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∗Réseaux de Transport d’Electricité, Immeuble WINDOW - 7C, Place
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Abstract: Motivated by stability analysis of large scale power systems, we describe how
the Lasserre (moment - sums of squares, SOS) hierarchy can be used to generate outer
approximations of the region of attraction (ROA) of sparse polynomial differential systems,
at the price of solving linear matrix inequalities (LMI) of increasing size. We identify specific
sparsity structures for which we can provide numerically certified outer approximations of the
region of attraction in high dimension. For this purpose, we combine previous results on non-
sparse ROA approximations with sparse semi-algebraic set volume computation.
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1. INTRODUCTION

This paper describes a computational technique for gen-
erating outer approximations of finite time regions of at-
traction (ROA) of sparse polynomial ordinary differential
equations (ODEs), with the purpose of assessing the stabil-
ity of large scale power systems in the future. These outer
approximations contain all initial conditions for which
the dynamical systems can operate safely. Indeed, power
networks are usually modeled by an interconnection of
weakly coupled nodes, while the dynamic behaviour of the
system is mainly driven by generators, which are modeled
by (closed-loop controlled) ordinary differential equations.

Most of the technical literature on stability analysis for
power networks focuses on the construction of Lyapunov
functions computed by nonconvex optimization, and more
specifically a bilinear variant of polynomial sums of squares
(SOS) optimization, as in e.g. Anghel et al. (2013); Tacchi
et al. (2018); Izumi et al. (2018). An inner approximation
of the infinite time ROA is then modeled as a sublevel
set of the Lyapunov function, and various heuristics are
used to enlarge this sublevel set as much as possible,
see e.g. Chesi (2011) and references therein. It can be
enforced that the Lyapunov functions have the same

? The research was partly funded by Réseaux de Transport
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sparsity structure as the system to be analyzed, see e.g.
Zheng (2019) and references therein, but to our knowldge,
it was never applied to ROA approximation. The work of
Kundu and Anghel (2015, 2017) is a first step towards
the application of Lyapunov techniques to ROA estimation
for interconnected systems. Another way of exploiting the
system’s structure is to rely on sparsity in terms of time
scales instead of sparsity in terms of variables, see e.g.
Subotić et al. (2019).

In Henrion and Korda (2014) the authors derive an
infinite-dimensional linear programming approach to finite
time ROA computation, with a primal problem on mea-
sures and a dual problem on continuous functions. Compu-
tationally speaking, measures (resp. continuous functions)
are discretized into moments (resp. polynomial sums of
squares, SOS) of increasing degrees, resulting in a hier-
archy of finite dimensional convex optimization problems,
usually semidefinite programming (SDP) problems or lin-
ear matrix inequalities (LMI). This is an application of
the so-called moment-SOS or Lasserre hierarchy, a math-
ematical technology that can be used to solve a variety
of problems in applied mathematics and engineering, see
Lasserre (2010); Henrion (2013); Lasserre (2015). In the
context of ROA approximation, the hierarchy generates a
family of outer approximations that become tighter as the
degree increases. Non-sparse approximations converge in
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volume to the ROA when the degree tends to infinity, see
(Henrion and Korda, 2014, Theorem 6). Inner approxima-
tions of the ROA can be constructed as well, see Korda
et al. (2013). The convergence proof relies on previous
work on the application of the moment-SOS hierarchy for
computing the volume of semi-algebraic sets, see Henrion
et al. (2009).

The main contribution of the current paper is to identify a
sparsity structure that allows us to apply the moment-SOS
hierarchy for sparse ROA approximation. We construct
a hierarchy of outer approximations of increasing degree,
though the sparsity is introduced at the price of the
convergence proof that no longer holds. For this, we rely
heavily on Tacchi et al. (2019) which focuses on the
approximation of the volume of a sparse semi-algebraic
set.

In the context of differential systems stability analysis, our
paper can be seen an extension to large-scale systems of
results of Josz et al. (2019); Oustry et al. (2019 a,b). It can
be interpreted as well as a finite time dual approach to the
standard Lyapunov approach of Chesi (2011); Anghel et
al. (2013); Kundu and Anghel (2017); Tacchi et al. (2018);
Zheng (2019). We prefer however to see the Lyapunov
approach as a dual to an infinite time occupation mea-
sure approach, in the sense that Lyapunov functions are
obtained as a (dual Lagrangian) certificate of a property
(stability) of the system’s trajectories (modeled by occu-
pation measures in a primal problem). The advantage of
considering finite time ROA instead of standard Lyapunov
ROA is the linearity of its characterization (which leads to
solving convex LMIs instead of nonconvex bilinear matrix
inequalities as in the Lyapunov framework), as well as the
proof of convergence in volume (in the non-sparse case).

Section 2 is dedicated to the problem statement, while in
section 3 we introduce the framework that we use for our
computations. Section 4 presents our main results, and our
numerical experiments are gathered in section 5. Finally,
we give our conclusions and perspectives in section 6.

2. PROBLEM STATEMENT

Let N ∈ N. We consider the following system of sparsely
coupled polynomial ODEs:

ẋi = fi(xi, xi+1) xi ∈ Xi i = 1 . . . N − 1
ẋN = fN (xN−1, xN ) xN ∈ XN

(1)

where X1, . . . , XN are finite dimensional compact semial-
gebraic sets and f1, . . . , fN are polynomial maps. We de-
fineX := X1×. . .×XN , f := (f1, . . . , fN ) and n := dimX.
Note that X is also a compact semialgebraic set.

Given a finite time horizon T > 0 and a compact semi-
algebraic target set XT := XT

1 × . . . × XT
N , we aim at

computing outer approximations of the finite time region
of attraction (ROA), defined as

X0(T,XT ) :=

{
x0 ∈ Rn :

x(t|x0) ∈ X ∀t ∈ [0, T ]
x(T |x0) ∈ XT

}
(2)

where x(t|x0) denotes the value at time t of the unique
solution to (1) with initial condition x0. In the following,
the dependance of X0 in T and XT will be implicit.

3. FRAMEWORK

3.1 Infinite dimensional optimization

It is shown in Henrion and Korda (2014) that X0 can be
obtained as the support of the measure µ0 solution to the
infinite dimensional linear programming (LP) problem

p∗ := max µ0(X)
s.t. λn − µ0 ∈M(X)+

∂tµ+ div(f µ) + δTµ
T = δ0µ

0
(3)

where the unknowns are measures µ0 ∈ M(X)+, µ ∈
M([0, T ]×X)+, µT ∈ M(XT )+ and M(X)+ denotes the
cone of Borel measures on X, λn is the n dimensional
Lebesgue measure such that

∫
ψ dλn =

∫
ψ(x) dx for

any measurable ψ : Rn → R and δt denotes the Dirac
measure in t such that

∫
φ δt = φ(t) for any continuous

φ : [0, T ]→ R.

The last constraint is the so-called Liouville transport
partial differential equation (PDE) whose characteristics
are exactly the trajectories associated to solutions of the
ODE (1). Henrion and Korda (2014) proved that the
solution of (3) is given by

µ0(A) = λ(A ∩X0)

µ(I ×A) =

∫
I∩[0,T ]

∫
X

χA(x(t|x0)) µ0(dx0) dt

µT (A) =

∫
χA(x(T |x0)) µ0(dx0)

(4)

for any Borel sets A ⊂ X and I ⊂ [0, T ], where χ
denotes the boolean indicator function. These measures
are respectively called the initial measure, the occupation
measure and the terminal measure.

Problem (3) has a dual formulation on functions that can
be formulated as follows:

d∗ := inf

∫
X

w dλn

s.t. w ≥ v(0, ·) + 1
∂tv +∇v · f ≤ 0
v(·, T ) ≥ 0 onXT

(5)

where the unknowns are functions v ∈ C1([0, T ]×X), w ∈
C0(X) and Ck(X) denotes the vector space of continuous
and k times continuously differentiable functions on X,
and Ck(X)+ := {ψ ∈ Ck(X) : ∀x ∈ X,ψ(x) ≥ 0} is its
cone of nonnegative elements.

It was shown in Henrion and Korda (2014) that any v
feasible for (5) is such that X0

v := {x0 ∈ X : v(0, x0) ≥
0} ⊃ X0 using the fact that v decreases along trajectories
(similarly to Lyapunov functions). In addition to that,
Henrion and Korda also proved that p∗ = d∗ (this is the
strong duality property), from which one can deduce the
existence of a sequence of feasible polynomials (vk, wk)k∈N
of increasing degrees such that X0

vk
converges to X0 in

volume, i.e.

λn
(
X0

vk
\X0

)
→ 0 when k →∞.

Such a sequence of polynomials is computed through
convex optimization using the Moment-SOS hierarchy.

3.2 The Moment-SOS hierarchy

The Moment-SOS hierarchy is a primal-dual hierarchy of
convex programs that grow in size and whose solutions
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give certified approximations to the solutions of infinite
dimensional LPs on measures and functions. For the sake
of simplicity and since we do not resort to the Moment
side of the hierarchy, we will only present the SOS part.

A polynomial σ ∈ R[x] is called a sum of squares (SOS) if
it can be written σ = p21+. . .+p2k for some k ∈ N, pi ∈ R[x].
Sums of squares are related to positive and nonnegative
polynomials through Putinar’s Positivstellensatz (P-satz):

Theorem 1. (Putinar (1993), Theorem 1.3). Given polyno-
mials g1, . . . , gN ∈ R[x] such that g1(x) = R2 − |x|2 for
some R > 0, let X := {x ∈ Rn : g1(x) ≥ 0, . . . , gN (x) ≥
0}, Σ(X) := {σ0 +σ1g1 + . . .+σNgN , σ0, σ1, . . . σN SOS},
P (X) := {p ∈ R[x] : p ≥ 0 on X} and P ∗(X) := {p ∈
R[x] : p > 0 onX}. Then, one has

P ∗(X) ⊂ Σ(X) ⊂ P (X). (6)

Thus, using the Stone-Weierstrass Theorem (stating that
any continuous function can be approximated with poly-
nomials on a compact set) and Theorem 1, one can look for
feasible plans to (5) by replacing all inequality constraints
with SOS constraints. This way, one obtains a hierarchy
of SOS problems indexed with the degree of the unknown
polynomials. The infinite dimensional LP problem is thus
turned into a hierarchy of finite dimensional SDP problems
(i.e. convex optimization problems with LMI constraints),
using a last result:

Theorem 2. (see e.g. Lasserre (2010), Proposition 2.1). The
constraint that a polynomial is SOS is a linear matrix
inequality (LMI).

This work was extended to inner approximations of the
ROA in Korda et al. (2013), and to inner approximations
of the maximum positively invariant set in Oustry et al.
(2019 b). It has the advantage to reduce the estimation
of finite time ROA to a hierarchy of convex optimization
programs, while Lyapunov-based methods for ROA esti-
mation rely on nonconvex bilinear matrix inequalities, see
e.g. Izumi et al. (2018).

The issue that one often encounters is that the moment-
SOS hierarchy resorts to semidefinite programming (SDP)
which does not scale well (Oustry et al. (2019 a) pushed to
dimension 5 state space). In order to tackle higher dimen-
sional problems, one has to exploit additional properties
such as sparsity or symmetries.

4. MAIN RESULTS

4.1 A sparse infinite dimensional program

With the future application to electrical power systems in
mind, we focus on exploiting the network-like structure
in our computations. A power network model has the
particularity that not all the variables directly interact in
the equations. Especially, nodes that are geographically
far from each other are not connected together in the
dynamics of the system. This corresponds to a sparse
structure, which motivates this work.

Following the inspiration given by both Tacchi et al. (2019)
and Zheng (2019), we derive an LP problem that can be
split into small dimensional subproblems, and thus is a
lot more scalable than the dense formulation (5). To that

end, we introduce the number of cliques K := N − 1 as
well as the compact semialgebraic sets Yi := Xi × Xi+1,
Y T
i := XT

i ×XT
i+1 and ni := dimYi, i = 1, . . . ,K. Then,

one can write the following LP on functions:

d∗s := inf

∫
Y1

w1 dλ
n1 + . . .+

∫
YK

wK dλnK (7a)

wj ≥ vj1(0, ·) + vj2(0, ·) + 1 (7b)

wK ≥ vK(0, ·) + 1 (7c)

vj1(T, ·) + vj2(T, ·) ≥ 0 on Y T
j (7d)

vK(T, ·) ≥ 0 on Y T
K (7e)

uj + ∂xj+1
vj2 · fj+1 ≤ 0 (7f)

∂tvj1 + ∂tvj2 + ∂xjvj1 · fj ≤ uj (7g)

∂tvK + ∂(xK
xN)vK ·

(
fK
fN

)
≤ 0 (7h)

where the unknowns are functions wi ∈ C(Yi)+, uj ∈
C0([0, T ]×Xj+1), vj1 ∈ C1([0, T ]×Xj), vj2 ∈ C1([0, T ]×
Xj+1), vK ∈ C1([0, T ]× YK). Here the idea is to split the
decision variables v and w of problem (5) and distribute
them along the components of our sparse system. The
decision variables uj are added to take into account the
interconnexion between the components. Thus, we do not
simply compute an uncertified intersection of regions of
attraction of smaller subsystems, but rather a sparsely
defined outer approximation of the global region of attrac-
tion. By doing so, we end up with inequality constraints
involving only the variables of one of the considered sub-
systems at a time, which drastically reduces the dimension
of the decision space in the SOS hierarchy.

Our main result is the numerical certification that can be
stated as follows:

Theorem 3. Let (wj , wK , uj , vj1, vj2, vK)j=1,...,K−1 be a
feasible plan for problem (7), and consider the set

X0
(vj)j

:=

{
x ∈ Rn :

(vj1(0, xj) + vj2(0, xj+1))j ≥ 0
vK(0, xK , xN ) ≥ 0

}
.

(8)
Then, one has X0 ⊂ X0

(vj)j
.

Proof. Let x0 ∈ X0. Then, by definition, x(T |x0) ∈ XT ,
and according to constraint (7d) one has

vj1(T, xj(T |x0)) + vj2(T, xj+1(T |x0)) ≥ 0.

Moreover we know that

vj1(T, xj(T |x0))− vj1(0, x0j ) =

∫ T

0

d

dt
(vj1(t, xj(t|x0))) dt

=

∫ T

0

∂tvj1(t, xj(t|x0)) +

∂xjvj1(t, xj(t|x0)) · fj(xj(t|x0), xj+1(t|x0)) dt

(7g)

≤
∫ T

0

uj(t, xj+1(t|x0))−

∂tvj2(t, xj+1(t|x0)) dt.

The same reasoning on vj2 yields

vj2(T, xj+1(T |x0))− vj2(0, x0j+1)
(7f)

≤∫ T

0

∂tvj2(t, xj+1(t|x0))− uj(t, xj+1(t|x0)) dt.
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Finally, adding both inequalities, one obtains

0≤ vj1(T, xj(T |x0)) + vj2(T, xj+1(T |x0))

≤ vj1(0, x0j ) + vj2(0, x0j+1).

Since vK is nonnegative at time T in Y T
K in virtue of (7e),

and decreasing along trajectories in virtue of (7h), the last
required inequality is also satisfied. Thus, x0 ∈ X0

(vj)j
.

With this formulation, we design a method to compute
sparse outer approximations of the ROA, using only con-
vex semidefinite programming, while all existing methods
resort only to nonconvex optimization, namely bilinear
matrix inequalities. However, the constraint that the ap-
proximation should be sparse is a significant restriction
that prevents us from proving convergence to the actual
ROA. Indeed, with the following elementary exemple we
show that in the case of sparse dynamics and target set,
the ROA has no reason to be sparse.

4.2 Is the ROA sparse ?

Consider the simple case where N = 3 and the dynamics
are:

ẋ1 = (x21 + x22 − 0.25)x1 (9a)

ẋ2 = (x22 + x23 − 0.25)x2 (9b)

ẋ3 = (x22 + x23 − 0.25)x3. (9c)

Here, it is clear that the bicylinder B := {x ∈ R3 : x21 +
x22 ≤ 0.25, x22+x23 ≤ 0.25} is contained in the infinite time
ROA of the equilibrium point 0.

However, this ROA is strictly larger than our sparsely
defined B, and it intricates all variables, which means that
it cannot be sparsely described.

To illustrate this fact, we plotted the evolution of x1(t|x0)
with different initial conditions x0 outside the B (see
Figures 1 and 2). In the three cases, (x02, x

0
3) is in the

disk of radius 0.5 such that x2(t|x0) and x3(t|x0) go to
0 quickly.

Fig. 1. x1(t|x0) with x01 = 0.46, x02 = x03 = 0.25.

However, depending on both x02 and x03, the trajectory of
x1(t|x0) is either stable (with quick convergence to 0) or
unstable (with finite time explosion).

Fig. 2. x1(t|x0) with x01 = 0.46, x02 = 0.26, x03 = 0.25 (left)
and x01 = 0.46, x02 = 0.25, x03 = 0.3 (right).

This example highlights the non-sparsity of the infinite
time ROA. The same observation carries over for any finite
time ROA (say for T = 100, XT = [−0.1, 0.1]3) which is
very close to the infinite time ROA.

From this we can deduce that exploiting sparsity prevents
us to ensure the convergence of our ROA estimations
towards the actual ROA, the former being sparsely defined
while the latter is not. However, we can still obtain good
outer approximations of the ROA using this technique.
The advantages that one gains while giving up convergence
are twofold :

• The computational time is drastically reduced for
systems that were tractable using the converging
dense framework.

• This framework allows to handle systems that are
intractable with the standard dense framework, as
shown experimentally below.

5. NUMERICS

We tested our formulation (7) on two numerical examples:
the first one is the example that we mentioned in section
4.2, and the second one is a dimension 20 chain constituted
by 10 interconnected Van der Pol oscillators.

5.1 Reducing computational time: a toy example

To check that our sparse method is relevant, we imple-
mented it on system (9) and compared its performances
to those of the dense formulation of Henrion and Korda
(2014), with SOS polynomials of degrees 8 (Figure 3) and
10 (Figure 4), with state constraint set X = [−1, 1]3, time
horizon T = 100 and target set XT = [−0.1, 0.1]3.

On these figures we also plot the bicylinder (that should
be inside the infinite time ROA and the finite time ROA
X0 for T large enough and XT small enough).

We gathered the computational times in Table 1.

The first thing one can note is the important gain in com-
putational time: our sparse formulation is by far less costly
than the standard dense formulation, and the gap increases
with the degree (at degree 10 the sparse formulation is
more than 10 times faster).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3331



degree dense sparse

4 4 4

6 24 10

8 334 83

10 5542 440

12 - 1865

Table 1. Computation times (in seconds) for
the dense and sparse formulations.

Fig. 3. Degree 8 sparse (red) and dense (green) ROA
approximations and the bicylinder (brown).

Fig. 4. Degree 10 sparse (red) and dense (green) ROA
approximations and the bicylinder (brown).

Second, one can see that while at degree 8 the dense
approximation is tighter than the sparse one, at degree
10 this does not hold anymore: the sparse approximation
is actually tighter around x = 0 (resulting in the blue-
green spot on the side of the surface), and more generally
both approximations are close one to another.
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Fig. 5. X0
1 to X0

9 (from left to right and top to bottom).

5.2 High dimension: a chain of Van der Pol oscillators

To test our method on large scale systems, we take
the same example as in Kundu and Anghel (2015), but
adapted to our first sparsity pattern: we consider a chain
of Van der Pol oscillators linked with random couplings.
The general framework is as follows:

ẏi =−2zi (10a)

żj = 0.8yj + 10(1.22y2j − 0.21)zj + εjzj+1yj (10b)

żK = 0.8yK + 10(1.22y2N − 0.21)zK (10c)

with i = 1, . . . ,K and j = 1, . . . ,K − 1. This corresponds
to our sparse polynomial ODE (1) with ni = 2 and
xi = (yi, zi) for i = 1, . . . ,K − 1, nK = nK+1 = 1 and
xK = yK and xK+1 = zK (thus n = 2K). One can notice
that the sparse structure is even more specific than stated

in our general framework since fj(xj , xj+1) =
(

gj(zj)
hj(xj ,zj+1)

)
for j = 1, . . . ,K − 1.

Here εj is a random variable that follows the uniform
law on [−0.5, 0.5], modelling a weak interaction between
the oscillators. For reporting our results, we let K =
10, X = [−1, 1]20, T = 30 and XT = [−0.1, 0.1]20

and we use a particular sample ε. We report on degree
12 certificates, which takes approximately 23’, among
which 11’35” for declaring the decision variables with the
YALMIP interface, 10’46” for solving the SDP problem
with MOSEK and 41” for plotting the results with Matlab.

For j = 1, . . . ,K − 1 we plot the sets

X0
j := {xj ∈ Xj : vj1(0, xj) + vj2(0, 0) ≥ 0}

which correspond to T = 30, XT = [−0.1, 0.1]2 for the
j-th Van der Pol oscillator with perturbation εjzj+1yj
where zj+1 is a trajectory from the (j + 1)-th Van der
Pol oscillator, starting in 0 at t = 0, see Figure 5.

We also plot the set

X0
K := {xK ∈ XK : vK(0, xK , xK+1) ≥ 0}

which corresponds to T = 30, XT = [−0.1, 0.1]2 for the
K-th (non perturbed) Van der Pol oscillator, see Figure 6.
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Fig. 6. X0
10 corresponds to a regular Van der Pol oscillator.

As expected considering the low magnitude of the interac-
tions, on Figure 5 one can identify shapes similar to the
ROA of a standard Van der Pol oscillator. However, the
shapes are perturbed: their respective sizes differ slightly.
The standard framework of Henrion and Korda (2014)
cannot be used here, due to the high dimension of the
state space. It is also important to note that an important
part of the computational time was spent for modelling the
SDP problem, while the SDP solver was quite fast, once
the decision variables were properly declared. We believe
that these results are quite encouraging for future works
on sparse ROA approximation.

6. CONCLUSION

This work is a first step towards convex computation
of large scale stability regions for sparse systems. Like
Lyapunov-based methods, this framework gives no conver-
gence guarantee for the polynomial approximations when
the degree tends to infinity, due to the strong sparsity
constraints imposed to the SOS certificates. However, we
have been able to reduce the problem of assessing stability
of a large scale sparse system into a tractable convex
problem. In our opinion this is a complete novelty, since
previous works resulted into nonconvex bilinear problems.

This framework is valid for any chain of coupled ODEs,
and it can readily be extended to other sparsity patterns,
as highlighted in Tacchi et al. (2019). The presentation
of the results is however more complicated, which is the
reason why we only presented chained ODEs in this paper.

For now, we applied it only for outer approximations of
the finite time ROA, while inner approximations of the
infinite time ROA and maximal positively invariant sets
remain to be studied. Future work will also include the
transient stability assessment of a meshed multi-machine
system as in Anghel et al. (2013); Tacchi et al. (2018), and
the stability analysis of different converter grid-forming
controls as in Arghir et al. (2018); Tayyebi et al. (2019).
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