper, we propose a new control method
with providing an output signal to a given set. Differently
from Bechlioulis and Rovithakis (2008), the given set can
be described by functions that independent on the sign of
plant initial conditions. Only knowledge of the set of initial
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values is required. Also, unlike Miller and Davison (1991);
Bechlioulis and Rovithakis (2008), the configuration of
the given set can be described by arbitrary continuously
differentiable functions for which asymptotic convergence
is not required. As a result, the obtained method signif-
icantly expands the class of tasks compared with Miller
and Davison (1991); Bechlioulis and Rovithakis (2008).

The paper is organized as follows. In Section 2 the con-
trol problem is formulated. Section 3 describes the main
result, where a special change of coordinate is proposed.
As a result, the initial problem with restrictions can be
performed as the problem of the input-to-state stability
analysis of a new extended dynamical system without re-
strictions. Also in Section 3 examples of coordinate change
are given. Sections 4 and 5 propose a state feedback control
algorithms for linear plants with known parameters and
unknown external bounded disturbances. Also, in Sections
4-?? the simulations illustrate confirmation of theoretical
results and show the effectiveness of the proposed method
in the presence of parametric uncertainty and external
disturbances.

Notations. Throughout the paper the superscript T stands
for matrix transposition; Rn denotes the n dimensional
Euclidean space with vector norm | · |; Rn×m is the set
of all n × m real matrices; I is the identity matrix of
corresponding order; A∗ is the adjugate of the matrix A.

2. PROBLEM FORMULATION

Consider a dynamical system in the form

ẋ = F (x, u, t),
y = h(x),

(1)

where t ≥ 0, x ∈ Rn is the state vector, u ∈ Rm is
the control signal, y = col{y1, ..., yv} is the output signal.
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The vector function F is defined for all x, u, t and it is
a piecewise continuous and bounded function in t. The
function h(x) is continuously differentiable w.r.t. x. Plant
(1) is controllable and observable for all x ∈ Rn.

Our objective is to design a control law that ensures the
input-to-state stability (ISS) of the closed-loop system and
the signal y(t) belongs to the following set

Y =
{
y ∈ Rv : g

i
(t) < yi(t) < gi(t), i = 1, ..., v

}
(2)

for all t ≥ 0. Here g
i
(t) and gi(t) are bounded functions

with their first time derivatives. These functions are chosen
by the designer.

Differently from Bechlioulis and Rovithakis (2008), goal
(2) is independed on the sign of plant initial conditions.
Also, unlike Miller and Davison (1991); Bechlioulis and
Rovithakis (2008), the set Y in (2) can be described by
arbitrary continuously differentiable functions for which
asymptotic convergence is not required.

3. CONDITIONS OF CONTROL OF DYNAMICAL
SYSTEMS WITH GIVEN RESTRICTIONS ON

OUTPUT SIGNAL

Let us consider a change of the output variable y(t) in the
form

y(t) = Φ(ε(t), t), (3)

where ε(t) ∈ Rv is the continuously differentiable vector
function w.r.t. t, the function Φ(ε, t) = col{Φ1(ε, t), ...,
Φv(ε, t)} satisfies the following conditions:

(a) g
i
(t) < Φi(ε, t) < gi(t), i = 1, ..., v for all t ≥ 0 and

ε ∈ Rv;
(b) there exists the inverse function ε = Φ−1(y, t) for all

y ∈ Y and t ≥ 0;
(c) the function Φ(ε, t) is continuously differentiable in ε

and t as well as det
(
∂Φ(ε,t)
∂ε

)
6= 0 for all t ≥ 0 and

ε ∈ Rv;
(d) the function ∂Φ(ε,t)

∂t is bounded on t ≥ 0 for all ε ∈ Rv.

Consider several examples of the function Φ(ε, t).

Example 1. In Example 1 introduce the function S(ε) in

the form S(ε) =
reε+r
eε+1 , where 0 < r < r. Then the inverse

function ε = ln
rgy
y−rg is valid for rg(t) < y(t) < rg(t) and

g(t) > 0 or for rg(t) < y(t) < rg(t) and g(t) < 0.

Example 2. Let Φ(ε, t) =
g(t)eε+g(t)

eε+1 , where Φ(ε, t) ∈ R, ε ∈
R, the functions g(t), g(t), ġ(t) and ġ(t) are bounded for
all t and g(t) < g(t). Taking into account (3), the inverse

function ε = ln
g−y
y−g is performed for g(t) < y(t) < g(t) for

all t

Now we define the dynamics of the variable ε(t) for the
ISS analysis of the closed-loop system. Take the derivative

of (3) w.r.t. t and rewrite result as ẏ = ∂Φ(ε,t)
∂ε ε̇+ ∂Φ(ε,t)

∂t .

Since det
(
∂Φ(ε,t)
∂ε

)
6= 0 (see condition (c)), rewrite the

dynamics of ε(t) in the form

ε̇ =

(
∂Φ(ε, t)

∂ε

)−1(
ẏ − ∂Φ(ε, t)

∂t

)
. (4)

Theorem 1. Let conditions (a)-(d) hold for (3). If there
exists the control law u such that the solutions of (1) and
(4) are bounded, then y(t) ∈ Yα ⊂ Y. If the solutions of
(4) are unbounded, then y(t) ∈ Yβ ⊆ Y.

Proof 1. Let the control law u be chosen such that the
solutions of (4) are bounded. Then |ε(t)| < N for all t,
where N > 0. According to (3), y ∈ Yα =

{
y ∈ Rv :

M i(t) ≤ yi(t) ≤ M i(t), i = 1, ..., v
}

for all t, where

M i(t) = inf
|ε|≤N

{Φi(ε, t)} and M i(t) = sup
|ε|≤N

{Φi(ε, t)}.

Since (3) is a bijective function, M i(t) < gi(t) and M i(t) >
g
i
(t) for all t.

If the control law does not provide the boundedness of the
solution of (4), then y ∈ Yβ =

{
y ∈ Rv : Si(t) < yi(t) <

Si(t), i = 1, ..., v
}

, where Si(t) = inf
ε∈Rv
{Φi(ε, t)} and

Si(t) = sup
ε∈Rv

{Φi(ε, t)} for all t. Since (3) is a bijective

function, Si(t) ≤ gi(t) and Si(t) ≥ gi(t) for all t . Theorem
1 is proved.

In the next sections we will demonstrate the proposed
method for some plants.

4. STATE FEEDBACK CONTROL

Let the plant be described by the following linear differen-
tial equation

ẋ = Ax+Bu+Df,
y = Lx.

(5)

The signals x ∈ Rn, u ∈ R, and y ∈ R are measured,
f ∈ Rl is the unknown bounded disturbance, the matrices
A ∈ Rn×n, B ∈ Rn and L ∈ R1×n are known, the matrix
D is unknown. The pair (A,B) is controllable and the pair
(L,A) is observable.

We formulate a result that contains the ”simplest” control
law in the sense of the ”convenience” stability analysis
of the closed-loop system.

Theorem 2. Let conditions (a)-(d) hold for transformation

(3), ∂Φ(ε,t)
∂ε > 0 for all ε and t, and there exists the vector

T ∈ Rn such that the matrix (I − (LB)−1BL)A − TL is
Hurwitz. Given α > 0 and K > 0 there exists β > 0 such
that the linear matrix inequality (LMI)[

α−K 0.5
0.5 −β

]
≤ 0 (6)

holds. Then the control law

u = −(LB)−1 [LAx+Kε] (7)

ensures goal (2).

Proof 2. Taking into account (3) and (5), rewrite expres-
sion (4) in the form

ε̇ =

(
∂Φ(ε, t)

∂ε

)−1

(LAx+ LBu+ ϕ) , (8)

where ϕ = LDf − ∂Φ(ε,t)
∂t is the bounded function w.r.t.

ε and t. Substituting the control law (7) into the first
equation of (5) and (8), we get
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ẋ = (A−B(LB)−1LA− TL)x (9)

−KB(LB)−1ε+Df + TΦ(ε, t), (10)

ε̇ =

(
∂Φ(ε, t)

∂ε

)−1

[−Kε+ ϕ] . (11)

Analyze equation (11) on the ISS. To this end, choose
Lyapunov function of the form V = 0.5ε2. Substi-

tuting (11) into the condition V̇ + 2αV
(
∂Φ(ε,t)
∂ε

)−1

−

βϕ2
(
∂Φ(ε,t)
∂ε

)−1

≤ 0, where α > 0 and β > 0, we get

−(K − α)ε2 + εϕ − βϕ2 ≤ 0. If LMI (6) holds, then
the last inequality is satisfied and system (11) is stable.
Consequently, the signal ε(t) is bounded. If the matrix
A−B(LB)−1LA−TL is Hurwitz, then the boundedness of
the signal x(t) follows from the boundedness of the signals
ε(t), Φ(ε, t) and f(t). Therefore, the control law u(t) given
by (7) is bounded. Taking into account Theorem 1, goal
(3) is satisfied. Theorem 2 is proved.

Example 5. Let in (5) parameters are given in the forms

A =

[
0 1
1 2

]
, B =

[
0
1

]
, D =

[
1
1

]
, L = [1 2],

x(0) = [2 1]T, f(t) = 0.1 + sin(3t) + sat

(
d(t)

0.3

)
,

(12)

where sat(·) is the saturation function, the signal d(t)
is simulated in Matlab Simulink by using the ”Band-
Limited White Noise” block with a noise power of 0.1 and
a sampling time of 0.1. It is required to ensure that the
output signal y(t) belongs to the set rg(t) < y(t) < rg(t),
where r = 0.8 and r = 1, and the function g(t) will be
given below.

The matrix A−B(LB)−1LA−TL is Hurwitz, for example,
for all T = [T1 T2]T, where T1 > 0 and T2 > 0. Choose
K = 1 in (7). Define the function Φ(ε, t) as in Example 2,
where g is given by

g(t) = (g0 − g∞)e−kt + g∞. (13)

Here g0 = y(0) + 0.01, g∞ = 0.1 and k = 0.5. Fig. 1 shows
the transients in y(t), u(t) and f(t). The oscillations of
the control signal in Fig. 1,b are caused by the presence of
the disturbance f . Moreover, it follows from Fig. 1,b that
after third second the magnitude of the control signal is
comparable with the magnitude of the disturbance. Fig. 2
presents the simulations under f = 0. Thus, the plant can
be stabilized in a given set by a not large value of the
control signal.
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Fig. 1. The transients in y(t) (a), u(t) f(t) (b) for g(t)
given by (13).
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Fig. 2. The transients in y(t) (a) u(t) (b) for g(t) given
by (14) for f = 0.

Fig. 3 shows the simulations for y(t) and u(t) for the set
0.8g(t) < y(t) < g(t), where the function g(t) is given by

g(t) = g0 sin(kt) + g0 + g∞. (14)
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Fig. 3. The transients in y(t) (a) u(t) (b) for g(t) given
by (14).

5. OUTPUT FEEDBACK CONTROL

Consider a plant model in the form

ẋ = Ax+Bu+Df,
y = Lx.

(15)

Here the state vector x ∈ Rn is unmeasured, u ∈ Rm
and y ∈ Rv are measured signals, the disturbance f ∈ Rl
is bounded signal. The matrices A ∈ Rn×n, B ∈ Rn×m
and L ∈ Rv×n are known and the matrix D ∈ Rn×l
is unknown. The pair (A,B) is controllable and the pair
(L,A) is observable.

Introduce the control law in the form

u = K1y +K2ε, (16)

where K1 ∈ Rm×v and K2 ∈ Rm×v are chosen by the
designer. In particular, K1 and K2 can be chosen such that
the matrices A + BK1L and LBK2 are Hurwitz. Taking
into account (3) and (16), rewrite (4) and (15) in the forms

ẋ = (A+BK1L+ T1L)x+BK2ε
+Df − T1Φ(ε, t),

ε̇ =

(
∂Φ(ε, t)

∂ε

)−1 [
LBK2ε+ (LA+ LBK1L

+ T2L)x+ LDf

− ∂Φ(ε, t)

∂t
− T2Φ(ε, t)

]
.

(17)

Here T1 ∈ Rn×v and T2 ∈ Rv×v. Introduce the following
notation
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xe = col{x, ε}, fe = col

{
f,

∂Φ(ε, t)

∂t
, Φ(ε, t)

}
,

A21(ε, t) =

(
∂Φ(ε, t)

∂ε

)−1

(LA+ LBK1L+ T2L),

A22(ε, t) =

(
∂Φ(ε, t)

∂ε

)−1

LBK2,

Ae(ε, t) =

[
A+BK1L+ T1L BK2

A21 A22

]
,

D21(ε, t) =

(
∂Φ(ε, t)

∂ε

)−1

LD,

D22(ε, t) = −
(
∂Φ(ε, t)

∂ε

)−1

,

D23(ε, t) = −
(
∂Φ(ε, t)

∂ε

)−1

T2,

De(ε, t) =

[
D 0 −T1

D21(ε, t) D22(ε, t) D23(ε, t)

]
.

(18)

Considering (18), rewrite (17) as follows

ẋe = Ae(ε, t)xe +De(ε, t)fe. (19)

Theorem 3. Let conditions (a)-(d) hold for transformation

(3), ∂Φ(ε,t)
∂ε > 0 for all ε and t. Given α > 0, K1, K2, T1

and T2 there exist the coefficient β > 0 and the matrix
P = PT > 0 such that the following matrix inequality
holds [

Ψ11(ε, t) PDe(ε, t)
∗ −βI

]
≤ 0. (20)

Here ” ∗ ” defines the symmetric block of the symmetric
matrix, E = [I 0], Ψ11(ε, t) = Ae(ε, t)

TP+PAe(ε, t)+αP .
Then control law (16) ensures goal (2).

Proof 3. For the ISS analysis of (19) consider Lyapunov
function in the form V = xT

e Pxe. Considering (19) and
substituting the expression for V in the inequality

V̇ + αV − βfT
e fe ≤ 0, (21)

we get

xT
e [Ae(ε, t)

TP + PAe(ε, t) + αP ]xe − βfT
e fe

+2xT
e PDe(ε, t)fe ≤ 0.

(22)

Introduce the new vector z = col{xe, fe} and rewrite
inequality (22) as

zT

[
Ψ11(ε, t) PDe(ε, t)
∗ −βI

]
z ≤ 0. (23)

Inequality (23) is satisfied if inequality (20) holds. There-
fore, the function xe(t) is bounded from (21). Thus, the
signals x(t) and ε(t) are bounded. Then control law (16)
is bounded. Tacking into account Theorem 1, goal (3) is
satisfied. Theorem 3 is proved.

Example 6. Let in (15)

A =

[
0 1 0
0 0 1

0.1 −2 −3

]
, B =

[
1 2
1 1
1 2

]
, D =

[
1
1
1

]
,

L =

[
2 1 1
1 2 1

]
, G =

[
0 0 0
0 0 0

0.1 0.1 0.1

]
,

the disturbance f(t) is given by (12).

Choose K1 = 0.01

[
0 0
−1 −1

]
, K2 =

[
1.5 −1.75
−1 1

]
in control

law (16). Additionally, choose T1 =

[
1 2 1
1 2 1

]
T2 =

[
1 2
1 2

]
.

Let Φ(ε, t) = diag{Φ1(ε1, t),Φ2(ε2, t)}, where Φi is given

in example 3: Φi(εi, t) =
gi(t)e

εi+g
i
(t)

eεi+1 , i = 1, 2. Therefore,

Φ(ε, t) > 0 for all ε and t. Then ∂Φi(εi,t)
∂εi

=
eεi (gi(t)−gi(t))

(eεi+1)2 >

0 since gi(t) > g
i
(t). Additionally,

(
∂Φi(εi,t)
∂εi

)−1

→ +∞ at

ε → +∞ and the smallest value of
(
∂Φi(εi,t)
∂εi

)−1 ∣∣∣
ε=0

=

4
gi(t)−gi(t)

> 0.

According to Fridman (2010), if LMI is feasible on the
vertices of a polytope, then inside the polytope LMI

also is feasible. In our case for every fixed ∂Φi(εi,t)
∂εi

the

matrix inequality (20) is linear. However, the polytop is

unbounded, since
(
∂Φi(εi,t)
∂εi

)−1

→ +∞ at ε → +∞. The

simulations with increasing
(
∂Φi(εi,t)
∂εi

)−1

show that the

eigenvalues of the matrix P converge to some positive
values. At the vertices 4

gi(t)−gi(t)
the matrix inequality (20)

holds too.

Choose the parameters of the function Φ(ε, t) in the form

g1(t) = (g0 − g1)e−kt + g1,
g2(t) = (g0 − g2) cos(kt) + g4,
g

1
(t) = (g0 − g2)e−kt + g3,

g
2
(t) = cos(kt) + g5,

(24)

where g0 =
√
yT(0)y(0) + 0.01, g1 = 0.1, g2 = 2, g3 =

−0.2, g4 = g0 − 0.1, g5 = 0.8 and k = 0.5. Fig. 4, 5 show
the transients in y1(t) , y2(t) and u(t) = col{u1(t), u2(t)}
for x(0) = col{ 5

3 ,
2
3 ,−1}.
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Fig. 4. The transients in y1(t) and y2(t) for Φ(ε, t) with
(24) and x(0) = col{ 5

3 ,
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3 ,−1}.
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Note that the control law u = K1y + K2ε does not
depend on the parameters of plant (5). The simulations
show the proposed control low is robust under unknown
parameters of (5). Thus, the closed-loop system remains

stable for A =

[
0 1 0
0 0 1
a1 a2 a3

]
and G =

[
0 0 0
0 0 0
gϕ1 gϕ2 gϕ3

]
, where

a1 ∈ [−5; 0.1], a2 ∈ [−5;−2], a3 ∈ [−5;−3], b ∈ [0.5; 10]
gϕ1 ∈ [−3; 3], gϕ2 ∈ [−3; 3] and gϕ3 ∈ [−3; 3].

According to (3) and (a), the initial value y(0) must belong
to the sets g

i
(0) < yi(0) < gi(0), i = 1, 2. If the initial

conditions have significant uncertainty, then the functions
g
i
(t) and gi(t) can be specified with a margin at the initial

time. For example, the functions g
i

and gi can be presented
in the form

g1(t) = (g0 − g1)e−kt + g1 + g6e
−k0t,

g2(t) = (g0 − g2) cos(kt) + g4 + g6e
−k0t,

g
1
(t) = (g0 − g2)e−kt + g3 − g6e

−k0t,

g
2
(t) = cos(kt) + g5 − g6e

−k0t,

(25)

where g6 = 3 and k0 = 2. Fig. 6 illustrates the
plots of the output signals y1(t) and y2(t) with x(0) =
col{ 10

3 ,−
5
3 ,−1}.
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Fig. 6. The transients in y1(t) and y2(t) for Φ(ε, t) with
(25) and x(0) = col{ 10

3 ,−
5
3 ,−1}.

The simulations show that the transients in y can be

close to the boundaries of g(t) and g(t). From ε = ln
g−y
y−g

it follows that the value of |ε(t)| can take large values.
Therefore, the computational load of the controller is
increased. As a result, Matlab work is increased and
sometimes Matlab gives an error in the calculations. To
prevent this problem, it is recommended to select the
parameters of the loop of ε more than the parameters
of the loop of y. Thereby, the transient time in ε(t) is
reduced in comparison with the transient time for y(t).
Moreover, it increases robustness w.r.t. uncertainty of
plant parameters and the large value of the disturbance
f . Let us demonstrate this fact. Rewrite the control law
as u = K1y + γK2ε, γ > 0. Increasing γ, the transients in
y keep away from the boundaries g(t) and g(t) (see Fig. 7).

6. CONCLUSION

The method for control of dynamical systems based on
a special change of coordinates is proposed. According to
this method, the initial control problem with the given
restriction on an output variable leads to the problem
of the input-to-state stability analysis of a new extended
system without restrictions. As a result, a plant output
signal belongs to a given set at any time in the closed-loop
system. The examples of change of coordinates that can
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Fig. 7. The transients in y1(t) and y2(t) for γ = 1, γ = 10
and γ = 100 and x(0) = col{1 1 0}.

be used for design algorithms are presented. Based on the
proposed method, the new control laws for linear plants
are designed.

The results, presented in the paper, were proposed by
I. Furtat. P. Gushchin have participated in writing the
present paper.
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