
Training Neural Networks for Plant
Estimation, Control and Disturbance

Rejection

Henry Kotzé Herman Kamper Hendrik W. Jordaan

Department of Electrical & Electronic Engineering, Stellenbosch
University, South Africa, (e-mail: 19231865@sun.ac.za;

kamperh@sun.ac.za; wjordaan@sun.ac.za).

Abstract: Neural networks are used in control systems to combat difficulties which nonlinear
and linear controllers struggle to compensate for, such as environmental and model uncertainties.
Neural networks have shown promising results as controllers or estimators of these uncertainties.
However, few studies expand on important aspects on using and training a neural network,
such as the dataset, input and output pairs, and the training of the different controllers and
estimators. In this paper, a dataset used for neural controllers and estimators are presented
which contains more complexity than that of the expected test environment. The training of
different neural controllers and estimators are presented: estimators for the forward dynamics
and disturbances, a feedback controller, a feedback linearisation controller and a disturbance
rejection controller. For each neural component, the input and output pairs are presented with
results of them performing in a test environment. From these results it was evident that through
the use of the proposed dataset and training method the neural networks succeeded in fulfilling
its role in the control architectures.

Keywords: Neural and fuzzy adaptive control, Adaptive observer design, Nonlinear adaptive
control

1. INTRODUCTION

Linear controllers are excellent tools when operating on
linear systems. However, these controllers are restricted
to a small region when manipulating nonlinear systems.
Nonlinear systems, even when derived from Newtonian or
Lagrangian mechanics, are usually still far from the reality.
They do not include saturation of motors, state dependent
friction and stochastic processes influencing the system.
The omitted behaviour results in deteriorated performance
from the simulated responses, and requires continuous
tuning of controller parameters in a changing environment.
This calls for control architectures that are as easy to
implement as the well-established linear controllers, but
allows them to be more effective outside their designed
region and adapt to a changing nonlinear environment or
model.

Neural networks have the ability to approximate highly
nonlinear functions and relearn them as they are chang-
ing. Given enough data and modelling capacity, neural
networks will approximate the nonlinear and unmodelled
behaviour of the plant and environment which control
systems are operating within.

Linear controllers can also be augmented with neural
networks to provide the adaptation to operate within a
changing environment and accommodate the nonlinearity
of the environment to increase its effectiveness. The role
of the neural network is to assist the linear controller
observe a more linear plant in a stochastic nonlinear
environment. The augmentation of linear controllers by

neural networks have shown to be successful in acting as
various components in a control architecture.

Neural networks have acted as feedback linearisation con-
trollers to accommodate for errors made by nonlinear
controllers. This was implemented by Jiang et al. (2019)
and Xiang et al. (2016) where the neural network is used
to combat errors made by dynamic inversion controllers
due to model uncertainties. They have also acted as the
controllers to complex systems. Celen and Oniz (2018)
and Al-Mahasneh et al. (2019) used neural networks to
control rotary wing UAVs due to the ability of the neural
networks to accommodate for unmodelled dynamics such
as wind disturbances. The neural network’s ability to es-
timate environmental disturbances and model uncertainty
has shown promising results. Emran and Najjaran (2017)
used a neural network to approximate the uncertainty in a
model of a UAV such as mass and inertia variation, Allison
et al. (2019) used a neural network to estimate the wind
direction through the sensory data of a UAV, and Shi et al.
(2019) used a neural network to estimate the ground effect
when a UAV is flying close to the ground.

However, there are little discussion on the following points:
how to generate the dataset on which these neural net-
works need to be trained on to fulfil its specific role in
a control environment, the input and output pairs to be
used for training, and the difference in training between
the various roles. The main contribution of this work is
to provide guidelines for generating a dataset for neural
networks to act as controllers and observers in a control
environment, showing the difference in training when act-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1690

ing in their respective roles and providing the input and
output pairs to be used during training for the various
roles. The limited, but representative environment where
a pendulum is controlled through an augmented linear
controller was consider to act as the problem space for
these neural networks.

Hwangbo et al. (2017), Koch et al. (2019) and Vankadari
et al. (2018) used reinforcement learning to generate a con-
troller. Within reinforcement learning, a neural network is
trained to determine the correct control signal given the
states of the system, but the paradigm and methodology
are different from the training of classical neural networks
which are presented in this work.

The problem space on which a linear controller will be
operating is described followed by the design of the lin-
ear controller. A short description on neural networks is
provided next, followed by how the dataset is generated.
The last sections provide three neural-components which
is used in a control environment.

2. PROBLEM SPACE

The plant being used throughout this paper is the pendu-
lum system. It is chosen due to the fact that it has non-
linear behaviour similar to that of more complex systems,
while being simple enough to keep the focus on the training
of the neural network. It is common in many general
complex robotics problems, and lays the foundation for
moving towards more complex systems.

The pendulum system is described by

θ̈ + 2ζωnθ̇ + ω2
n sin(θ) = 0, (1)

with θ the angle of the pendulum, ωn the natural frequency
and ζ the viscous damping. These constants are chosen to
have the values of 0.5 and 3 rad/s for ζ and ωn respectively.

The augmentation of a control system with a neural
network begins by designing a linear controller for the
system. The pendulum system in (1) is first linearised at
the stable equilibrium point, where θ is assumed to be
small, with the dynamics of the system described by

θ̈ + 2ζωnθ̇ + ω2
nθ = 0. (2)

Using this linear model, a linear controller can be designed
to control the linear system to a specification.

3. LINEAR CONTROLLER

The linear controller designed for the linear pendulum is
a Proportional-Integral-Derivative (PID) controller, whose
control signal is defined as

u = KP (θref − θ) +KI

∫ t

0

(θref − θ)dt+KD
d

dt
(θref − θ),

(3)
where θref is the desired angular position of the pendu-
lum and θ the angular position of the pendulum at the
measured timestep. The gains are designed for a settling
time of 3 s and a 10% percent overshoot. It results in a
tuned PID controller with gains of KP = 4, KI = 14 and
KD = 0.2.

Operating within small angles, the linear controller will be
capable of controlling the nonlinear model to specification.

However, the further the system moves away from this
region, the greater the effectiveness of the linear controller
deteriorates. The introduction of neural networks in con-
trol systems is to increase this region of effectiveness.

4. TRAINING OF A NEURAL NETWORK

The feedforward neural network consists of a input layer,
a hidden or multiple hidden layers and a output layer as
shown in Fig. 1. Each layer contains units which performs
a computational operation where one of these units can be
seen on the left in Fig. 1 giving an exploded view. Each unit
in a layer is connected to all of the units in the following

layer, where each connection has its own weight, W
(l)
jk , and

each unit has its own bias, b
(l)
jk . W

(l)
jk is the weight between

unit j of layer l and unit k of layer l + 1. b
(l)
j is the bias

connected to unit j in layer l.

These units perform a computational operation taking
multiple inputs and producing a scalar value. The com-
putational operation sums all the incoming connections,
adds the units bias value and then pushes this summation
through a nonlinear activation function, σ:

xj;k+1 = σ(bj +

n∑

1

w
(l)
jkx

(l)
j). (4)

Before the unit can perform its computational operation
the output of each unit in the previous layer is multiplied
by their corresponding connections weight before arriving
at the unit.

The weights and biases of the neural network are the
trainable variables which are updated based on their effect
on the loss function. The loss function used throughout
this paper is the mean absolute error (MSE) with weight
regularisation described by

L =
1

n

n∑

i=0

| θ̂ − θ | +λ
∑

l∈L

∑

j∈J

∑

k∈K

|W (l)
jk |, (5)

where n is the batch size, θ̂ is the predicted output of the
neural network, θ is the ground truth vector, and λ is the
weight regularisation coefficient. The effect of the trainable
variables are calculated according to the gradient of the
loss function with respect to each trainable variable:

∂L

∂W
(l)
jk

=
∂L

∂θ̂
· ∂θ̂

∂W
(l)
jk

. (6)

Based on this gradient, the trainable variables are opti-
mised using stochastic optimisers such as Adam (Kingma

Σ σ

+1

x1

x2

x3

xn

w
0

w
1

w2

w3

w n

σ

(
w0 +

n∑
i=1

wixi

)

...

I1

I2

I3

Input
layer

Hidden
layer

Output
layer

O1

O2

Fig. 1. Feedforward neural network with an exploded view
of an unit (Velic̆ković, 2016).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1691

Table 1. Functions used to represent a control
signal produced by a linear controller.

Function Equation

w1 1(t− τ1)− 1(t− τ1 − τ2)
w2 eτt

w3 m(t− τ)
w4 at2 + bt+ c

and Ba, 2014). These optimisers like Adam are used to
provide better converging rates and lower loss values than
classic stochastic gradient descent.

The neural networks used through this work is a standard
feedforward neural network, with rectified linear (ReLU)
activation functions for all units, except for the last layer
which uses a identity activation function. The optimiser
used is Adam.

5. GENERATING THE DATASET

The training of the various neural networks first occurs on
synthetic data and should resemble the real environment
in which the neural network will be operating. However,
the synthetic data will not contain all the dynamics which
exist within the real environment. The reason to use a
synthetic dataset is to train the neural network to a
good initial condition before training on real world data
since real world data is scarce especially within robotics
systems. A dataset for training neural networks to the
initial condition before training on real world data will
be presented here.

The training data is created by generating a random
control input signal of the form

u(t) =

4∑

j=1

Yjw(t, τj), (7)

where Yj is a random magnitude selected from a uniform
distribution and wj is functions of the form in table 1.

The training data on which the neural network trains
needs be sampled from the same distribution as that on
which it will be tested to ensure good generalisation. The
random control signal thus contains the expected proper-
ties from a signal produced by a linear controller which
are step, ramp, exponential and square functions. Each
of the parameters which describe these input functions
are randomly selected from a uniform distribution over
an appropriate range.

The generated control signal, u(t), shown in Fig. 2 is prop-
agated through the differential equation (1) and produces
a random response, where the states and control input at
each timestep are known as shown in Fig. 3. From this
response, the input and output data can be selected.

The inputs and outputs are min-max normalised to com-
bat issues of gradient vanishing. Furthermore, the training
data are far more energetic and chaotic than that being
produced by a linear controller, resulting in the training
data containing more complexity than the test environ-
ment.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time -[s]

−4

−2

0

2

4

6

T
or

q
u

e
-

[N
m

]

Fig. 2. A random control signal containing properties of a
linear controller described by (7).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time -[s]

−200

−100

0

100

200

300
S

ta
te

s
of

p
en

d
u

lu
m

-
[d

eg
re

es
,

d
eg

re
es

/s
,

d
eg

re
es

/
s2

]

θ̈

θ̇

θ

Fig. 3. Response of pendulum system from the control
signal in Fig. 2.

6. NEURAL OBSERVER

The neural network will be used as its first task: as an esti-
mator to the plant dynamics. The forward dynamics of the
pendulum is represented by the state space representation
of the system described by

ẋ =

[
ẋ1
ẋ2

]
= f(x, u) =

[
x2

−2ζωnx2 − ω2
n sinx1 + u

]
, (8)

where x1 = θ and x2 = θ̇. From (8), the inputs and
outputs of the neural network for the forward dynamics
can be identified as the system states, x, and the control
input, u. The input and output pairs are summarised in
table 2, where t is the timestep and N the time window or
the number of timesteps the neural network sees in the
past. The angular acceleration, θ̈, is removed from the
inputs to eliminate the behaviour of the neural network
simply acting as a buffer: during training, θ̈[t + 1] ≈ θ̈[t],
causes the neural network to predict the correct state
one timestep later and ignores all other inputs. This is
unwanted behaviour, and the neural network would not
aim to learn the dynamics.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1692

Fig. 4 shows the response produced by (1) and a neural
network representing the forward dynamics. The input to
the system is an untrained input signal and it is evident
that the trained neural network is a good approximation
for the forward dynamics.

The neural network was trained on a relatively small
dataset which contained 750k training and 150k validation
samples. Since the training data is min-max normalised,
the neural network is sensitive to any control signal greater
than that on which it was trained. However, the magni-
tude of the control signal is known due to the hardware
constraints of a physical system. Implementing these con-
straints in training will result in the neural network never
seeing a control signal greater than in training.

7. INVERSE DYNAMICS CONTROLLER

Next, the training of a neural network behaving as a feed-
back controller positioned in the critical path is described.

The inverse dynamics of a system is described by the
property

G−1(s)G(s) = 1, (9)

where G(s) is the forward dynamics of the system and
G−1(s) the inverse dynamics. The attractive property of
the inverse dynamics when used as a controller results
in the system being able to follow any reference signal.
However, obtaining the inverse dynamics are difficult due
to many systems being a many-to-one mapping from
inputs to output and results in the existence of many
solution for G−1(s).

A neural network is capable of learning the inverse dynam-
ics and act as a controller to the plant by training on the
correct input and output pairs. The inputs and outputs
are described in table 3 which receives a time window of

Table 2. Input & output pairs for forward
model neural network.

Inputs Outputs

θ̇[t : t−N]

θ[t : t−N] θ̈[t+ 1]
u[t : t−N]

0 1 2 3 4 5 6 7 8 9 10 11 12

Time - [s]

−500

0

500

1000

1500

2000

2500

A
n

gu
la

r
ac

ce
le

ra
ti

on
-

[d
eg

re
es

/
s2

]

Nonlinear model

Neural network

Fig. 4. Predicted response of a neural network representing
the forward dynamics and response generated by (1).
The reference angle was 90 degrees.

the pendulum’s previous states and the desired states at
the next timestep.

The neural network representing the inverse dynamics is
used in the control architecture shown in Fig. 5. The
purpose of the control architecture is to let the nonlinear
plant behave as a linear plant. The control architecture
begins by producing a control signal using the designed
linear controller and propagating this through the linear
model of the pendulum shown in (2). This provides the
desired states for the inverse model to produce the control
signal to set the nonlinear plant at the same states as that
of the linear model.

Fig. 6 shows that the neural network has succeeded in pro-
ducing the correct control signal to let the nonlinear plant
behave as the linear model. Note that the nonlinear plant
behaved linearly beyond the small angle assumption where
the linear controller is effective and thus the augmentation
increased the region of effectiveness.

As mentioned previously, due to min-max normalistion,
the neural network will be sensitive to inputs greater than
that on which it was trained. This is easily controllable by
adding saturation blocks before the neural network inputs
and since the training data contains more complexity,
the neural network will be more robust since the test
environment stays within the learned dynamics.

It can be concluded that training on the generated dataset,
the trained neural neural network has learned the inverse
dynamics and behaved as a controller to allow the nonlin-
ear plant follow the linear model.

8. FEEDBACK LINEARISATION NEURAL
NETWORK

The training of a neural network acting as a feedback
controller with the goal of adding an addition control
signal to linearise the nonlinear plant through online
learning is presented next.

Neural networks acting as a feedback linearisation con-
trollers are added to compensate for model uncertainties
and errors made by nonlinear controllers. The architecture
in Fig. 7 adds the neural network to feedback linearise
the nonlinear plant and results in the linear controller
observing a specified linear plant.

The neural network receives a window of the states of the
chosen linear plant, nonlinear real plant and the linear con-
trol signal. From these inputs the neural network outputs
a control signal which is summed with the linear controller

Linear
Controller

Linearised
Model

NN Inverse
Dynamics

Nonlinear
PlantΣr

ul[t] θd[t+ 1] u[t] θ[t+ 1]

Fig. 5. Control architecture using the inverse model as the
controller represented by a trained neural network.

Table 3. Input & output pairs for inverse model
neural network.

Inputs Outputs

θ̈d[t+ 1]

θ̈[t : t−N] u[t]
θ[t : t−N]

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1693

0 1 2 3 4 5 6 7 8 9

Time - [s]

0

20

40

60

80

100

A
n

gu
la

r
p

os
it

io
n

-
[d

eg
re

es
]

Nonlinear model

Linear model

Fig. 6. Response of nonlinear model using neural controller
trained on proposed dataset.

to accommodate for errors by the linear controller due to
linearisation.

The correct control signal that the neural network should
produce to feedback linearise the nonlinear plant is un-
known given the inputs and thus a dataset with input and
output pairs cannot be generated. This results in online
learning of the neural network where the batch size, n, in
(5) equals 1 and the trainable variables are optimised at
each timestep.

Since the correct control signal being produced by the
neural network is unknown at each timestep, it is only
capable of knowing whether it produced the correct control
signal by comparing the states of the linear and nonlinear
model.

This results in the loss equation being a function of both
the linear and nonlinear states of the plant describe by

L =| θ − θm |, (10)

and not the output of the neural network, unn. The impli-
cation of the loss equation (10) for allowing backpropoga-
tion to occur is a function that relates the control signal
to the states of the nonlinear plant. This is more clearly
seen when the derivative of the loss function with respect
to one of the weights are computed as described by

∂L

∂W
(l)
jk

=
∂L

∂θ
· ∂θ

∂unn
· ∂unn
∂W

(l)
jk

. (11)

Linear
ControllerΣr Σ

Nonlinear
Plant

Linear
Model

Neural
Network

uul

unn ul

θ

θm

Fig. 7. A control architecture of an neural network acting
as a feedback linearisation controller, causing the
linear controller to observe a linear plant.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time - [s]

0

20

40

60

80

A
n

gu
la

r
P

os
it

io
n

-
[d

eg
re

es
]

Linear response

Nonlinear plant

Fig. 8. Response of nonlinear plant being feedback lin-
earised using a neural network.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time - [s]

−5

−4

−3

−2

−1

0

T
or

q
u

e
-

[N
m

]

Fig. 9. Control signal produced by neural network acting
as a feedback linearisation controller.

This is resolved by approximating the forward dynamics
of the plant by a neural network, Θfd and results in a loss
function of

L =| Θfd − θm | . (12)

This enables the gradient with respect to the trainable
variables of the feedback neural network to be determined
and results in

∂L

∂W
(l)
jk

=
∂L

∂Θfd
· ∂Θfd

∂unn
· ∂unn
∂W

(l)
jk

. (13)

It is assumed the forward dynamics of the plant has
been previously learned and the weights and biases of
the forward dynamics neural network are not adjusted
during backpropagation. Approximating the forward dy-
namics by a neural network is owning to the fact that
the mathematical equations derived from Newtonian or
Lagrangian mechanics are usually still far from the reality
and an effective feedback linearisation is dependent on the
accuracy of the forward dynamics. The results presented in
this section used (1) for allowing backpropagation to occur
due to being in the simulated environment and describing
the plant accurately.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1694

Fig. 8 shows how the response of the pendulum system
changes during the various steps. It is visible that the
neural network has succeeded in adding the correct control
signal to the linear controller and resulted in the system
behaving linearly. The control signal being produced by
the neural network is shown in Fig. 9.

The neural network started untrained during the response
shown in Fig. 9 and initialised using Xavier initialisation
(Glorot and Bengio, 2010). Stability during training is not
guaranteed and there were cases when the system became
unstable. Using this architecture on a physical system
will require extensive simulated online training to ensure
stability of the system.

From these results, online learning of a neural network
acting as a feedback linearisation controller is feasible if an
accurate forward model represented by a neural network
is available to allow backpropagation to occur.

9. DISTURBANCE OBSERVER NEURAL NETWORK

The estimation of disturbances effecting a system have
shown promising results and has been used in the feedback
loop to reject its effect (Allison et al., 2019), (Shi et al.,
2019). The training of such a neural network is used in the
architecture shown in Fig. 10 and is used to estimate the
disturbance effecting the pendulum system.

The training data is generated by propagating the ran-
dom control signal of (7), through an undisturbed and
disturbed plant, both being described by (1). The undis-
turbed plant would be estimated by a neural network. The
disturbed plant’s control signal is described by

udp = ul + ud (14)

with ul being the linear control signal and ud representing
the disturbance and is characterised by a random pulse
train. The disturbance generates a different response from
the undisturbed plant and produces the error from which
the neural network needs to identify the disturbances as
shown in Fig. 11.

The neural network receives a time window of the states
of the disturbed plant, the undisturbed plant which is
represented by a neural network and the control signal.
Due to the difference in the response of the disturbed and
undisturbed plant the neural network outputs an effective
control signal that describes the disturbance influencing
the system. The input and output pairs are summarised
in table 4.

Linear
Controller

Disturbance
ud

Σr Σ
Disturbed
Nonlinear

Plant

Nonlinear
Model

Neural
Network

udpul

ûd ul

θd

θ

Fig. 10. The control architecture used for training a neural
network to estimate the disturbance influencing the
system.

Table 4. Input & output pairs for disturbance
observer neural network.

Inputs Outputs

θ̈d[t : t−N]
θd[t : t−N]

θ̈[t : t−N] ûd[t]
θ[t : t−N]
ul[t : t−N]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time - [s]

−60

−40

−20

0

20

40

A
n

gu
la

r
P

os
it

io
n

-
[d

eg
re

es
]

θ
θd

b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−3

−2

−1

0

1

2

3

D
is

tu
rb

an
ce

-
[N

m
]

Fig. 11. Difference in response from a disturbed and
undisturbed plant due to a random pulse train acting
as a disturbance.

0 1 2 3 4 5 6 7

Time - [s]

0.0

0.5

1.0

1.5

2.0

2.5

T
or

q
u

e
-

[N
m

]

ûd
ud

Fig. 12. Neural network identifying time varying distur-
bance.

Fig. 12 shows the neural network identifying a time varying
disturbance influencing the pendulum system. The distur-
bance being identified is unseen due to the neural network
being trained on random pulse train and shows the neural
network generalises well.

The estimation of the disturbance can now be used in
a feedback loop to reduce its effect. Fig. 13 shows the
response when the estimated disturbance is subtracted
from the control signal being received by the disturbed
plant described by

udp = ul + ud − ûd (15)

and it is visible that the effect of the disturbance is
reduced.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1695

0 1 2 3 4 5 6 7

Time - [s]

0

10

20

30

40

50

60

70

A
n

gu
la

r
P

os
it

io
n

-
[d

eg
re

es
]

compensated system

uncompensated system

no disturbance system

Fig. 13. Response of a disturbed -, undisturbed - and a
disturbed plant whose disturbance is compensated by
a neural network.

It can be concluded that using the generated dataset and
superimposing a random pulse train as a disturbance,
allowed the trained neural network to identify time varying
disturbances in a control environment and successfully
reject its effect.

10. CONCLUSION

Neural networks have been introduced in control systems
to bring improvements where classical and nonlinear con-
trol strategies struggle to account for unmodelled envi-
ronmental effects and model uncertainties. The neural
networks have acted as various components in a control
environment and shown promising results, however few
expand on the training of these neural networks.

Thus, a dataset for training neural networks acting as
controllers or estimators were presented. The dataset con-
tained characteristic behaviour of a linear controller, but
were more chaotic and energetic than that being produced
by a linear controller. This results in the training data
containing more complexity than the expected behaviour
of a test environment.

The training of different neural controllers and estima-
tors were presented. This includes feedback controllers,
estimators and disturbance rejection controllers. For each
controller or estimator the input and output pairs were
presented and the difference in training of the different
neural components were highlighted.

From the results, each neural-component, with the use
of the generated dataset and the training method pro-
posed allowed the neural-components to fulfil its role in
the control architectures which are: estimating the plant
dynamics, controlling the nonlinear plant to behave as a
linear model, feedback linearise the nonlinear plant and
estimating and rejecting disturbances.

REFERENCES

Al-Mahasneh, A.J., Anavatti, S.G., Ferdaus, M., and Gar-
ratt, M.A. (2019). Adaptive neural altitude control and
attitude stabilization of a hexacopter with uncertain
dynamics. In 2019 IEEE International Conference on

Industry 4.0, Artificial Intelligence, and Communica-
tions Technology (IAICT), 44–49. IEEE.

Allison, S., Bai, H., and Jayaraman, B. (2019). Wind
estimation using quadcopter motion: a machine learning
approach.

Bari, S., Zehra Hamdani, S.S., Khan, H.U., ur Rehman,
M., and Khan, H. (2019). Artificial neural network based
self-tuned PID controller for flight control of quad-
copter. In 2019 International Conference on Engineer-
ing and Emerging Technologies (ICEET), 1–5. IEEE.

Celen, B. and Oniz, Y. (2018). Trajectory tracking of
a quadcopter using fuzzy logic and neural network
controllers. In 2018 6th International Conference on
Control Engineering & Information Technology (CEIT),
1–6. IEEE.

Emran, B.J. and Najjaran, H. (2017). Adaptive neural
network control of quadrotor system under the presence
of actuator constraints. In 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
2619–2624. IEEE.

Furukawa, S., Kondo, S., Takanishi, A., and Lim, H.o.
(2017). Radial basis function neural network based
PID control for quad-rotor flying robot. In 2017 17th
International Conference on Control, Automation and
Systems (ICCAS), 580–584. IEEE.

Glorot, X. and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural networks.
In Y.W. Teh and M. Titterington (eds.), Proceedings
of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, 249–256. PMLR, Chia La-
guna Resort, Sardinia, Italy.

Hwangbo, J., Sa, I., Siegwart, R., and Hutter, M. (2017).
Control of a quadrotor with reinforcement learning.
IEEE Robotics and Automation Letters, 2(4), 2096–
2103.

Jiang, F., Pourpanah, F., and Hao, Q. (2019). Design,
implementation and evaluation of a neural network
based quadcopter UAV system. IEEE Transactions on
Industrial Electronics, 1–1.

Kingma, D.P. and Ba, J. (2014). Adam: a method for
stochastic optimization.

Koch, W., Mancuso, R., West, R., and Bestavros, A.
(2019). Reinforcementl learning for UAV attitude con-
trol. ACM Transactions on Cyber-Physical Systems,
3(2), 1–21.

Shi, G., Shi, X., O’Connell, M., Yu, R., Azizzadenesheli,
K., Anandkumar, A., Yue, Y., and Chung, S.J. (2019).
Neural Lander: stable drone landing control using
learned dynamics. In 2019 International Conference on
Robotics and Automation (ICRA), 9784–9790. IEEE.

Vankadari, M.B., Das, K., Shinde, C., and Kumar, S.
(2018). A reinforcement learning approach for au-
tonomous control and landing of a quadrotor. In 2018
International Conference on Unmanned Aircraft Sys-
tems (ICUAS), 676–683. IEEE.

Velic̆ković, P. (2016). Multilayer perceptron. Github.
Xiang, T., Jiang, F., Hao, Q., and Cong, W. (2016).

Adaptive flight control for quadrotor UAVs with dy-
namic inversion and neural networks. In 2016 IEEE
International Conference on Multisensor Fusion and In-
tegration for Intelligent Systems (MFI), 174–179. IEEE.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1696

