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Abstract: Trajectory tracking is an important control problem that has been studied by many
researchers. However, no studies have discussed the trajectory tracking problem for a wheeled
mobile robot via the minimum projection method. This paper proposes a Tracking Control
Lyapunov Function (TCLF) design that uses dynamic extension and the minimum projection
method. The proposed method converges the two-wheeled mobile robot to a time-varying target
state. Moreover, the effectiveness of the proposed method is validated through a computer
simulation.
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1. INTRODUCTION

Various airports are trying to roll out autonomous wheeled
mobile robots such as security, cleaning, shipping, etc in
recent years for reducing staff workload (SITA Inc. (2018)
and SITA Inc. (2019)). Such robots motivate the need to
design a tracking controller that moves the robots into the
desired trajectory; the trajectory tracking is an important
control problem.

Many researchers have proposed various trajectory track-
ing methods (Wang et al. (2015), Park et al. (2010),
Pedro et al. (2007), Rosolia et al. (2017), Li et al. (2001),
Ashrafiuon et al. (2017), Wu et al. (2019), Jin (2018)). For
example, Pedro et al. (2007) proposed a tracking control
Lyapunov function (TCLF) design from an error system
by using backstepping. Li et al. (2001) proposed that tra-
jectory tracking could be applied to passive velocity field
control (PVFC) methods, which move the robot by using
velocity fields. Jin (2018) proposed an iterative learning
control (ILC) algorithm.

Recently, Kuga et al. (2016) proposed a static smooth
control Lyapunov function (CLF) design method that uses
dynamic extension and the minimum projection method.
However, the applications of the proposed method for the
trajectory tracking problem have not been discussed.

In this paper, we propose a control Lyapunov function
design that can be applied to the trajectory tracking
problem of the two-wheeled robot using dynamic extension
and the minimum projection method. Moreover, we show
the effectiveness of the proposed method by computer
simulation.

⋆ This work was supported by JSPS KAKENHI 17H03282,

20H02171, 20H02173.

2. PRELIMINARIES

In this section, we introduce basic definitions of mathemat-
ical terms and fundamental properties used in the paper.

2.1 Nonlinear Control System

In this paper, we consider an input affine nonlinear control
system (Kuga et al. (2016)) defined as follows:

ẋ = f(x) + g(x)u, (1)

where x ∈ R
n is a state and u ∈ R

m is an input. Mappings
f : Rn → R

n and g : Rn → R
n×m are supposed to be

locally Lipschitz continuous with respect to both x and u.

2.2 Differentially Flat System

In this paper, we consider a CLF design problem for a
differentially flat system. In accordance with Fliess et al.
(1994), we introduce a differentially flat system defined as
follows.

Definition 1. Consider (1) and the following dynamic
compensator:

ṗ = a(x, p, v), (2)

where p ∈ R
l and v ∈ R

m denote a state and an
input, respectively. Moreover, we introduce the following
dynamic state feedback:

u = b(x, p, v). (3)

With dynamic compensation (2) and dynamic state feed-
back (3), we consider the following augmented system of
(1) on extended state space R

n+l:
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[

ẋ
ṗ

]

=

[

f(x) + g(x)b(x, p, v)
a(x, p, v)

]

, (4)

where the origin is (x, p) = (0, 0). Moreover, we assume
that there exists the following diffeomorphism Φ : Rn+l →
R

n+l:

φ = Φ(x, p), (5)

such that Φ transforms (4) into the following linear system:

φ̇ = Aφ+Bv, (6)

where the matrix (A,B) is controllable. Then, system (4)
is said to be a differentially flat system.

2.3 Control Lyapunov Function Design

Definition 2. (Control Lyapunov Function). A C1 proper
function V : Rn → R>0 is said to be a control Lyapunov
function (CLF) for (1) such that the following condition
hold (Artstein (1983)).

(A1) V̄ (x) is a proper function: for all L > 0, {x ∈
R

n|V̄ (x) ≤ L} is a compact set.
(A2) V̄ (x) is a positive-definite function: there exists

V̄ (0) = 0 and V̄ (x) > 0 with respect to all x ∈ R\{0}.
(A3) V̄ (x) satisfies the following inequality:

˙̄V = Lf V̄ + LgV̄ · u < 0, ∀x ∈ R
n\{0}. (7)

This implies that Lf V̄ < 0 if LgV̄ = 0 and x 6= 0,
where Lf V̄ and LgV̄ are Lie-derivatives defined as
follows:

Lf V̄ =
∂V̄

∂x
f(x) LgV̄ =

∂V̄

∂x
g(x) (8)

A CLF with respect to (6) can be easily designed by the
following proposition.

Proposition 1. Suppose that there exists a diffeomorphism
φ = Φ(x) that transforms the system (1) into

φ̇ = Aφ(x) +Bv(x), (9)

where matrix A and B are controllable. Then, the function
V̄ (x) : Rn → R, defined by the following function, is a CLF
for (9), as follows:

V (φ) = φTPφ, (10)

where P is a symmetric positive matrix.

2.4 Minimum Projection Method for CLF Design via
Dynamic Extension

Yamazaki et al. (2011) proposed a static CLF design
method via the minimum projection method. A CLF for
augmented nonlinear control system (1) is generated from
a CLF for a linear control system (6), as shown in the
following theorem. In this paper, state space X, X̄ is
defined in the neighborhood of the origin.

Theorem 1. Let a continuous function V̄ : Rn+l ⊃ X̄ → R

be a CLF for (6). Then, a function V : Rn+l ⊃ X → R

defined by the following equation is a CLF for (1):

V (x) = min
p

V̄ (x, p). (11)

2.5 Tracking Control Lyapunov Function

In this paper, we consider a trajectory tracking problem.
A smooth time varying feedback u = k(x, t) is usually con-
sidered. The tracking control Lyapunov function (TCLF),
defined as follows, has been developed to design a smooth
time-varying controller for trajectory tracking .

Definition 3. (Tracking Control Lyapunov Function (Naka-
mura (2016))) Consider system (1) and an admissible
reference state xr(t) : [0,+∞) → R

n; i.e., there exists
ur(t) ∈ R

m such that f(xr(t)) + g(xr(t))ur(t)− ẋr(t) = 0
for all t ∈ R≥0, where ur is a reference input. A TCLF for
system is a C1 differentiable function V (x, t) : Rn×R → R

for stabilization of xr(t) such that the following conditions
hold.

(C1) V (x, t) is a proper function: for any L > 0, {x ∈
R

n|V (x, t) ≤ L} is a compact set.
(C2) V (x, t) is a positive-definite function: there exists

V (xr(t), t) = 0 and V (x, t) > 0 with respect to all
x− xr(t) ∈ R\{0}.

(C3) V (x, t) satisfies the following inequality.

V̇ =
∂V

∂t
+ LfV + LgV · ũ < 0, (12)

∀(x− xr(t)) ∈ R
n\{0}.

This implies that LfV < 0 if LgV = 0 and x 6= xr(t),
where LfV and LgV are Lie-derivatives defined as
follows:

LfV =
∂V

∂x
(f(x)− g(x)ur(t)) LgV =

∂V

∂x
g(x).

(13)

2.6 Sontag type controller (Krstić et al. (1998))

Proposition 2. Let V a TCLF for system (1). Then, the
following input ũ = u − ur ∈ R

m asymptotically tracks
the origin of the system (1):

ũ(x, t) =







−
a+

√

a2 + ‖b‖4

‖b‖2
bT (b 6= 0)

0 (b = 0),

(14)

where a = ∂V/∂t+ LfV and b = LgV .

3. PROBLEM STATEMENT

In this paper, we consider a two-wheeled mobile robot
illustrated in Fig. 1. The robot can be modeled by the
following equation:

[

ẋ1

ẋ2

ẋ3

]

=

[

cosx3 0
sinx3 0
0 1

]

[

u1

u2

]

, (15)

where x = [x1, x2, x3] ∈ R
3 is a state, and u = [u1, u2] ∈

R
2 is an input. Moreover, we consider the reference state

xr(t) ∈ R
3 and the reference input ur(t) ∈ R

2, as follows:

Assumption 1. The reference state xr(t) and the reference
input ur(t) are known and always satisfy the following
equation:

[

ẋ1r(t)
ẋ2r(t)
ẋ3r(t)

]

=

[

cosx3r(t) 0
sinx3r(t) 0

0 1

]

[

u1r(t)
u2r(t)

]

, (16)

where xr(t) is a class C2.
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Fig. 1. Two-wheeled mobile robot system

In this paper, our objective is to design a TCLF using
dynamic extension and the minimum projection method.
Moreover, we design a controller with a TCLF of the robot.
This TCLF makes the robot track to xr(t).

4. TCLF DESIGN VIA DYNAMIC EXTENSION AND
THE MINIMUM PROJECTION METHOD

Kuga et al. (2016) proposed a time invariant CLF design
method for differentially flat systems by the minimum
projection method. However, the method can design only
a time invariant CLF.

In this section, we design a time varying CLF by using
dynamic extension and the minimum projection method.

4.1 Linearization of error system via dynamic extension

We design a tracking error system and transform the error
system to a linear control system by dynamic extension.

We consider the following error system:

ė =

[

ė1
ė2
ė3

]

=

[

u1 cosx3 − ẋ1r(t)
u1 sinx3 − ẋ2r(t)

u2 − ẋ3r(t)

]

. (17)

where e = x−xr(t) is a state error. Then, we consider the
virtual state φ and input v as follows:

φ(x, t, u1) =







φ1

φ2

φ3

φ4






=







x1 − x1r(t)
u1 cosx3 − ẋ1r(t)

x2 − x2r(t)
u1 sinx3 − ẋ2r(t)






(18)

= α(x)u1 + β(x, t),

v =

[

v1
v2

]

=

[

cosx3 −u1 sinx3

sinx3 u1 cosx3

] [

u̇1

u2

]

+

[

−ẍ1r

−ẍ2r

]

(19)

where, φ = [e1, φ̇1, e2, φ̇3]
T and v = [φ̇2, φ̇4]. System (17)

can transform into the following linear control system:

Φ̇ =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






Φ+







0 0
1 0
0 0
0 1






v. (20)

4.2 Dynamic TCLF design

We design a dynamic TCLF from (20).

We consider the following symmetric positive matrix P :

P =

[

A O
O A

]

, (21)

where A and O denote the following matrix:

A =

[

A11 A12

A12 A22

]

, O =

[

0 0
0 0

]

, (22)

where A11,A12 and A22 satisfy the following condition:

A11A22 −A2
12 > 0 A11, A22 > 0. (23)

Thus, we can design the dynamic CLF V̄ (φ) as follows:

V̄ (φ) = φTPφ

=A11φ
2
1 +A22φ

2
2 +A11φ

2
3 +A22φ

2
4

+2A12φ1φ2 + 2A12φ3φ4, (24)

where (24) satisfies the following proposition.

Proposition 3. The function V̄ (φ) satisfying the following
conditions is a TCLF.

A11A22 −A2
12 > 0 A11, A12, A22 > 0. (25)

Proof. Since P is a positive definite symmetric matrix,
A11,A12 and A22 satisfy the following condition:

A11A22 −A2
12 > 0 A11, A22 > 0.

Then, we consider dynamic CLF (24) whether it satisfies
the Definition 2. Firstly, V̄ → ∞ with respect to ||φ|| →
∞; this implies V̄ satisfies condition (A1). Secondly, φ is
a quadratic function; hence V̄ satisfies (A2). Finally, V̄
satisfies (A3) on condition that A12 > 0 because Lf V̄ and
LgV̄ have to satisfy the following equation:

If LgV̄ = 0, then

LgV̄ = [A12φ1 +A22φ2 A12φ3 +A22φ4]

= 0,

Lf V̄ = 2(A11φ1φ2 +A12φ
2
2 +A11φ3φ4 +A12φ

2
4)

=−2

[(

A11A22 −A2
12

A12

)

φ2
2 +

(

A11A22 −A2
12

A12

)

φ2
4

]

< 0.

Therefore, the function V̄ (φ) is a TCLF. �

Moreover, the dynamic TCLF can be designed as follows
from (18):

V̄ (φ) = V̄ (x, t, u1)

=A11 (x1 − x1r(t))
2
+A22 (u1 cosx3 − ẋ1r(t))

2

+A11 (x2 − x2r(t))
2
+A22 (u1 sinx3 − ẋ2r(t))

2

+2A12 (x1 − x1r(t)) (u1 cosx3 − ẋ1r(t))

+2A12 (x2 − x2r(t)) (u1 sinx3 − ẋ2r(t)) . (26)
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4.3 TCLF design via minimum projection method

We apply the minimum projection method to the dynamic
TCLF (26) and design a TCLF for system (15).

Theorem 2. Consider system (15), reference state xr and
reference input ur satisfying (16). Suppose V̄ (φ) is a TCLF
of (20). Then, function V (x, t) defined by the following
equation is a dynamic TCLF for system (15):

V (x, t) =min
u1

V̄ (φ)

=min
u1

V̄ (x, t, u1) (27)

= V̄ (x, t, z(x, t)), (28)

where z(x, t) is an argument such that V̄ (x, t, z(x, t)) =
min V̄ (x, t, u1). Moreover, the following relation holds.

∂V̄

∂u1

= 0, ∀u1 ∈ {z(x, t)|x ∈ R
3, t ∈ R}. (29)

For the proof of Theorem 2, we prepare the following six
lemmas.

Lemma 1. (29) is equivalent to the following equation:

G(x)u1 = H(x, t), (30)

where G(x) = 2α(x)TPα(x) and H(x, t) = −2α(x)T

Pβ(x, t).

Proof. (29) can be calculated from (18) as follows:

∂V̄

∂u1

(x, t, u1) = 2ΦTP
∂Φ̄

∂u1

= 2ΦTPα(x)

= 2αT (x)P (α(x)u1 + β(x, t))

= 2αT (x)Pα(x)u1 + 2α(x)TPβ(x, t).

Then, the following implication holds.

∂V̄

∂u1

(x, t, u1) = 0 ⇐⇒ G(x)u1 = H(x, t). (31)

�

Lemma 2. G(x) is regular.

Proof. G(x) is a quadratic function with respect to α(x).
Moreover, P is symmetric and positive definite. Thus,
G(x) is a regular matrix. �

Lemma 3. z(x, t) for any x ∈ R defined by (29) is deter-
mined uniquely. Moreover, z(x, t) is an argument such that
V̄ (x, t, z(x, t)) = min V̄ (x, t, u1).

Proof. By Lemma 2, G(x) is regular for an arbitrary x.
Thus, (30) can transform the following equation:

z(x, t) = u1 = G−1(x)H(x, t). (32)

Hence, z(x, t) is an extreme value satisfying (29). More-
over, V̄ (x, t, u1) is a proper and bounded below function.
Then, z(x, t) minimizes V̄ (x, t, u1) with respect to u1 and
is determined uniquely. �

Lemma 4. V (x, t) is a smooth function.

Proof. Consider the following equation F using (30):

F (x, t, u1) = G(x)u1 −H(x, t). (33)

The partial derivation of F with respect to u1 can be
calculated as follows:

∂F

∂u1

= G(x) (34)

Note that ∂F/∂u1 is regular by Lemma 2. Therefore,
by the implicit function theorem, there exists a smooth
mapping u1(x, t) such that the following equation holds:

F (x, t, u1(x, t)) = 0 (35)

Therefore, V (x, t) is a smooth function. �

Lemma 5. The following inequality holds with respect to
V̇ :

V̇ (x, t) ≤ ˙̄V (x, t, u1). (36)

Proof. The following equation holds by definition of the
function V :

V (x, t) = min
u1

V̄ (x, t, u1),

∀z(x, t) ∈ argmin V̄ (x, t, u1).

Therefore, the following relationship holds:

V (x(t), t) =min
u1

V̄ (x(t), t, u1(t))

= V̄ (x(t), t, z(x(t), t)). (37)

Let z(x(t0), t0) = u1(t0) in any fixed time t0 ∈ R. As V̄ is
the TCLF, the following inequality holds:

V (x(t1), t1) = V̄ (x(t1), t1, z(x(t1), t1))

≤ V̄ (x(t1), t1, u1(t1)), (38)

where t1 = t0 + ∆t. Thus, the following inequality holds

with respect to ˙̄V :

V̇ (x(t), t)

= lim
∆t→0

V (x(t1), t1)− V (x(t0), t0)

∆t

≤ lim
∆t→0

V̄ (x(t1), t1, u1(t1))− V̄ (x(t0), t0, u1(t0))

∆t

= ˙̄V (x(t0), t0, u1(t0)).

Therefore, the following inequality holds:

V̇ (x, t) ≤ ˙̄V (x, t, u1). (39)

�

Remark 1. Even if z(x(t0), t0) = u1(t0), z(x(t1), t1) =
u1(t1) does not hold in general. Thus, inequality of (38) is
required.
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Fig. 2. Tracking Control Lyapunov Function: x1 − x2

Lemma 6. The time derivative of a TCLF V satisfies the
following inequality:

V̇ < 0. (40)

Proof. The function V̄ is a dynamic TCLF. Therefore,
the following equation holds:

˙̄V < 0. (41)

Thus, V̇ satisfies the following inequality by Lemma 5:

V̇ ≤ ˙̄V < 0. (42)

�

Therefore, Theorem 2 is proven by using the above lem-
mas.

Proof. A function V defined by (27) can be determined
uniquely by (29). Moreover, V is a TCLF for (15). �

Now, we can design a TCLF V (x, t) for the system (15)
using Theorem 2 as follows:

V (x, t) =

(

A11 −
A2

12

A22

)

(x1 − x1r(t))
2

+

(

A11 −
A2

12

A22

)

(x2 − x2r(t))
2

+
1

A22

{[A22ẋ1r(t)−A12 (x1 − x1r(t))] sinx3

−[A22ẋ2r(t)−A12 (x2 − x2r(t))] cosx3}
2, (43)

where z(x, t) satisfies the following equation:

z(x, t) =
1

A22

[(A22ẋ1r(t)−A12(x1 − x1r(t))) cosx3

+(A22ẋ2r(t)−A12(x2 − x2r(t))) sinx3]. (44)

We illustrate a TCLF as follows.

Figure 2 shows the TCLF (43) with respect to x1 and x2,
where x3 = 0, xr = 0, A11 = 2, A12 = 1 and A22 = 1.
Figure 3 shows the TCLF (43) with respect to x1 and x3,
where x2 = 0, xr = 0, A11 = 2, A12 = 1 and A22 = 1.

Fig. 3. Tracking Control Lyapunov Function: x1 − x3

5. CONTROLLER DESIGN

In this section, we design a trajectory tracking controller
using the obtained TCLF.

Let ũ = [ũ1, ũ2]
T = [u1 − u1r(t), u2 − u2r(t)]

T ; thus, we
transform the system (15) into the following system.

[

ẋ1

ẋ2

ẋ3

]

=

[

u1r(t) cosx3

u1r(t) sinx3

u2r(t)

]

+

[

cosx3 0
sinx3 0
0 1

]

[

ũ1

ũ2

]

Therefore, by Proposition 2, we can design a controller for
the two-wheeled mobile robot.

6. COMPUTER SIMULATION

In this section, we perform a computer simulation for
TCLF (27) for system (15) to demonstrate the effective-
ness of the proposed method. The simulation period is 20
s. The reference state is defined as follows:

[

x1r(t)
x2r(t)

]

=

[

r1 sin 2ωt
r2 cosωt

]

, (45)

where r1 = 5, r2 = 5 and ω = π/6. Note that the reference
state marks like “8”. Moreover, we consider the following
positive symmetrical matrix P :

P =







2 1 0 0
1 1 0 0
0 0 2 1
0 0 1 1






. (46)

We show computer simulation results in Fig.s 4 and 5
with initial condition x0 = (−2, 6, 0). Fig. 4 shows the
trajectory by the proposed method. Fig. 5 shows the input
history to the proposed method. The figure above shows
that we can confirm the trajectory draws “8” and the
proposed method converges to the reference state.

7. CONCLUSION

In this paper, we proposed a TCLF design via dynamic
extension and the minimum projection method for a two-
wheeled mobile robot. Moreover, the effectiveness of the
proposed method was confirmed by computer simulation.
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Fig. 4. Trajectory by the proposed method

Fig. 5. Input response by the proposed method

However, as can be seen from Fig. 3, the proposed method
is the local TCLF with respect to the angle. Solving the
problem remains future work.
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