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Abstract: The evolution of the process industry in the direction of automation and digitalization is
nowadays a consolidated phenomenon. In this direction, Industry 4.0 paradigms are leading many
industrial companies to significantly update their facilities. This paper presents a scheduling algorithm
that takes the role of a real-time optimization (RTO) element in a larger project framework where the
various network components are aimed to be all highly interconnected. The proposed methodology is
applied to an Italian chemical industrial site, in order to best manage the production rates of the various
products and the sales plan for the different clients. Numerous plants and processes are considered into
the model: batch and continuous production lines, saleable and non-storable products. Concepts of linear
optimization and batch operation scheduling are used in the algorithm construction. This whole structure
lays the foundation for a full integration between different elements of the facility, that is, the control
systems and the selling department.
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1. INTRODUCTION

Process simulation and simulation-based optimization, in par-
ticular, play a key role within Industry 4.0 paradigms (Alrabghi,
2018), as they contribute to create what is called virtual twin
of the physical process, i.e. a mathematical model able to ac-
curately describe a process, a product or a service in order to
perform specific analyses and apply suitable strategies (Uh-
lemann et al., 2017). Nevertheless, it should be noted that a
simulation-based optimization approach is well-established in
the academic and industrial worlds since last 30 years, under
the name of Real-Time Optimization (RTO) (Cutler and Perry,
1983). This family of methods integrates process measurements
into the optimization framework and does not rely exclusively
on a (possibly inaccurate) process model, but also on process
information obtained from measurements. Practical applica-
tions of RTO cover various fields of the process industry, as
refineries, well networks, energy systems, combustion, batch
operations (Bonvin, 2017).

Process scheduling can be considered a specific field of ap-
plication of RTO methodologies, particularly devoted to opti-
mization of large and complex industrial facilities. The typical
objective is to solve short term scheduling problems of contin-
uous and/or batch plants, that is, finding the optimal production
policy to satisfy sales demands at a given time. Pinto and Gross-
mann (1995) treated batch plants, by applying a Mixed Integer
Linear Programming (MILP) model over an LP-based branch-
and-bound method to deal with the large scale problem. Also in
the field of refinery operations, optimization-based algorithms
and scheduling operation have been used to increase the annual
profitability. Applied to a real case in Brazil, Pinto et al. (2000)
firstly develop a model able to represent a general refinery
topology, and define new operating points, more economically

profitable. Then, a scheduling procedure is implemented using
a MILP to deal with crude oil inventory management problem.

The computational problem of merging RTO and control with
higher level decision-making has been considered by Biegler
and Zavala (2009). The authors discuss about the possibility to
realistically solve NonLinear Programming (NLP) problems on
the order of a million variables. An example of RTO applied to
operational optimization of energy systems has been presented
by Vaccari et al. (2019). In this case, a Sequential Linear
Programming (SLP) algorithm is used to generate an operating
plan for each device in an energy system over a specified time
horizon. The goal is to satisfy all electrical and thermal load
requirements with possibly minimum operating costs.

The main objective of the present work is to build an RTO
tool according to the paradigms of Industry 4.0. In particular,
the developed algorithm aims at optimizing a set of production
rates in order to minimize an economic objective function
involving product stocks and to satisfy a complex sales plan.

The remainder of the paper is organized as follows. The prob-
lem definition is stated in Section 2; while the proposed op-
timization methodology is then formulated and illustrated in
Section 3. All data, variables and constraints are defined, and a
suitable preliminary scheduling for batch products is illustrated
in this section. The algorithm is then tested over a real case
study from an Italian inorganic chemical industry in Section 4.
Results and discussions are here reported. Finally, Section 5
summarizes main achievements.

2. PROBLEM DEFINITION

The problem considered in this work is to model and optimally
schedule the weekly production plan of an Italian industrial
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Fig. 1. Block diagram of the local computer system.

site of the inorganic chemical sector. This work is part of a
larger project addressed to enhance the factory management
of Altair Chimica SPA (later on cited as Altair), including
aspects of automation, digitalization, machine learning and
process computerization. The project aims at fully integrating
the proposed RTO system with the Distributed Control System
(DCS) and the local area network (LAN) of the industrial site.

The acquisition of production data will take place through a
specifically developed dynamic connection between the DCS
and the management system. An additional connection under
definition will allow the management system to automatically
receive customer orders, avoiding the manual entry phase, cur-
rently in place. The proposed RTO system will exchange input
and output data with the DCS at fixed times; therefore, the
optimization system occupies a hierarchically superior level to
(basic and advanced) controllers and works as a fully automatic
operator. Figure 1 shows a block diagram of the project archi-
tecture and identifies the position of the developed RTO system.

Various np products of interest of the company, named A,B, ...,
etc., are considered in this work. The optimization problem
starts from the weekly production plan designed by the op-
erators of selling department on the basis of client requests.
Let us name x j with j = A,B, ... the hourly production vector of
product j along the week, i.e. x j = [x0

j , ...,xi
j, ...,xnh−1

j ], where
nh is the total number of hours in a week, that is, nh = 24×
7 = 168 h is the optimization horizon length.

Sales plans of each product are input data obtained from the
selling department of the company and used within the prob-
lem as parameters. Defining the selling times of each day as
ts,d , with d = 1, ...,7, we establish that a sale is satisfied if and
only if the stock of the considered product j contains enough
material at time ts,d . Hence, the sales vector assumes this form:
S j = [S0

j , ...,Si
j, ...,Snh−1

j ] ∈ Rnh in which the only non-zero
components are the ones for i = ts,d .

Stocks of each product are calculated as functions of sales and
production rates, and they are as well bounded by physical
constraints. Analogously to production rates, let us define the
initial stock of the substance j as σ0

j and its evolution over time
is obtained by mass balance as follows:

σ
i+1
j = σ

i
j + xi

j−Si
j−a j(x)i ∀ i = 0, ...,nh (1)

The quantity σ i
j ∈ R depends linearly also on the function

a j(x), named self-consumption, that is, some of the products are
consumed within the industrial site to obtain other chemicals.

It has to be noted that some products cannot be stocked within
the industrial site due to specific safety or logistic reasons.
Since they cannot be sold either, they have to be consumed
within the facility. Hence, their material balance (1) reduces to:

0 = xi
j−a j(x)i ∀ i = 0, ...,nh (2)

Another important note is that some of the considered products
are produced by means of batch reactors. This implies that the
corresponding x j can assume only a limited number of values.
In particular, it is zero throughout most of the week and then
assumes a certain positive value for a defined period of time. Let
us identify the number of batch products as nb, where nb < np.

Therefore, the scope of the presented methodology is to find the
best production schedule for all the np products, by minimizing
the summation of stocks of certain ones while fulfilling all
the various constraints. In the process control field, this would
represent an RTO-level decision, since its main address is to
communicate to operators the various set-points to be used in
the advanced control layer, e.g. DCS.

3. PROPOSED METHODOLOGY

In this section, the various features of the method developed for
optimizing the production plan are presented.

3.1 Data, variables and constraints

The hourly production rates of the various products are treated
as optimization variables subject to bound constraints. Let
optimization variable vector be x = [xT

A , ...xT
j , ...,xT

np−nb
]T ∈

Rnx , where nx = (np−nb)nh.

Input data and parameters of the problem are sale vector S j and
initial stock value σ0

j . Material balances (1) and (2), additional
linear relations implying different components of x, and safety
considerations represent the problem constraints. Minimum
and maximum values for bound and process constraints have
been set as constant. Initialization values of the optimization
variables are taken from the weekly production plan designed
by hand by the selling department.

3.2 Scheduling procedure for batch products

As said in Section 2, the company produces nb different prod-
ucts in batch reactors. Let us name the different typologies of
batch products as P, i.e. P1, ...,Pl , ...,Pnb . For each product Pl ,
a specific reaction time (tP1 , ..., tPl , ..., tPnb

), comprehensive of
service time tserv

Pl
, is considered. Each reactor produces the same

amount WP of Pl , that is, the corresponding “hourly production
rate” can be calculated as follows: xPl =

WP
tPl

with l = 1, ...,nb.
Note that these hourly production rates are not considered as
optimization variables in order to avoid to build a mixed-integer
problem, where batch and continuous productions are simulta-
neously optimized. Therefore, a specific preliminary schedul-
ing procedure for batch products has been developed.

Since there are nr reactors, named R1, ...,Rr, ...,Rnr , in which
product Pl can be produced, a criterion for scheduling is needed.
The chosen one is based on the weekly sales of each Pl , as a sort
of the first needed is the first to be produced. The procedure
scans every selling times ts,d and registers each sale, then,
depending on the stock value, it decides whether to produce
the product Pl related to sale or not.

As example, let us consider the sales plan reported in Table 1
with three types of products. Since the first sale is on day 2 and
P1 is requested, we first check whether the current stock of P1 is
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Table 1. Example of sales plan for batch products.
S

ts,d
Pl

are tons of Pl requested by the client on day d.

ts,1 ts,2 ts,3 ts,4 ts,5 ts,6 ts,7

P1 0 S
ts,2
P1

0 S
ts,4
P1

0 0 0
P2 0 0 0 S

ts,4
P2

0 0 0
P3 0 0 0 0 S

ts,5
P3

0 0

Fig. 2. Scheme for reactor scheduling criterion. The end of the
dashed box indicates tRr ,h, while the end of the solid box
is tRr . The vertical blue dashed lines correspond to daily
selling times ts,d .

sufficiently high to cover for the sale. Otherwise, the production
of P1 is scheduled in the first reactor R1. When the sale S

ts,2
P1

is
greater than the quantity WP produced in each reactor, multiple
batches of P1 need to be scheduled. In this case, there is a choice
of setting a second production into R1 or employing R2. This
decision implies to define another time variable, the reactor
time (tR1 , ..., tRr , ..., tRnr ), that is, the last time instant a reactor
is used.
A diagram explaining the scheduling criterion is depicted in
Figure 2. Note that Figure 2 is referring to the example of
Table 1 and dealing, for the sake of simplicity, with only three
reactors, i.e. nr = 3. The reactor time starts from zero and
grows depending on the production schedule for the considered
reactor. Since the first production of P1 is scheduled in R1,
the reactor time changes, i.e. tR1 = 0 + tP1 . When a second
production of P1 needs to be scheduled, the hypothetical reactor
time tR1,h is checked to be less than the sale time, i.e. tR1,h =
2tP1 ≤ ts,2. If this holds true, than the new reactor time is
tR1 = tR1,h, otherwise another reactor is deployed, i.e. tR1 =
tP1 , tR2 = tP1 , as shown in top panel of Figure 2. With this logic,
each reactor schedule is filled with production stages until its
reactor time exceeds a sale time. This approach allows one to
operate always the same reactor, or reactors, leaving possibly
the others unused.

When, instead, more than one Pl is requested on the same day,
as in day 4 of Table 1, the first sale to be addressed is the biggest
one, e.g., if S

ts,4
P2

> S
ts,4
P1

, than we start from tR1,h = tR1 + tP2 and
so on. Once all the nr reactor schedules have been completed,
the “hourly production rate” of batch products xP is calculated,

and then the corresponding contribution to the hourly self-
consumption function a j(·) of other substances for the whole
week is evaluated. This fact is important as it counts for nb nh
parameters to be used within constraint set for the optimization
problem. Finally, if the sales cannot be satisfied, i.e. tR1,h >
ts,d ∧ ... tRr ,h > ts,d ... ∧ tRnr ,h > ts,d , an automatic message to
the operator is sent. In this case, in order to be conservative, the
contribution to self-consumption of other substances is set at its
maximum value for the all batch products.

3.3 Optimization problem

The problem to be solved is a Linear Programming (LP) prob-
lem and has the following general structure:

min
x

f (x) (3a)

subject to:

xmin ≤ x≤ xmax (3b)
cmin ≤ c(x)≤ cmax (3c)

ceq(x) = 0 (3d)

in which x ∈ Rnx , ceq(x) refers to the material balance of nns
non-storable products, while c(x) refers to bound constraints
on stocks plus other process constraints. The objective function
f (x) is continuous, linear in x and is defined according to the
company needs, e.g. to minimize the summation of stocks of
certain products. It has to be noted that problem (3) can be
easily rewritten in a standard LP formulation.

In order to better manage possibly infeasible solutions, i.e. due
to sales misplacement, the following smooth replacement for
f (x) in (3) is considered:

min
ξ

f (x)+µ ∑
i

si +µ ∑
i

si +µ ∑
i

seq,i +µ ∑
i

seq,i (4a)

subject to:

ξmin ≤ ξ ≤ ξmax (4b)
cmin− c(x)− s≤ 0 (4c)
c(x)− cmax− s≤ 0 (4d)
−ceq(x)− seq ≤ 0 (4e)
ceq(x)− seq ≤ 0 (4f)
s,s,seq,seq ≥ 0 (4g)

in which

ξ =


x
s
s

seq
seq

 , ξmin =


xmin

0
0
0
0

 , ξmax =


xmax

∞∞∞

∞∞∞

∞∞∞

∞∞∞

 (5)

where ξ is the augmented decision variable; µ is a positive
scalar penalty factor for the slack variables, assumed the same
for all, for the sake of simplicity; ∞∞∞ is a vector of “infinity”
and 0 is vector/matrix of zeros. The slack variables s,s,seq,seq
are defined by the maximum deviation from the corresponding
imposed constraint over the time horizon. Their dimensions are:
s,s ∈ Rnp−nb+noc ,seq,seq ∈ Rnns , where noc is the number of
further process and safety constraints. Thus, problem (4) is the
one actually solved within the algorithm, and by construction
it admits always a feasible solution. For this reason, a post-
processing analysis of the optimization result is needed in order
to verify if all the hard constraints are fulfilled.
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3.4 Result analysis

Once a solution is calculated, the values of the slack variables
must be null for the problem (3) to be feasible. If, at least,
one component of the slack variables is positive, one or more
constraints along the weekly horizon is violated. We distinguish
two types of constraint violations: admissible or inadmissible.

The first category identifies the so-called soft constraints, the
ones that when violated do not imply issues of safety or physi-
cal infeasibility. This is the case of non-critical products which,
when missing, can be replaced by others without particular
problems or complaints from clients. Thus, a warning is sent
to the operator, but the sales can be left as planned.

Inadmissible violations are related to hard constraints and
to physical impossibilities or unsafe operations. The simpler
example is the one referring to stocks reaching and overpassing
the maximum limit, which means containers spilling materials.
Another scenario is when electrical devices cannot work in
different voltage ranges with respect to the one imposed by
ordinary factory configuration. In these cases, the operator
receives an error message, indicating which constraint(s) is
(are) violated, and suggesting a change in the weekly sales plan.

In any case, the optimal solution is communicated, together
with the stocks and the error/warning messages, in order to
be analyzed by the operator. As a matter of fact, in this first
phase of the project, the algorithm is intended to work as
a decision supporting tool in background mode, that is, the
company operators always take the final decisions.

4. APPLICATION TO INDUSTRIAL CASE STUDY

In this section, we present an application example to real data
and sales plan from Altair. The products considered are:

• 12 continuous-time products: HCl(a), HCl(b), HCl(c),
FeCl(a)3 , FeCl(b)3 , NaClO, NaOH(a), NaOH(b), KOH(aq),

KOH(s), K2CO(aq)
3 , K2CO(s)

3 ;
• 1 non-storable and non salable product: Cl2;
• 3 batch chloroparaffins products: Cl-Par(a), Cl-Par(b),

Cl-Par(c).

A simplified process scheme is shown in Figure 4. Note that
some electrolysis reactants (NaCl, KCl, H2O) and product H2
are not directly included into the optimization problem, since
not relevant for the company’s purposes in this phase of the
project. According to our notation, np = 16, nns = 1, nb = 3; the
number of reactors, identical in mass and productivity (WP =
12 t), available for the batch products is three, i.e. nr = 3. The
reaction times for three chloroparaffins is considered the same,
i.e. tCl-Par(a) = tCl-Par(b) = tCl-Par(c) = 31h.

Therefore, the overall dimension of the optimization problem is
not negligible at all, being nx = 13×168 = 2184. The number
of further process and safety constraints is noc = 5, in addition
to the np−nb−ns = 12 constraints on products stocks. Hence,
the total number of constraints along the optimization horizon
is over 3000. For this reason, a solver widely used and vali-
dated in the literature for large linear and non-linear program-
ming problems is adopted within the optimization algorithm:
IPOPT (Wächter and Biegler, 2006). The selected objective
function f (x) is defined as the total stock of products HCl(a),
HCl(b), HCl(c) on the last day of the week:

Table 2. Initial stock and sales plan for the week
for each product; σ0

j and S j are expressed in tons.

Product σ0
j S

ts,1
j S

ts,2
j S

ts,3
j S

ts,4
j S

ts,5
j S

ts,6
j S

ts,7
j

HCl(a) 7 56 0 266 168 112 112 84
HCl(b) 7 28 0 195 112 140 140 112
HCl(c) 7 56 0 113 84 140 115 84
FeCl(a)3 60 0 150 84 140 84 150 0
FeCl(b)3 180 0 80 56 55 50 60 0
NaClO 50 0 0 0 28 28 0 28

NaOH(a) 2 0 0 0 0 0 0 0
NaOH(b) 20 0 0 40 45 45 45 0
KOH(aq) 360 0 0 208 237 182 195 143
KOH(s) 0 0 0 20 20 0 0 0

K2CO(aq)
3 87 0 0 12 0 12 12 0

K2CO(s)
3 0 0 0 40 40 0 0 0

Cl-Par(a) 49 0 0 51 0 0 12 0
Cl-Par(b) 20 0 0 31 0 13 0 0
Cl-Par(c) 12 0 0 0 23 0 0 24

f (x) = σ
nh
HCl(a)

+σ
nh
HCl(b)

+σ
nh
HCl(c)

(6)

The definition of function (6) is linked to a specific profit
strategy defined by Altair; hence, explicit economic factor are
not included. Table 2 shows initial values of stocks and the
sales plan for all the products to be satisfied during the analyzed
week, i.e. all the optimization parameters used in Problem (4).

In order to fully understand the complexity of the problem, few
aspects need to be clarified. Chlorine Cl2 is non-storable, thus
non salable, albeit produced by some products and consumed
by others, i.e. Eq. (2) reads xi

Cl2
= aCl2

(x)i, ∀ i = 0, ...,nh.
The self-consumption function aCl2(·) has positive (negative)
terms corresponding to those products that generate (consume)
Cl2. Each of these terms is linked to Cl2 production rate by
specific constants derived from mass balances and reaction
stoichiometry.

The batch products (Cl-Par) do not enter directly in the opti-
mization problem, as explained in Section 3.2, but since they
are consumers of chlorine, their consumption has to be calcu-
lated. Once the preliminary scheduling procedure is completed,
the number of reaction batches for each type of chloroparaffin,
the time required for each reaction tCl-Par, and the total reaction
time along the week, that is, the chlorine requests schedule, are
known information. Then, the hourly consumption of Cl2 can
be calculated from mass balances, taking into account only the
effective reaction time, i.e., tCl-Par− tserv

Cl-Par.

The self-consumption function is important also for the relation
between the two solutions of sodium hydroxide, NaOH(a) and
NaOH(b), since the latter is obtained by concentration from the
former one. These two products are considered, stored and sold
separately with different destinations, but their stocks values are
linked through a mass balance equation expressed within a j(·).
As introduced before, there are two kinds of constraints, soft
and hard ones. For this problem, we define three soft constraints
as follows: HCl(b) can be sold after dilution to cover sales
for missing HCl(a), HCl(c) can be sold after dilution to cover
sales for both HCl(a) and HCl(b); FeCl(b)3 can be sold directly

as FeCl(a)3 with a little profit loss. Note that many other hard
constraints need to be fulfilled, as stock bounds, sum of stocks
of three concentration levels of HCl, and of two qualities of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11719



Fig. 3. Simplified process scheme of the Altair case study.

FeCl3, as well as electrical bounds for production of NaOH(a)

and KOH by electrolysis from NaCl and KCl, respectively.

The initial conditions for the different production rates give
f (x0) = 18 as initial value of the objective function, but two
types of hard constraints are violated, i.e. the sum of stocks for
HCl and FeCl3 are negative at a certain time during the week.

4.1 Optimization Results

The computation time is around 80 s, comprehensive of the
batch scheduling and optimization stages; simulations are per-
formed on a macOS, CPU 2.6 GHz i5, 8GB DDR3. By defini-
tion of Problem (4), the result obtained is numerically feasible,
but two messages are produced. The first one signals that the
stock of HCl(a) is under the minimum bound considered, al-
though the value of total stocks of HCl is always acceptable.
Figure 4 shows the time trends of the stocks for the three dilu-
tions of HCl and the total stock. It can be observed that, during
the week, HCl(a) is missing for many hours, associated with
four violations of the lower bound, but, in the meantime, HCl(b)
and HCl(c) can overcome this lack by dilution. In other words,
the first plot in Figure 4 shows how one of the soft constraints
is violated, and the bottom panel shows how the corresponding
hard constraint is still satisfied.

A similar scenario can be observed for the second warning
emitted by the algorithm. The time trend of stocks of two
qualities of FeCl3 is shown in Figure 5. As a matter of fact, also
FeCl(a)3 is missing in the last part of the week and, therefore,

FeCl(b)3 has to be sold at its place. Note that the final value of
the objective function is f (x) = 39.1. It is not surprising that the
optimal value of the objective function is higher than the initial
one, since initial conditions were infeasible.

As said before, in this first part of the project, only a background
mode for the algorithm is considered. Hence, the final output of
the RTO system is analyzed by an operator who has basically
two options. He/she can accept the proposed solution, pass it
to the control room and apply the weekly production plan as
calculated. Otherwise, he/she can communicate the algorithm
result to the selling department and then request for a possible

Fig. 4. Stocks behavior for the three dilutions of HCl (top and
middle panels) and their sum (bottom).

sale reorganization, in the specific case, of HCl(a) and FeCl(a)3 .
For the previous example, as shown in Figure 5, a positive
value for the stock of FeCl(a)3 at the end of the week, after a
violation of the lower bound, is indication of an ill-positioning
of the sales. If the sales plan is changed, the operator needs
only to implement new parameters in a list as Table 2 and
then re-run the algorithm. It should be noted that, in a future
release, the RTO algorithm will be able to directly communicate
with the management system and selling department, and also
read automatically the first-guess sales plan. Nonetheless, field
measurements and other process variables and performance
indices will be imported directly from DCS to run optimization
algorithm and possibly correct adaptively the model. Finally, is
important to underline that the objective function selected for
this application can be changed and adapted to any company
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Fig. 5. Stocks behavior for the two qualities of FeCl3 (top and
middle panels) and their sum (bottom).

request. In particular, explicit economic factors can be easily
implemented once hourly production rates are linked to a posi-
tive or negative cost term.

5. CONCLUSIONS

In this paper a real-time optimization algorithm to best manage
production rates based on the weekly sales plan has been
presented. This work is part of a larger project involving an
integrated digitalization of an Italian industrial site according
to Industry 4.0 paradigms.

The considered products are of different nature, both contin-
uous and batch, some storable to be sold and some others to
be produced and consumed in real-time within the industrial
site. To avoid a mixed-integer optimization problem, a prelim-
inary scheduling procedure has been implemented for batch
productions. Different batch products and reactors have to be
considered, hence a specific scheduling criterion has been es-
tablished and explained. The best reactor configuration gives
parameters used into the optimization problem. A smooth ver-
sion of a linear problem has been formulated in order to obtain
always a numerically feasible solution. A general NLP solver
is adopted since nonlinear features are to be incorporated in
the next future. A post-analysis of the optimal solution gives a
feedback to the operator who can accept or reject the suggested
decision plan.

The algorithm has been successfully tested over real data of
Altair, an Italian Inorganic Chemical Company. In particular,
it proves to give significant enhancements to the production
scheduling and sales fulfillment, so that operators are helped
in a demanding task otherwise manual, time-consuming and
highly subject to errors. Nonetheless, its features of versatility
and suitability to different plant conditions make the algorithm
a key instrument in a full computerization and digitalization
project of the company that is currently ongoing.

Possible future updates of the proposed algorithm could include
a better performing approach for batch scheduling in order to
avoid any backlog (Castro et al., 2007; Sundaramoorthy and
Maravelias, 2008); possible integration between batching and
continuous variables can be taken into consideration (Nie et al.,
2014) as well as the analysis of the RTO behavior when subject
to a rolling horizon in a closed-loop fashion (Subramanian
et al., 2014).
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