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University, Sweden, (e-mail: oleg.burdakov@liu.se).
∗∗∗Department of Automatic Control, Lund University, Sweden.

Abstract: Segmenting a motion-planning problem into smaller subproblems could be beneficial
in terms of computational complexity. This observation is used as a basis for a new sub-maneuver
decomposition approach investigated in this paper in the context of optimal evasive maneuvers
for autonomous ground vehicles. The recently published alternating augmented Lagrangian
method is adopted and leveraged on, which turns out to fit the problem formulation with
several attractive properties of the solution procedure. The decomposition is based on moving
the coupling constraints between the sub-maneuvers into a separate coordination problem,
which is possible to solve analytically. The remaining constraints and the objective function are
decomposed into subproblems, one for each segment, which means that parallel computation is
possible and beneficial. The method is implemented and evaluated in a safety-critical double
lane-change scenario. By using the solution of a low-complexity initialization problem and
applying warm-start techniques in the optimization, a solution is possible to obtain after just
a few alternating iterations using the developed approach. The resulting computational time is
lower than solving one optimization problem for the full maneuver.

Keywords: trajectory and path planning, motion planning, optimal control, problem
decomposition, vehicle safety maneuvers.

1. INTRODUCTION

Efficient motion planning is an essential component in
autonomous vehicles to allow safe and reliable operation
under various conditions, including time and safety critical
traffic situations. There are different ways to approach a
motion-planning problem (see, e.g., Paden et al. (2016)).
Here, we consider the method where a motion-planning
problem is formulated and subsequently solved as an opti-
mization problem (see, e.g., (Kelly, 2017)), and the focus is
on investigating a possibility to combine the method with
a new segmentation (decomposition) strategy. Formulating
a motion-planning problem as an optimization problem
brings many advantages (Sharp and Peng, 2011; Limebeer
and Rao, 2015); it provides a mathematical framework al-
lowing inclusion of various dynamic constraints for complex
vehicle and tire–road interaction models (Berntorp et al.,
2014), and it allows formulating limits on the state variables
reflecting the current driving situation. Important tasks
for the motion planning and control components are to
prevent the vehicle from colliding with obstacles (Subosits

? This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

and Gerdes, 2019), or leaving the road (Fors et al., 2019;
Gao and Gordon, 2019).

There are often computational challenges originating from
solving optimization problems related to motion-planning
problems, in particular in online scenarios. Previous re-
search has been presented that utilizes decomposition
techniques to improve the computational performance for
determining a solution of an optimization problem. The
dual ascent method taking advantage of decomposability of
the dual problem for a class of optimization formulations
is presented in (Lasdon, 1968). The alternating direction
method of multipliers (ADMM) (see, e.g., (Boyd et al.,
2011)) was proposed to combine the decomposability of the
dual-ascent method with the improved convergence of the
augmented Lagrangian method. In ADMM, an optimiza-
tion problem is decomposed into smaller parts, and then
iterations are performed that alternate between solving the
subproblems and an overall coordination problem. ADMM
for linear-convex optimal control problems is proposed in
(O’Donoghue et al., 2013), where a decomposition approach
down to each control interval is presented. Sindhwani et al.
(2017) have approached constrained nonlinear optimal
control problems by combining a trust-region strategy
and ADMM such that a linearized problem is solved at
each step. An alternative approach to adopt decomposition
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Fig. 1. The single-track model.

for nonlinear optimization problems is to distribute the
problem constraints between several subproblems, and
then search for a solution by alternating between these
subproblems as proposed in (Galvan et al., 2019).

In this paper, we consider splitting of the motion-planning
problem (i.e., the corresponding optimization problem)
for the full maneuver into several subproblems, each con-
stituting one part of the full maneuver. The splitting is
done from the vehicle-dynamics perspective as presented
in (Anistratov et al., 2018b). By coupling the subprob-
lems in a structured way, it is possible to solve them in
parallel, thus allowing utilization of the computational
power in modern multi-core platforms. An approach to
decompose optimization problems for vehicle maneuvers
using a duality-based decomposition method by relaxing a
subset of the coupling constraints between the segments was
studied in (Anistratov et al., 2019) for a double lane-change
maneuver. The remaining coupling constraints were thereby
substituted by state values assumed to be available a priori
from offline computations. It is desirable to eliminate the
dependence on pre-computed data in the method. In this
paper, it is therefore considered to move all coupling con-
straints into another high-level coordination problem of low
complexity by adopting and leveraging on the alternating
augmented Lagrangian method proposed in (Galvan et al.,
2019). The difference to the method in (O’Donoghue et al.,
2013) is that the approach in this paper is applicable to
nonlinear problems. Compared to (Sindhwani et al., 2017),
the approach developed here does not require linearization
at each step. As in comparison to the previously studied
method (Anistratov et al., 2019), no pre-computed data are
needed in the method in this paper. Initialization values are
obtained by solving a highly reduced optimization problem,
where the number of optimization variables are approxi-
mately one magnitude smaller than in the original problem.

2. VEHICLE MODEL

In this section, the vehicle model is first presented as a
system of differential equations in the time domain and is
then reformulated in terms of distance traveled along the
road center lane.

2.1 Time Domain

The single-track model in the time domain (see, e.g., Wong
(2008)) is describing the vehicle dynamics by

mv̇x = Fx,f cos(δ) + Fx,r − Fy,f sin(δ) +mvyr, (1)

mv̇y = Fy,f cos(δ) + Fy,r + Fx,f sin(δ)−mvxr, (2)

IZ ṙ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ), (3)

R
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Fig. 2. Road coordinates-based description adopted from
(Limebeer and Rao, 2015).

where vx, vy are the longitudinal and lateral velocities
at the center-of-gravity, respectively, r is the yaw rate,
δ is the steering angle, Fx,i, Fy,i, i ∈ {f, r}, are the
longitudinal and lateral forces for the front and the rear
wheels, respectively, m is the vehicle mass, IZ is the vehicle
chassis inertia in the yaw direction, and lf , lr are defined
in Fig. 1. The vehicle global position XY and orientation
ξ are determined by

Ẋ = vx cos(ξ)− vy sin(ξ), (4)

Ẏ = vx sin(ξ) + vy cos(ξ), (5)

ξ̇ = r. (6)

2.2 Road Coordinates

The road coordinates-based description is adopted from
(Limebeer and Rao, 2015). The vehicle position is charac-
terized by s(t) (see Fig. 2), the distance traveled along
the center of the road, and position n(s(t)) along the
vector n(s(t)) perpendicular to the track tangent t(s(t)).
It is assumed that s(t) is an increasing function of time.
The road is set between Nl(s) and Nr(s) along the vector
n(s(t)).

The vehicle dynamics is reformulated to depend on the
distance traveled along the road center line by adopting the
approach suggested in (Limebeer and Rao, 2015), where
it is shown that such a reformulation reduces the number
of problem state variables by one. It also allows to later
formulate the optimal control problem with a fixed horizon
(instead of having the final time as a free variable) and
improves the computation time for solving the subproblems.

The time element dt is expressed in terms of a distance
element ds by

dt =
dt

ds
ds = Sf (s)ds, (7)

where the transformation factor Sf from (Limebeer and
Rao, 2015), using the curvature C(s) of the road (inverse
of R in Fig. 2), is given by

Sf =

(
ds

dt

)−1
=

1− nC(s)
vx cos(ψ)− vy sin(ψ)

. (8)

Using the transformation factor Sf , the model equations
(1)–(6) are represented as follows

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15768



mv′x = (Fx,f cos(δ) + Fx,r − Fy,f sin(δ) +mvyr)Sf , (9)

mv′y = (Fy,f cos(δ) + Fy,r + Fx,f sin(δ)−mvxr)Sf , (10)

IZr
′ = (lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ))Sf , (11)

ψ′ = rSf − C, (12)

n′ = (vx sin(ψ) + vy cos(ψ))Sf , (13)

where ( )′ denotes the derivative with respect to s and ψ
is the vehicle orientation in the road frame.

The longitudinal forces and the steering angle are consid-
ered as inputs

u = {Fx,f , Fx,r, δ}, (14)

and the state vector is

x = {vx, vy, r, ψ, n}. (15)

2.3 Tire Model

Since the focus of this paper is to illustrate the considered
segmentation method, a comparably simple linear tire
model from (Pacejka, 2006) is used, such that the slip
angles for the front and rear wheel are defined as

αf =
vy + lrr

vx
− δ, αr =

vy − lrr
vx

, (16)

and the lateral tire forces are

Fy,i = −Cα,iαi, i ∈ {f, r}. (17)

2.4 Lane-Deviation Penalty Function

Using a smooth approximation of the Heaviside step
function with an offset ao and a rising distance ar

H̃ar
ao(a) =

1

2
+

1

2
tanh

(
π

ar
(a− ao)

)
, (18)

the lane-deviation penalty (LDP) function from (Anistratov
et al., 2018a), penalizing deviations from the own driving
lane of the vehicle, is transformed to the road-coordinate
formulation

H(n(s)) = H̃nr
no

(n(s)), (19)

using the parameters no and nr.

3. SEPARABLE OPTIMAL CONTROL PROBLEM

The motion-planning problem to compute a double lane-
change maneuver is formulated as an optimal control prob-
lem. The problem is first presented in continuous infinite-
dimensional form and then subsequently reformulated to a
discretized version allowing separation into subproblems.

3.1 Continuous Formulation

The objective function is chosen as the integral of the
weighted sum of the LDP function (19) and the squared
value of the velocity deviation from the target velocity
vx,0. By substituting the algebraic relations (16)–(17) into
the vehicle dynamics (9)–(13), the latter is formulated as
the constraint x′ = G(x, u) in the optimal control problem.
The optimal control problem between s0 and sf for starting
state x0 and final state xf is

min.
x,u

∫ sf

s0

H(n(s)) + γ(vx(s)− vx,0)2ds

s. t. x(s0) = x0, x(sf ) = xf , |δ| ≤ δmax,

F 2
x,f + (ηFy,f )2 ≤ (µmglr/L)2, Fx,f ≤ 0,

F 2
x,r + (ηFy,r)

2 ≤ (µmglf/L)2, Fx,r ≤ 0,

Nl(s) ≤ n(s) ≤ Nr(s), x′ = G(x, u),

(20)

where γ is the weighting factor, the absolute value of the
steering angle is limited by δmax, L = lf + lr, and the
forces for each tire are bounded by the friction ellipse
(Pacejka, 2006), where η is the parameter of the ellipse.
The longitudinal forces are non-positive as is common in
double lane-change tests.

3.2 Discretization of Cost Function and Vehicle Dynamics

The vehicle dynamics is discretized for N control intervals
using the multiple-shooting method (Bock and Plitt, 1984)
with the Runge-Kutta method (RK4) (see, e.g., (Ascher
and Petzold, 1998)) as xi+1 = F(xi, ui). The resulting
optimization problem with piecewise constant control
inputs is

min.
x,u

N+1∑

i=1

(
H(ni) + γ(vix − vx,0)2

)
∆s

s. t. x1 = x0, x
N+1 = xf ,

∣∣δi
∣∣ ≤ δmax,

(F ix,f )2 + (ηF iy,f )2 ≤ (µmglr/L)2, F ix,f ≤ 0,

(F ix,r)
2 + (ηF iy,r)

2 ≤ (µmglf/L)2, F ix,r ≤ 0,

N i
l ≤ ni ≤ N i

r,

xi+1 = F(xi, ui), i ∈ {1, . . . , N}.

(21)

A compact version of (21) could be formulated by represent-
ing its objective-function terms as J (xi) and all inequality
constraints as G(xi, ui) ≤ 0 in the following format

min.
x,u

N+1∑

i=1

J (xi)

s. t. x1 = x0, x
N+1 = xf ,

G(xi, ui) ≤ 0,

xi+1 = F(xi, ui), i ∈ {1, . . . , N}.

(22)

3.3 Separable Discretized Formulation

The optimization problem (22) is reformulated to allow
splitting it into M subproblems. This is achieved by
dividing the state variables x and control inputs u in
(22) into M segments and by introducing extra equality
constraints with auxiliary variables y to make the new
problem to be equivalent to (22). The new segmented state
and control variables are denoted as xj and uj consisting
of pj + 1 and pj vectors, respectively, representing pj time
steps. For compact notation, the compositions of the new
segmented vectors are defined as

X = {x1, . . . , xM}, (23)

U = {u1, . . . , uM}, (24)

Y = {y1, . . . , yM+1}. (25)

An equivalent formulation of (22), allowing later splitting
into M subproblems, is the following
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min.
X ,U,Y

M∑

j=1

{
f0j J

(
x1j
)
+

pj∑

i=2

J
(
xij
)
+ffj J

(
x
pj+1
j

)}

s. t. G(xij , u
i
j) ≤ 0, xi+1

j = F(xij , u
i
j),

x1j − yj = 0, x
pj+1
j − yj+1 = 0,

i ∈ {1, . . . , pj}, j ∈ {1, . . . ,M},

(26)

where the factors f0j and ffj are introduced in the objective

function to take into account that the state values x
pj+1
j

and x1j+1 correspond to the same traveled distance s along
the center of the road. These factors are equal to one at

the points corresponding to s0 and sf (f01 = ffM = 1) and
equal to 0.5 in all other cases. The coupling constraints
involving the extra variables yj are introduced to connect
the adjacent segments with each other and to have the
same initial and final states as in (22). For the latter, the
variables y1 and yM+1 are set to x0 and xf , respectively.
All coupling constraints in (26) are compactly denoted as
E for later use.

3.4 Applying Alternating Augmented Lagrangian Method

Seeking stationary points of the Lagrangian function is
an approach to search for solutions of a constrained
optimization problem (Nocedal and Wright, 2006). To
increase robustness of the solution process, the augmented
Lagrangian methods were developed (Boyd et al., 2011).
Define the augmented Lagrangian (see, e.g., (Galvan et al.,
2019)) of (26) for the combined vector of multipliers

Λ = {λ01, λf1 , . . . , λ0M , λfM}, (27)

and a penalty parameter τ ≥ 0 as

Lτ (X ,U ,Y,Λ) =
M∑

j=1

{
f0j J

(
x1j
)

+

pj∑

i=2

J
(
xij
)

+ ffj J
(
x
pj+1
j

)

+λ0j
(
x1j − yj

)
+ λfj

(
x
pj+1
j − yj+1

)

+
τ

2

∥∥x1j − yj
∥∥2 +

τ

2

∥∥∥xpj+1
j − yj+1

∥∥∥
2
}
. (28)

The alternating augmented Lagrangian method in (Galvan
et al., 2019) is adopted to move the constraints involving
variables Y in (26) into a separable problem. Taking
advantage of the special structure in (26), the rest of
the problem is decomposed into M subproblems. Given
the current iterate (kX , kU kY,kΛ, kτ), the steps are the

following. For fixed kY , kΛ (defined in (25), (27)), and kτ ,

the values of k+1X and k+1U are obtained by finding their
components k+1xj ,

k+1uj from solving M subproblems for
each j ∈ {1, . . . ,M} as

min.
xj ,uj

f0j J
(
x1j
)

+

pj∑

i=2

J
(
xij
)

+ ffj J
(
x
pj+1
j

)

+ kλ0j
(
x1j − kyj

)
+ kλfj

(
x
pj+1
j − kyj+1

)

+
kτ

2

∥∥x1j − kyj
∥∥2 +

kτ

2

∥∥∥xpj+1
j − kyj+1

∥∥∥
2

s. t. G(xij , u
i
j) ≤ 0, xi+1

j = F(xij , u
i
j),

i ∈ {1, . . . , pj}.

(29)

These M subproblems are independent of each other and
can be solved in parallel. After that, for fixed k+1X , k+1U ,
kΛ, and kτ , the new iterate k+1Y is obtained by solving
the problem

min.
Y

M∑

j=1

{
kλ0j

(
k+1x1j − yj

)
+ kλfj

(
k+1x

pj+1
j − yj+1

)

+
kτ

2

∥∥k+1x1j − yj
∥∥2 +

kτ

2

∥∥∥k+1x
pj+1
j − yj+1

∥∥∥
2
}
.

(30)
This problem is possible to solve analytically to obtain the
components of k+1Y as

k+1y1 =
kλ01
kτ

+ k+1x01,
k+1yM+1 =

kλfM
kτ

+ k+1xfM ,

k+1yj =

kλfj−1 + kλj
0

2 · kτ +
k+1x

pj+1
j−1 + k+1x0j

2
, (31)

j ∈ {1, . . . ,M}.
It should be noted that for the fixed components in x0 and
xf , updates in the respective components of y1 and yM+1

are not performed.

New multipliers k+1Λ are computed as follows (Galvan
et al., 2019)

k+1λ0j = kλ0j + kτ
(
k+1x1j − k+1yj

)
, (32)

k+1λfj = kλfj + kτ
(
k+1x

pj+1
j − k+1yj+1

)
, (33)

j ∈ {1, . . . ,M}. (34)

The update rule for the penalty parameter τ is adopted
from (Galvan et al., 2019) and is given by

k+1τ =

{
kτ if

∥∥∥k+1X − k+1Y
∥∥∥ ≤ σ

∥∥∥kX − kY
∥∥∥ ,

α · kτ otherwise,
(35)

where α and σ are tuning parameters.

4. PARAMETERS AND IMPLEMENTATION

This section describes parameters used to formulate the
optimal control problem for a double lane-change maneuver.
Implementation aspects are also discussed.

4.1 Road Definition and Parameters

The road right-hand side Nr(s) is defined, adapting the
approach in (Anistratov et al., 2018a), using (18) by

Nr(s(t)) = Nr,1(H̃sr
sou(s(t))− H̃sr

sod
(s(t))) +Nr,2, (36)

where the parameters of the function are set to: Nr,1 =
2.5 m, Nr,2 = −0.7 m, sr = 2 m, sou = 23.5 m, sod =
36.5 m. The function (36) is illustrated with the bottom
red line in Fig. 3. The road left-hand side Nl(s) is defined
to have a constant value of 3.5 m. The road curvature
C(s) = 0.

4.2 Model and Problem Parameters

The vehicle model and tire parameters are shown in Table 1.
The acceleration due to gravity is g = 9.82 ms−2. The
parameters in the LDP function (19) are set to n0 = 2 and
nr = 2; the weighting factor in the objective function (20) is
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γ = 0.2. The vehicle steering angle is limited by δmax = π/3.
The vehicle initial state is x0 = {60/3.6, 0, 0, 0, 0} and the
final state is xf = {−, 0, 0, 0, 0}, where “−” represents no
constraint. The problem is formulated between s0 = 0 m
and sf = 60 m with the target velocity vx,0 = (60/3.6) m/s.
For the optimization of the full maneuver (21), N = 100.
The parameters of the update rule are chosen as 1τ = 35,
σ = 0.95, and α = 1.02.

4.3 Comments on Implementation

The method in Section 3 was implemented using the
Python 3.7 programming language. Problems (21) and (29)
are declared using the nlpsol interface in the framework
CasADi (Andersson et al., 2019) and subsequently solved
by IPOPT (Wächter and Biegler, 2005), together with
the MA57 linear solver (HSL, 2019). The presented per-
formance results are computed under the assumption that
the segmented problems are computed in parallel threads
with access to the shared memory. It means that the time
for each iteration is the maximum computational time
of the segments. The common implementation of Python
(CPython) does not allow to execute threads in parallel,
even when a multi-core processor is available. The use of the
Pool class representing a pool of worker processes, provided
by the multiprocessing library (Python Standard Library,
2019), results in overhead to transmit data to and from the
process for each subproblem. A discussion on estimated
overhead for both the sequential and the parallel case is
given in Section 5.2.

4.4 Initialization

To improve performance of the investigated approach and
to give initial values for the variables in the subproblems
(29), an initialization strategy is developed. It is based
on solving one optimization problem (21) with a loose
tolerance bound and small N , which is typically one
magnitude smaller than for the main problem. To initialize
the solver for this problem, the longitudinal velocity vx
for the complete maneuver is set to the initial velocity
and other variables are set to zero. Having a solution of
this small problem, it is possible to initialize the variables
X , U , and Y for the considered subproblems using linear
interpolation of the resulting x and u. For each constraint
of problem (21), the used solver outputs the associated
dual variables. By considering the dual variables of the
constraints xi+1 = F(xi, ui) to be associated with point
si+1, a linear-interpolation approach is applied to obtain Λ
at the corresponding points of s. The interpolation method
for the dual variables of the constraints xi+1 = F(xi, ui) is
also applied to initialize the respective constraints at the
discretization points of s in the subproblems (29).

Table 1. Chassis and tire parameters.

Notation Value Unit Notation Value Unit

lf 1.3 m Cα,f 17 · 103 N
lr 1.5 m Cα,r 20 · 103 N
m 2100 kg µ 0.8 [-]
IZ 3900 kgm2 η 1 [-]

4.5 Scaling

Using the results from the initial solution, the vehicle
orientation ψ is scaled by the ratio involving multipliers
associated with the discretization constraint for the ψ

dynamics (denoted as ψ̃i) and for the other state variables,

whose multipliers are denoted by Υ̃i = {ṽix, ṽiy, r̃i, ñi}, as

βψ =
maxi(Υ̃

i)−mini(Υ̃
i)

maxi(ψ̃i)−mini(ψ̃i)
, (37)

where i ∈ {1, . . . , N}. The effect of the ψ-scaling is
discussed in Section 5.3. Also the tire forces are scaled
by βF = 1/1000 for improved performance in the solver.
The inverse scaling is applied on the affected variables when
visualizing the final solution.

4.6 Solver Configuration

To decrease the computation time for the subproblems
(29) and since an accurate solution at each update step
is not required, strategies for the interior-point solver
configuration are adopted from (Wang and Boyd, 2010).
The maximum number of iterations for the IPOPT solver is
chosen as 12. A warm-start approach is used, with the target
value and the minimum value of the barrier parameter µ
in the solver set to 0.01, and all the warm-start related
parameters of the solver (i.e., how to change different
boundaries before a new run) are set to 10−9.

5. RESULTS

The method in Section 3 is illustrated for a double lane-
change maneuver. An analysis of the effects of variable
scaling, parallel computation, and segmentation with
different number of segments is also presented.

5.1 Solution of the Decomposed Problem

The problem is divided into three segments (three sub-
problems on the format (29)) with p1 = 25, p2 = 51, and
p3 = 24. These points are chosen, such that segmentation
points correspond to extrema of the vehicle orientation
ψ and the yaw rate r as developed in (Anistratov et al.,
2018b). The first segmentation point is the extremum of
the vehicle orientation before the obstacle. The second
segmentation point is the extremum of the yaw rate after
the obstacle. Information about these variables is available
from the initial solution (where N = 10) and quadratic
spline interpolation is applied to find the nearest points for
the case of N = 100.

The solution of the decomposed problem and the solution
of the full problem are shown in Fig. 3. The variables for
the vehicle orientation and the tire forces in Fig. 3 (and
in Figs. 5–6 in Section 5.2) are scaled back to the original
ranges (see Section 4.5). The solution is obtained for a fixed
number of alternating iterations, here 30. The solution
of the decomposed problem is overlaying the solution of
the full problem most of the time. A small difference is
observed for the longitudinal velocity vx towards the end
of the maneuver. The discrepancy could be explained by
a comparably low penalty on the velocity relative to the
penalty on the position of the vehicle (the vehicle position
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Fig. 3. The solution of the decomposed problem (solid
lines) overlaying the solution of the full problem
(dashed lines). Circles are shown at the segmentation
points.

n is in good agreement in Fig. 3) in the objective function
in (20). Circles are shown for the state variables of the
respective segment at each segmentation point; the circles
are overlaying meaning that the variables are connected
between segments. However, for the steering-angle input δ,
there is a small difference at the first segmentation point
because there are no constraints on the piecewise constant
inputs between control intervals in (21) and consequently
not in (29).

Figure 4 shows the evolution for a number of variables and
progress measures. Each point in the figure is one iteration
of the algorithm shown against the solution time (measured
in the implementation as described in Section 4.3). The
time to setup the problem internally in CasADi is not
taken into account here and this is further discussed in
Section 5.2. From left to right, top to bottom the figure
shows:

• The error-norm of the coupling constraints, ‖E‖.
• Penalty parameter τ .
• Multipliers for the coupling constraint xp1+1

1 − y2 = 0

of the first segment, λf1 .
• Errors for each state variable between the first and

the second segment at the first segmentation point,
x12 − xp1+1

1 .

• Multipliers for the coupling constraint xp2+1
2 − y3 = 0

of the second segment, λf2 .
• Errors for each state variable between the second and

the third segment at the second segmentation point,
x13 − xp2+1

2 .

In the plots of multipliers in Fig. 4, the black circles show
the values of the multipliers obtained for the solution of the
full problem. The values are shown for reference purpose
only, and they are not available during the solution process
of the decomposed problem. Figure 4 does not show the
multipliers λ02 and λ03 since in the solution they are just

equal to the negative values of the shown multipliers λf1 and
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Fig. 4. Variables and progress measures for the solution of
the segmented problem. See the data description in
Section 5.1. Note that the legend colors for the plots
in the left column refer to corresponding multipliers.

λf2 , respectively. The deviations of the coupling constraints

at the beginning (x11 − y1) and at the end (xp3+1
3 − y4) of

the maneuver are not shown in the figures. However, they
are still accounted for in the coupling error ‖E‖.
Compared to (O’Donoghue et al., 2013; Sindhwani et al.,
2017), the investigated decomposition method has a lower
number of decomposed subproblems relative to the number
of control segments (M � N). The lower number of
decomposed subproblems is chosen under considerations of
the typical situation when a limited number of computation
cores are available and to decrease the overhead time, while
taking benefit of already available efficient interior-point
solvers for the subproblems.

5.2 Time Performance

Performance evaluations for the implementation (see Sec-
tion 4.3 for details) were obtained on a laptop computer
with an Intel i7-8550U processor. Averaging over 50 execu-
tions, it takes 0.13 s to solve the optimization problem for
the full maneuver. The initialization problem of the method
in Section 3 takes 0.005 s to solve. An average solution
time of one iteration of the decomposed problem (with the
assumption of parallel computation of the subproblems) is
approximately 0.04 s. With a lower number of alternating
iterations, it is possible to obtain a solution (acceptable for
certain applications) of the decomposed problem faster than
solution of the original problem. Figure 5 shows the solution
after two alternating iterations. The solution time including
the initialization (see Section 3) is 0.08 s. Comparing Fig. 3
(after 30 alternating iterations) with Fig. 5, it is visible
that the agreement between the solution of the decomposed
problem and the solution of the full problem is lower for
the latter case. The solution, however, is obtained much
faster.

For certain applications, not only the solution time, but also
the time required to instantiate a solver for the optimization
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Fig. 5. The solution of the decomposed problem after two
alternating iterations (solid lines) almost overlaying
the solution of the full problem (dashed lines).

problem is of importance. For the considered scenario, it
takes 0.44 s to instantiate the solver for the full maneuver in
CasADi, while it takes 0.04 s and 0.22 s for the initialization
and subproblems, respectively. With the assumption on
parallel computations, it is thus faster to formulate the
decomposed problem.

As described in Section 4.3, an implementation of the
described method with parallel computations of the sub-
problems has been made. For 30 alternating iterations,
the average computational overhead for each alternating
iteration is 5.6 % of the maximum solution time of the
subproblems. When the subproblems are actually solved in
parallel, the average solution time per iteration increases
by 19 % in the current implementation. The overhead
connected with updating the multipliers and auxiliary
variables together with the overhead of data transfer to a
parallel process is 14 % of the maximum solution time of
the subproblems.

The method is flexible in terms of number of segments.
By increasing the number of segments, each associated
subproblem gets smaller. It means that the subproblem is
faster to initialize and to solve. By increasing the number
of segments to seven equally long subproblems in distance
s, the average solution time for one iteration is 0.012 s
(0.04 s for the segmentation into three segments). For
eleven segments, an average solution time for one iteration
is 0.009 s. Figure 6 shows the solution obtained after two
alternating iterations (0.023 s of solution time including the
initialization problem). For increased number of segments,
a solution could be obtained faster, if there are sufficiently
many processor cores available for computations.

5.3 Importance of Scaling

It turned out that scaling of the vehicle orientation ψ was
important for rapid convergence of the multipliers Λ. The
evolution of the problem variables when the scaling is not
applied is shown in Fig. 7. When it is compared to Fig. 4, it

is visible that the multiplier λf1 corresponding to the vehicle
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Fig. 6. The solution of the decomposed problem (solid
lines, eleven segments) almost overlaying the solution
of the full problem (dashed lines).
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Fig. 7. Variables and progress measures for the segmented
problem. See the data description in Section 5.1. Note
that the legend colors for the plots in the left column
refer to corresponding multipliers. Scaling for ψ is not
performed here.

orientation ψ (red line in the λf1 plot in the figures) does not
converge to the values obtained for the solution of the full
problem even after 30 iterations (60 iterations are needed
instead with the maximum number of iterations for the
IPOPT solver increased to 20). The discrepancy between
the first and the second segments for ψ in Fig. 7 is slow to
decrease (red line for x12 − xp1+1

1 in the figures), as well as
the coupling error ‖E‖. Without scaling, more computation
time is needed to obtain a solution with the same quality as
in the case with scaling. The observation could be related
to the dual variables of the dynamic constraints obtained
from the solution of the full maneuver (Fig. 8). The dual
variables associated with ψ change over a much wider range
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Fig. 8. Dual variables associated with the dynamic con-
straints in the solution of the full maneuver.

relative to the other dual variables over the path. By scaling
the ψ variable, such that the associated dual variables are
changing over the same range as the other dual variables,
the convergence characteristics are improved.

6. CONCLUSION

The presented decomposition method for the optimal
control problem arising in motion planning of a double
lane-change maneuver was shown to be effective in the
considered scenario. The solution is computed after just a
few alternating iterations, with the first iteration initialized
using the results of a particular computational procedure.
The scaling of the state variable representing vehicle
orientation in the problem was noted to be important for
achieving rapid convergence of the method. The resulting
maneuver was compared to the results obtained for solving
the full maneuver in one step, and the correspondence
turned out to be high already after a few iterations resulting
in lower computational times. The results indicate the
usefulness of the decomposition method.
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