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Abstract: Economic model predictive control formulations that combine online optimizing control
with offset-free methodologies such as modifier adaptation have been proposed recently. These new
algorithms are able to achieve asymptotic optimal performance despite the presence of plant-model
mismatch. However, there is a major requirement stemming from the modifier-adaptation part, namely,
the necessity to know the static plant gradients at the sought (and therefore still unknown) steady-state
operating point. Hence, for implementation purposes, the algorithms need to be enhanced with plant
gradient estimation techniques. This work proposes to estimate modifiers directly, based on steady-state
perturbations and using Broyden’s approximation. The proposed economic MPC algorithm has been
tested in simulation on the Williams-Otto reactor and provides plant optimality upon convergence.
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1. INTRODUCTION

In the last decade, economic MPC (eMPC) has become one of
the most studied solution method to overcome the hierarchical
separation between economic optimization and control in the
process industries (Rawlings et al., 2012; Ellis and Christofides,
2014). However, as with model predictive control (MPC) and
model-based real-time optimization (RTO), eMPC typically
does not converge to plant optimality in the presence of plant-
model mismatch. In order to deal with this problem, novel
offset-free eMPC (OF-eMPC) algorithms have been proposed
in the literature (Vaccari and Pannocchia, 2016; Pannocchia,
2018; Faulwasser and Pannocchia, 2019), by merging offset-
free tracking MPC (Pannocchia, 2015) with modifier adaptation
(MA) (Marchetti et al., 2009). The purpose of these formula-
tions is to enforce that the steady state reached by the closed-
loop system corresponds to the best equilibrium point for the
plant. These algorithms rely on the demonstrated MA feature
that first-order modifier terms can guarantee meeting the neces-
sary conditions of optimality of the unknown plant (Marchetti
et al., 2009). A particular version of MA that puts modifiers
on the outputs, labeled “output MA” (MAy), is used in this
study (Papasavvas et al., 2019). The major drawback of both
MA and MAy is the requirement of plant gradients at steady-
state conditions. This is not a trivial task, and much work
in the literature has dealt with gradient estimation (see e.g.
Costello et al. (2016); François and Bonvin (2013); Marchetti
et al. (2016) and references therein). A recent implementation
of OF-eMPC with gradient estimation is described in (Vaccari
and Pannocchia, 2018). The authors detail a new method based
on system identification to compute a gradient approximation
to be used in MAy or other offset-free structures. Although
the results are quite promising, one should keep in mind that
system identification requires sufficient system excitation and

also the ability to process noisy measurements. For this reason,
an important contribution of the present work concerns a way
of estimating first-order modifiers directly from measurements
using a Broyden’s update that relies on past operating points
rather than local perturbations.

The paper is organized as follows. The problem definition and
an OF-eMPC algorithm available in the literature are detailed
in Section 2. The proposed gradient estimation technique is
presented in Section 3. The resulting OF-eMPC algorithm is
tested on a simulated example in Section 4. Finally, conclusions
are presented in Section 5.

2. PROBLEM DEFINITION

2.1 Plant and cost specifications

Discrete-time nonlinear dynamic systems are the object of the
current study:

x+p = fp(xp,u)
yp = hp(xp)

(1)

where xp ∈ Rnxp , u ∈ Rnu and yp ∈ Rny are the plant states,
inputs and outputs, respectively, x+p are the successor states.
At each time k ∈ Z, the plant outputs yp are measured and
denoted by yp,k. We assume differentiability of the functions
fp : Rnxp ×Rnu → Rnxp and hp : Rnxp → Rny .

Input and output bounds must be fulfilled at all times:
umin ≤ u≤ umax, ymin ≤ y≤ ymax (2)

where umin,umax,ymin and ymax are the corresponding bounds.

The economically optimal steady state of Plant (1) is defined by
solving the following problem:

(x̄?p, ū
?, ȳ?p) = argmin

x,u,y
`e(y,u) (3a)
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subject to
x = fp(x,u) (3b)
y = hp(x) (3c)

umin ≤ u≤ umax (3d)
ymin ≤ y≤ ymax (3e)

where `e : Rny×Rnu →R is the cost function and (x̄?p, ū
?, ȳ?p) is

the optimal equilibrium point of Plant (1).
Assumption 1. The cost function `e(y,u) is continuously differ-
entiable.

It is important to underline that, even if Problem (3) is assumed
to be feasible and its solution unique, (x̄?p, ū

?, ȳ?p) is unknown
due to plant-model mismatch as discussed next.

2.2 Model and augmented model

In order to design an eMPC algorithm, the following nominal
process model is used:

x+ = f (x,u)
y = h(x) (4)

where x and x+ ∈ Rnx denote the current and successor states.
The functions f : Rnx ×Rnu → Rnx and h : Rnx → Rny , which
are assumed to be differentiable, differ from their plant coun-
terparts fp and hp due to plant model-mismatch.

The general form of a (linearly) augmented model for offset-
free tracking MPC algorithms is (Pannocchia et al., 2015):

x+ = F(x,u,d) = f (x,u)+Bdd
d+ = d
y = H(x,d) = h(x)+Cdd

(5)

where d ∈ Rnd are the so-called disturbances, Bd ∈ Rnx×nd and
Cd ∈Rny×nd are matrices used to model the disturbance effects.
The functions F : Rnx×Rnu×Rnd →Rnx and H : Rnx×Rnd →
Rny are assumed to be continuous. The following assumption
regarding system observability is imposed on the (nx + nd)
augmented states (Pannocchia et al., 2015).
Assumption 2. The augmented system (5) is observable.

It has to be noted that Assumption 2 imply the observability of
the nominal model (4) (Pannocchia et al., 2015, Remark 8).

2.3 State and disturbance estimation

Let x̂∗k−1 and d̂∗k−1 denote the estimates of xk−1 and dk−1 ob-
tained using the output measurements at time k− 1. Further-
more, x̂k, d̂k and ŷk, are the predicted values of xk,dk and yk
obtained at time k using the augmented model (5) and the best
available values of the states, inputs and disturbances at time
k−1, that is:

x̂k = F(x̂∗k−1,uk−1, d̂∗k−1)
d̂k = d̂∗k−1
ŷk = H(x̂k, d̂k)

(6)

Hence, defining the prediction errors at time k as:
εk = yp,k− ŷk (7)

the filtering relations for the augmented states can be written
as:

x̂∗k = x̂k +Kxεk
d̂∗k = d̂k +Kdεk

(8)

where the matrices Kx ∈ Rnx×ny and Kd ∈ Rnd×ny are chosen to
form an asymptotically stable observer, which requires ny = nd
and Kd to be invertible (Pannocchia et al., 2015).

2.4 Computation of modifiers

We will use the concept of output modifiers that is borrowed
from the RTO literature (Marchetti et al., 2009; Papasavvas
et al., 2019). In this study, these modifiers express the differ-
ences between the plant and model outputs at steady state. Let
Λk ∈ Rny×nu be the modifier matrix at time k. This matrix, ini-
tialized as Λ0 = 0, is updated at each decision time as follows:

Λk = (1−σ)Λk−1 +σ (Dugp (ūk−1)−Dug(ūk−1)) (9)
where σ is a scalar first-order filter constant ∈ (0,1], gp :Rnu→
Rny and g : Rnu → Rny are the plant and model steady-state
input-to-output maps, calculated for Plant (1) and Model (4)
or (5), respectively 1 . The operator Du(·) represents the deriva-
tive of the considered function with respect to the variable u,
and ūk−1 the input steady-state targets computed at the previous
iteration and available at iteration k (see next subsection).

2.5 Target calculation with modifiers

A steady-state target calculation is required at time k to compute
the equilibrium triple (xk,uk,yk), considering the current distur-
bance estimate d̂∗k . However, because of plant-model mismatch,
the outputs are corrected using first-order modifier terms, which
gives the following target problem to be solved at each iteration:

(x̄k, ūk, ȳk) = argmin
(x,u,y)

`e(y,u) (10a)

subject to:

x = F(x,u, d̂∗k ) (10b)

y = H(x, d̂∗k )+Λk (u− ūk−1) (10c)
umin ≤ u≤ umax (10d)
ymin ≤ y≤ ymax (10e)

The modifier terms in Eq. (10c) enforce KKT matching be-
tween Problems (3) and (10) (Papasavvas et al., 2019).

2.6 Economic MPC with modifiers

Let x:={χ0,χ1, . . . ,χN} and u:={ν0,ν1, . . . ,νN−1} denote some
generic state and input sequences, respectively. Then, a finite-
horizon optimal control problem (FHOCP), modified as per
Eq. (10c), is solved at each decision time k:

(x?
k ,u

?
k) = argmin

x,u

N−1

∑
i=0

`e(γi,νi) (11a)

subject to
χ0 = x̂∗k (11b)

χi+1 = F(χi,νi, d̂∗k ) (11c)

γi = H(χi, d̂∗k )+Λk(νi− ūk−1) (11d)
umin ≤ νi ≤ umax (11e)
ymin ≤ γi ≤ ymax (11f)

χN = x̄k (11g)
As usual in MPC, assuming that Problem (11) is feasible, only
the first inputs of the optimal sequence u?

k are implemented:
uk = u?

k [1] (12)
Remark 3. The modifier terms in Eq. (11d) serve the same
purpose as those in Eq. (10c) and, for consistency with the
latter, ūk−1 and not ūk are used as steady-state input targets.
1 Since a linear disturbance model is used, derivatives of Model (4) or (5) with
respect to u are identical.
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3. GRADIENT ESTIMATION

The OF-eMPC algorithm in Section 2 requires the knowledge
of the steady-state plant gradients Dugp(·). Since these gradi-
ents cannot be measured directly, they must be inferred from
typically noisy and transient output measurements. Various
methods have been proposed in the literature (François and
Bonvin, 2013; Costello et al., 2016; de Avila Ferreira et al.,
2017). These approaches can be classified as either steady-
state perturbation methods that normally use only steady-
state data, or dynamic perturbation methods that use transient
data (Marchetti et al., 2016).

3.1 Basic idea

In this work, we propose a methodology based on steady-
state perturbation methods, that is, we use steady-state data for
gradient estimation. Since, for any input change, one needs to
wait for the plant to reach the new steady-state conditions, these
methods can be particularly slow.

Broyden’s update offers a way of estimating gradients from
current and past measurements (Roberts, 2000; Rodger and
Chachuat, 2011; Marchetti et al., 2016). Although no additional
perturbations are required, the input changes from one iteration
to the next must be sufficiently exciting for the scheme to
work. The technique is a standard secant method in nonlinear
programming for updating estimates of first-order derivatives,
such as Jacobian matrices (Dennis Jr and Schnabel, 1996).

The modifier terms Λk described in Section 2, are updated
at each sampling time using transient data. However, due to
the necessity of the proposed estimation algorithm to oper-
ate with steady-state measurements, the system must arrive at
quasi-stationary conditions between two successive modifier
updates. Hence, the interval between consecutive modifier up-
dates should be at least of the order of the system settling time
τst , which corresponds to have a time-scale separation between
the control and gradient-estimation tasks. That is, modifier up-
date is provided every M sampling times of the eMPC scheme,
where M ∼ τst

τ
is a tuning parameter and τ is the eMPC sam-

pling time. Dedicated input perturbations can be performed to
initialize the proposed scheme with a non-zero Λ0 as a way to
speed up convergence. These perturbations are required in order
to collect (nu +1) quasi-stationary output measurements.

3.2 Broyden’s method for modifier estimation

We propose to update the modifier matrix every M iterations
by computing the differences between the plant and model
gradients. For this, let us define:

δgk:=Dugp,k−Dugk (13a)
∆Uk:=uk−1−uk−M−1 (13b)
δyk:=yp,k−h(x̂k) (13c)
∆Ek:=δyk−δyk−M (13d)

where Dugp,k and Dugk are the estimates available at iteration
k of Dugp(ūk−1) and Dug(ūk−1). One can update the gradient
differences using Broyden’s formula as:

∆gk = ∆gk−M +
∆Ek−∆gk−M∆Uk

∆UT
k ∆Uk

∆UT
k (14)

Finally, the modifier matrix is updated as follows:

Λk =

{
Λk−1 if mod (k− kin,M) 6= 0 (15a)
(1−σ)Λk−1 +σ∆gk if mod (k− kin,M) = 0 (15b)

where kin is the time at which the initialization starts (this is
detailed in the next section). It should be noted that, when
applying Eq. (14), care must be taken to avoid ill-conditioning
when ∆Uk→ 0. Hence, the step given by Eq. (14) is performed
only if ‖∆Uk‖ ≥ ρu, where ρu is a chosen threshold.
Remark 4. One could consider a different approach, in which
the estimates Dugp,k of the plant gradients are obtained via
Broyden’s method, while the exact model gradients Dug(ūk−1)
are used. However, experience has shown that the direct es-
timation of modifiers is often preferred over the estimation
of the individual gradients since the plant and the model are
approximated using the same numerical scheme. A graphical
explanation can be derived similarly to the one in (Marchetti
et al., 2016, Figure 3) made for linear interpolation.
Remark 5. The driving term ∆Ek of the Broyden update (14) is
defined in Eq. (13d) using the errors between the plant outputs
and the nominal model outputs as defined in Eq. (13c) instead of
the prediction errors εk defined in Eq. (7) using the augmented
model. Note that using ∆Ek = εk− εk−M = (yp,k−H(x̂k, d̂k))−
(yp,k−M −H(x̂k−M, d̂k−M)) to update ∆gk−M in Eq. (14) would
not work. The tacit secant equation that is behind the Broyden
update, that is εk− εk−M = ∆gk∆Uk, does not hold true because
d̂k 6= d̂k−M . In fact, whenever the system reaches an equilibrium
(constant inputs and outputs), it follows that the prediction
errors εk in Eq. (7) go to zero due the use of the augmented
Model (5) (Pannocchia et al., 2015). Hence, since steady-state
conditions are supposed to be reached after M iterations, this
would give εk− εk−M ≈ 0 and ∆gk−M would not be updated.

3.3 Algorithm initialization

To increase convergence speed, the scheme needs a good initial
value for Λ, that is, a good initial value for ∆g. A simple
approach for this consists in perturbing each input individually
around the current operating point to get an estimate of the cor-
responding gradient elements. Hence, this approach requires nu
input perturbations to be carried out and, for each perturbation,
we must wait for steady state, that is, for M sampling times.

To implement this initialization, the closed-loop system is
brought to steady state, reached at time kin with the inputs ukin .
Then, for j = 1, · · · ,nu, the following control law is used:

uk = ukin + s je j if ( j−1)M ≤ k− kin < jM (16)
where s j is the amplitude of a step of duration M in the
direction e j, with e j a unit vector in input space. Hence, the term
s je j perturbs the jth component of ukin individually during M
iterations. The jth column of the estimated gradient differences
can be computed as:

∆gkin+Nin, j =
(yp,kin+ jM− yp,kin)− (h(x̂kin+ jM)−h(x̂kin))

s j
(17)

which is used to compute Λkin+Nin in Eq. (9).

3.4 Summary of the algorithm

To detail the new algorithm, a block diagram and an algorithm
are presented in Figure 1 and Algorithm 1, respectively. As can
be seen in Figure 1, the gradient difference estimation is mod-
ified only after Nin +M iterations. According to Algorithm 1,
the modifier matrix is updated every M time steps, but only
when the difference between two successive inputs is not too
close to zero. This is needed to avoid calculating a gradient
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FHOCP (11,12) k→ k−1
uk

Plant
yp,kuk−1

Prediction
module (6)

uk−1

Filtering
module (7,8)

x̂k, d̂k, ŷk

kin ≤ k < kin +Nin

x̂∗k , d̂∗k

Augmented
state

estimator

k ≥ kin + Nin
∧

mod (k− kin,M) = 0

NO

Input excitation (16)
YES

uk

k = kin +Nin

YES

‖∆Uk‖ ≥ ρu

Gradient difference
estimation (14)

NO

YES

NO
Λk = Λk−1

Modifier
update (15b)

∆gk

Gradient difference
Initialization (17)

∆gk

YES

Target
optimization
problem (10)

x̄k, ūk

Λk

NO
Λk = Λk−1

Fig. 1. Block diagram for the eMPC algorithm described in
Sections 2 and 3.

difference based on not enough informative data, that is, avoid
ill-conditioning of Eq. (14). Hence, the value of the parameter
ρu can be seen also as a tuning parameter for the performance
of the gradient estimation method.

4. CASE STUDY: WILLIAMS-OTTO REACTOR

This section presents a case study to validate the proposed
gradient-estimation methodology. The output disturbance model
is used, that is, Bd = 0, Cd = I, and the estimator is a deadbeat
Kalman filter with Kx = 0, Kd = I.

The controllers studied are as follows:

• eMPC0 is the economic MPC that uses only the output
disturbance model.

• eMPC1 is the offset-free economic MPC defined in Sec-
tion 2 with plant gradients assumed known;

• eMPC2 uses the gradient differences approximation de-
scribed in Section 3.2.

Moreover, the filter constant for updating the modifiers in
Eq. (9) is σ = 0.5, while, unless differently specified, the
number of iterations between two consecutive modifier updates
is M = 15.

Process. The Williams-Otto reactor is a well-known pro-
cess control example that is often used as a benchmark for
RTO (Williams and Otto, 1960; Marchetti et al., 2016). It con-

Algorithm 1 Offset-free eMPC algorithm

1: Initialize u0, x̂∗0, d̂∗0 and Λ0; set k = 1.
2: Input: uk−1, x̂∗k−1, d̂∗k−1 and Λk−1.
3: Read yp,k from the plant.
4: Predict successor quantities using (6).
5: Evaluate prediction errors using (7).
6: Evaluate state and disturbance estimates using (8).
7: if kin ≤ k < kin +Nin then
8: Set uk using (16).
9: else

10: if mod (k− kin,M) = 0 and k ≥ kin +Nin then
11: if k = kin +Nin then
12: Initialize the gradient differences using (17).
13: Update the modifier matrix using (15b).
14: else
15: Define ∆Uk and ∆Ek as in (13b) and (13d).
16: if ‖∆Uk‖ ≥ ρu then
17: Evaluate the gradient difference using (14).
18: Update the modifier matrix using (15b).
19: else
20: Do not update the modifier matrix.
21: end if
22: end if
23: else
24: Do not update the modifier matrix.
25: end if
26: Solve (10) to obtain the targets (x̄k, ūk, ȳk).
27: Solve FHOCP (11), set the input uk as in (12).
28: end if
29: Output: uk, x̂∗k , d̂∗k and Λk.
30: Inject the inputs uk into the plant.
31: Update time index k := k+1

sists of a non-isothermal CSTR, in which the following three
reactions take place:

A+B
k1−→ C r1 = k1 (Tr)cAcB

B+C
k2−→ P+E r2 = k2 (Tr)cBcC

C+P
k3−→ G r3 = k3 (Tr)cCcP

(18)

Species A is fed at the constant flowrate QA with molar concen-
tration cA0, while species B is added at the variable flowrate QB
with molar concentration cB0. The desired products are P and
E, while C and G are intermediate and undesired products, re-
spectively. The reactor temperature Tr is assumed manipulated,
thus reflecting an ideal cooling system, while the reactor outlet
flowrate Qr is set equal to the sum of the two inlet flowrates,
that is, Qr = QA+QB. The reactor volume Vr remains constant.
Moreover, only the molar concentration of the two desired
products are assumed to be measured, that is, yp = [cP cE]

T .
The kinetic constants follow an Arrhenius-type law,

ki (Tr) = ki0 exp
(

−Ei

Tr +273.15

)
for i = 1,2,3 (19)

The system dynamics are reported in (Faulwasser and Pannoc-
chia, 2019). The system is characterized by two inputs, that is,
u = [QB Tr]

T .

The process economics is defined by the following running
cost:

`e(·) = QAcA0 pA +QBcB0 pB−QrcP pP−QrcE pE (20)
where pA, pB, pP, and pE are the molar prices of reactants and
products. The plant parameters are given in Table 1.
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Table 1. William-Otto Reactor: Plant Parameters

Parameter Value Unit
k10 9.9594×106 dm3/(mol ·min)
k20 8.66124×109 dm3/(mol ·min)
k30 9.9594×106 dm3/(mol ·min)
E1 6666.7 K
E2 8333.3 K
E3 11111 K
cA0 10 mol/dm3

cB0 10 mol/dm3

Vr 2105 dm3

QA 112.35 dm3/min
pA 7.623 $/kmol
pB 11.434 $/kmol
pP 114.338 $/kmol
pE 5.184 $/kmol

Table 2. Williams-Otto Reactor: Model Parameters

Parameter Value Unit
k∗10 1.3134×108 dm6/

(
mol2 ·min

)
k∗20 2.586×1013 dm6/

(
mol2 ·min

)
E∗1 8077.6 K
E∗2 12438.5 K

Model. The model used for control design comprises only
two reactions:

A+2B
k∗1−→ P+E r∗1 = k∗1(Tr)cAc2

B

A+B+P
k∗2−→ G r∗2 = k∗2 (Tr)cAcBcP

(21)

for which the kinetic parameters are reported in Table 2. With
these parameter values, the plant settling time is of the order of
τst = 25 min.

Let us underline that the model state vector has five compo-
nents, x = [cA cB cP cE cG]

T , and differs from the plant state
vector that has six components, xp = [cA cB cC cP cE cG]

T .
The following input constraints should be met at all times:

180 dm3/min≤ QB ≤ 360 dm3/min (22)
75 °C≤ Tr ≤ 100 °C (23)

Optimization results. The sampling time used for control is
τ = 2 min, which means that the time between two successive
modifier updates is Mτ = 30 min. The performance of con-
trollers eMPC0, eMPC1 and eMPC2 are depicted in Figure 2,
together with the optimal equilibrium, which is unknown to
the controllers. The simulation was performed on a PC with
CPU Intel i5 7200u. The resulting computational cost required
for a single iteration is near 0.15 s, and the time needed for
the update of the modifier matrix is only 1% of that time.
Furthermore, since updating is only required every M iterations,
computational cost is not an issue for this problem.

eMPC0 is reported for comparison and, as expected, does not
converge to the plant optimum. On the contrary, eMPC1 con-
verges to plant optimality and does it very quickly because of
the availability of perfect gradients. Hence, the real interesting
case is eMPC2. Figure 2 has three distinct time zones that
are separated by two vertical grey lines. In the first part, from
the beginning to time kinτ = 30 min, with the modifiers equal
to zero, eMPC2 reaches a steady state that is not the plant
optimum. In the middle part, from kinτ = 30 to (kin +Nin)τ =
90 min, modifier initialization is performed by perturbing the
two inputs individually, one after the other. Then, the modifiers
are updated every Mτ = 30 min, as described in Section 3.2,

0 50 100 150 200 250 300

280

300

320

340

360

In
pu

t
1:

Q
B

(d
m

3 /m
in

)

eMPC0
eMPC1

eMPC2
Optimum

0 50 100 150 200 250 300

78

80

82

84

86

88

90

In
pu

t
2:

T r
(°

C)

eMPC0
eMPC1

eMPC2
Optimum

0 50 100 150 200 250 300
1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

O
ut
pu

t
1:

c E
(k

m
ol

/m
3 )

eMPC0
eMPC1

eMPC2
Optimum

0 50 100 150 200 250 300
Time (min)

0.6

0.7

0.8

0.9

1.0

1.1

O
ut
pu

t
2:

c P
(k

m
ol

/m
3 )

eMPC0
eMPC1

eMPC2
Optimum

Fig. 2. Closed-loop results with eMPC0, eMPC1 and eMPC2:
inputs (top) and outputs (bottom). The two grey vertical
lines delimitate the time interval for modifier initialization.
Optimum denotes optimal values.

which enforces convergence to plant optimality. Compared to
eMPC1, eMPC2 estimates the static gradients but at the cost of
slow convergence. A potential remedy to this slow convergence
is to decrease M.

Figure 3 shows the effect of M on the convergence speed
of eMPC2. M ≥ 10 allows reaching steady-state conditions
between modifier updates, which results in good estimate of
the static gradients. The time needed for convergence is reduced
using a smaller value of M, however at the price of no longer
using steady-state plant measurements. As a result, the gradient
differences estimated via Broyden’s update are inaccurate. This
effect is clearly visible in Figure 3 for M = 3. The best overall
performance seems to be obtained using M = 5.

5. CONCLUSIONS

The two main ingredients of offset-free eMPC are the standard
augmented system structure and the first-order modifiers for the
outputs. This formulation proved to asymptotically converge
to plant optimality despite model uncertainty. A fundamental
requirement of the proposed scheme is the knowledge of plant
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Fig. 3. eMPC2 performance with different values of M.

gradients at steady state. In this work, a modifier estimation
technique based on steady-state perturbations and Broyden’s
gradient approximation has been proposed and used success-
fully.

A representative example with plant-model mismatch has been
selected for validating the proposed OF-eMPC implementation.
Estimating the modifiers directly appears to be very effective if
steady-state measurements are used. However, the methodol-
ogy was found less efficient with respect to convergence time.
For this reason, the time between modifier updates has been
reduced. Results show that, even if the measurements are not
taken at steady state, the closed-loop system is still able to reach
plant optimality, and the convergence time can be significantly
reduced.

Further studies will focus on the influence of various tuning
parameters to possibly enhance the convergence behavior. Fur-
thermore, the influence of measurement noise on the gradient
estimation will be analyzed. Moreover, convergence conditions
of the algorithm and KKT matching upon convergence, are
some of the properties that need to be investigated and proved.
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